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Abstract. Clusters of microcalcifications are often the earliest signs of breast 
cancer and their early detection is a primary consideration of screening 
programmes. We have previously presented a method to detect 
microcalcifications based on normalised images in standard mammogram form 
(SMF) using a foveal segmentation algorithm. In this paper, we discuss the 
selection and computation of parameters, which is a key issue in automatic 
detection methods. Deriving the parameters of our algorithm from image 
characteristics makes the method robust and essentially removes its dependence 
on parameters. We carry out a FROC analysis to study the behaviour of the 
algorithm on images prior to normalisation, as well as the contribution of the 
stages employed by our method. We report results from two different image 
databases.  

1 Methodology 

Our method of microcalcification detection relies on using a normalised 
representation of breast tissue, for example the standard mammogram form (SMF) [3] 
Having an SMF image as input, the first objective is  the removal of curvilinear 
structures (CLS), which turn out to be an important consideration in the specificity 
but whose computation is itself a major challenge. This is performed using the local 
energy model for feature detection of Kovesi [4] and is presented in [1].  

The SMF model accounts for the majority of imaging artefacts (scatter, glare, 
anode heel, extra-focal, quantum mottle, film grain). Inevitably, however, there are 
imperfections arising from deconvolution and model simplifications that are intrinsic 
to the SMF (or any similar) generation process [3,9]. These possible sources of errors 
leave residual high-frequency noise in mammographic images. Digitiser noise, also of 
high frequency, adds to it. We employ an anisotropic diffusion filter to smooth the 
remaining high-frequency noise [4]. A priori, this is a reasonable thing to attempt, as 
anisotropic diffusion smoothes the image, reduces noise (hence increases signal to 
noise, which is generally poor for mammographic images), and preserves image 
structure. 
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Unfortunately, the substantial number of parameters required for anisotropic 
diffusion makes the results of this process highly dependent on fine-tuning of its input 
parameters. In practice, the more complex and variable the images in a dataset, the 
more problematical it is to choose a single set of values for the parameters that works 
well for the entire dataset. To address this problem, we propose using image 
characteristics to set the diffusion parameters for each individual image in the dataset. 

It should be noted from the outset that although they may be important early 
indicators of breast cancer, microcalcifications generally occupy only a tiny 
percentage of the pixels of a mammogram image. Typically, they are very small and 
present in about a quarter of the total number of screening mammograms. 

For these reasons, we consider that at most five percent of the total number of 
mammogram pixels suffices to account for the entire population of calcium salts. 
Since the x-ray attenuation of calcium is far larger than that of normal tissue, 
microcalcifications are expected to appear bright in a mammogram, indeed to be 
amongst the brightest/highest pixels of the mammogram, though the brightness can be 
reduced by scattering of x-ray photons. As made explicit in equation (1), we compute 
the contrast k  as a measure of the gradient, where Kσ(I) is a Gaussian blurring of the 
image I.  k  becomes a value with well-defined physical meaning that discriminates 
between these brightest structures and the background; more precisely, we select the 
4.4% structures with highest contrast.  

The second parameter to be set is σ, the standard deviation of the Gaussian filter 
used to smooth the image. We need to choose a value for σ such that, on the one 
hand, it removes high-frequency noise; but, on the other, preserves 
microcalcifications. We compute σ according to (2), where S is the maximal size of 
features to be smoothed and R the image resolution. 

The number of iterations t of the anisotropic diffusion process is related to the 
spatial width of the Gaussian kernel [8]. To blur features of the kernel order (n*σ, 
n=ct.) t is computed according to (3), which gives excellent noise reduction results 
while preserving microcalcifications.   
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The process is completed by applying what we call a foveal algorithm to segment 
microcalcifications; the name derives from a model of the adaptability of the human 
eye to detect features in textured images [6]. The eye’s ability to perceive luminance 
gradients is controlled by the w factor in (4), where µN is the weighted mean of the 
neighbourhood of the object to segment and µB the mean value of the image 
background. w is a suitable weight (between 0 and 1) which controls the amount of 
background used in the computation of contrast, which gives a global measure to the 
locally adapted contrast. Once more, the parameters are computed from the image 
characteristics, as seen in (5), where Cmin is the adapted threshold used to segment 
microcalcifications and b a constant. 
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µA = w + (1-w) µB (4) 
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The detection method is described in greater detail in [6]. 

2 FROC Analysis 

In this section we present comparative Free-response Receiver Operating 
Characteristic (FROC) curves to test the outcome of our method with variations in 
algorithm and input images. We plot the true positive (TP) ratio against the number of 
false positives (FP) per image. We used a database of 102 samples of digital SMF 
images: 78 of them contain between 1 and 3 clusters per image, while 24 are normal 
mammogram samples. There are a total of 98 microcalcification clusters annotated in 
the database. All images were digitised at a resolution of 50 µm and have sizes at 
most 1500x1500 pixels. A cluster is detected if it contains at least three 
microcalcifications, where a distance of maximum 0.5 cm connects each calcification 
to the rest of cluster. In Figure 1 we note the impact of CLS removal, image 
smoothing and image normalisation (SMF images) on detecting microcalcification 
clusters. The results are clearly superior when the detection algorithm uses all of the 
stages in the algorithm, though they are not very different when the algorithm is 
applied to intensity (not normalised) images.  

In the previous section, we noted the significance of w in setting the minimal 
perceivable contrast for obtaining the best detection results when our algorithm is 
applied. The literature proposes 7.7% of the adaptive luminance to be due to the 
background luminance 1, which gives a value of 0.923 to our weight w. We ran 
parallel tests to test the consistency of our conclusion to use the value 0.923 for w, by 
varying the value of w over 5-10%. Figure 2 shows the comparative detection results 
with the variation of w. 

The results used in building the FROC curves in Figures 1 and 2 are based on 
processing cropped samples of mammograms. To illustrate results on whole 
mammograms, we used a total number of 83 mammograms in SMF format from the 
Oxford Screening Database: 59 of them contain between 1 and 5 clusters/image, 
adding the total number of clusters to 85, while 24 mammograms have no sign of 
abnormality. The pooled opinions of the clinicians at the Oxford Breast Care Unit, 
Churchill Hospital were used as ground truth. The breast margin is detected in SMF, 
thus a threshold above 0 removes the background. Now we can compute the value of 
k  (see Methodology) for the inner area of the breast. The detection results are accurate 
and similar to those achieved on the mammogram samples (see Figure 3). The most 
challenging cluster to detect is located in the breast margin. The presence of CLS 
remains the main source of FP, or more precisely their imperfect removal. A few 
isolated calcifications were also depicted, but they were not labelled as 
microcalcification clusters. 
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The ultimate goal of any CAD algorithm is to work reliably on any given similar 
database, no matter where it comes from. As is acknowledged by many authors, 
without image normalisation this is hard to achieve. The SMF generation algorithm is 
designed precisely to cater for this situation; but excepting the Oxford database, no 
other image collections have mammograms in SMF format. Our detection algorithm, 
through its parametrical relation to the image attributes, facilitates the generalisation 
of detection standards, but without the use of a normalisation algorithm (a corner 
stone in our reasoning), the results are not ideal. 

We used for comparison a collection of images from the University of South 
Florida Digital Database for Screening Mammography (DDSM). The new database 
consists of 82 image samples, of which 58 show abnormalities in the form of 
microcalcification clusters and 24 are normal. The abnormal images contain between 
1 and 4 clusters/image and the total number of clusters is 82. All images are intensity 
images (using the earlier terminology) so the FROC curve shown in Figure 4 
compares the performance of the microcalcification detection algorithm between the 
Oxford Screening Database in intensity form and the DDSM collection. 

As expected, the algorithm performs better on the Oxford Screening database, on 
which the parameters were originally trained. Nevertheless, the detection results on 
the two databases converge at about 0.5 FP/image and they both achieve 100% TP 
fraction in the vicinity of 2 FP/image. A more appropriate test of the detection 
algorithm on the DDSM database will be done when images will be available in SMF 
form. 

 

 
Fig. 1. The comparative FROC curves for the detection of microcalcifications. ο - represents 
the detection on SMF images; ◊ - are the results without noise removal by anisotropic diffusion;      
.  - are the results without CLS removal; ∇ - shows results on intensity images, when no SMF 
generation is present. All algorithms reach 100% TP fraction with a clear better performance on 
SMF images that were de-noised and CLS-removed 

 

ο - SMF images 
◊ - no diffusion 
   - no CLS removal 
∇ - no SMF (intensity) 
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Fig. 2. The comparative FROC curve when w is varied over a range of 5 to 10% of its default 
value of 0.923. The difference in detection results is quite small and all four algorithms 
converge smoothly to 100% TP ratio. 
 

 
Fig. 3. The comparative FROC curve of the detection of microcalcifications when 
mammogram samples are used versus full mammograms. The behaviour of the algorithm is 
similar and robust with the image size. 

Finally, this section compares three algorithms to detect microcalcification 
clusters that operate upon the SMF representation of mammograms. The first has been 
described previously in this paper and is addressed as the “foveal algorithm”; the 
second one is Yam et al.’s physics based approach that was described in 9. The third 
is a variation of the statistical analysis introduced in Methodology, here addressed as 
the “statistical approach”, and is presented in [6]. Using FROC analysis, we 
demonstrate the superiority of the foveal algorithm in Figure 5.   
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Fig. 4. The comparative FROC curve between the detection results on intensity images from 
the Oxford Screening Database and the University of South Florida Digital Database for 
Screening Mammography. 

 
Fig. 5. The FROC curves of the three microcalcification-detection methods on SMF images, 
where we notice the better performance of the Foveal Approach. 

3 Discussion  

From a combination of solutions to partial differential equations (PDE), wavelet 
methods and statistics, the developed technique presents the user with a map of 

ο - Results on the Oxford Screening database; 
∆ - Results on the University of South Florida   
database; 

ο - Foveal algorithm;  
   - Statistical analysis; 
◊ - Yam’s algorithm;  
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detected microcalcifications. In the first original step of our method, we presented a 
working example of tuning the parameters of anisotropic diffusion to an application. 
In a more general framework, anisotropic diffusion is a feature detector, namely an 
edge detector. The contrast k, being closely related to the gradient in the image, can 
be derived according to the percentage of features that we desire to enhance in an 
image. σ gives a measure of scale and must be set according to the size of searched 
features at the image resolution (multiscale analysis may be performed). The number 
of iterations t can be expressed as a function of σ, which can be well related to noise 
removing, but may be more difficult to combine with feature enhancement for some 
applications. With the automatic tuning of parameters that we propose, anisotropic 
diffusion may be used in a way that has minimal dependence on preset parameters 
and which uses some limited, but essential, a-priori knowledge. Potentially, this is 
more widely applicable in diffusion, a method that has attracted criticism for its 
parametrical dependency.   

The second original step is the development of a method for adaptively 
thresholding the filtered results in order to segment microcalcifications. The 
combination of filters, statistical analysis and adaptive thresholding adds to the 
novelty of our technique. We compare detection methods on SMF images as well as 
the outcome of our algorithm on both SMF and intensity images. An example of 
microcalcification detection is shown in Figure 6. 

 

     
Fig. 6. An example of microcalcification detection. On the left (a) we present the input image 
in SMF format with a microcalcification cluster, while on the right (b) we note the result of our 
detection method. 

The subsequent filters (SMF related, diffusion) model and correct for specific 
image analysis problems, rather than trying to amalgamate into a single (linear or 
nonlinear) filter that attempts to do everything. Separating them should make things 
clearer for the developer of such a filter, even if, for the end user, it is all reduced to a 
“black-box” that detects microcalcifications. Hence, we have a collection of 
blurring/low-pass and deblurring/high-pass filters.  

Many methods to detect microcalcifications attempt to tune the variety of 
parameters used in the implementation of the algorithm to best suit the studied cases. 
The consistency and reproducibility of results becomes highly dependant on the 
operators and their capability to find the best parametrical configuration for the 

a b 
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detection. We propose a fully automated non-parametric method to detect 
microcalcifications using the SMF normalised representation of the breast.  

4 Conclusion 

In this paper we presented a FROC analysis of an algorithm for the detection of 
microcalcification clusters mammography. The robustness of the algorithm has been 
demonstrated by the FROC analysis performed over a range of parameters. The 
method converged in each case to 100% TP ratio. Similar results were obtained on 
intensity images, although for the lower scale of FP/image there is a more significant 
difference in results. We also compared the performance of our algorithm on data 
from different databases with good detection results. 

Adding adaptive contrast segmentation based on characteristics of the human 
visual system significantly enhances the detection of microcalcifications. The 
parameters are set according to the image attributes and the method is fully 
automated. In future work, we aim to develop the algorithm by incorporating 
additional knowledge of X-ray attenuation. 
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