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Abstract. Recent figures show that approximately 1 in 11 women in the
western world will develop breast cancer during the course of their lives.
Early detection greatly improves prognosis and considerable research has
been undertaken to this end. Mammographic images are difficult to in-
terpret even by radiologists and this makes their task error prone. One of
the earliest non-palpable signs is the appearance of microcalcifications,
typically 0.5 mm in diameter, representing small deposits of calcium salts
in the breast. A novel approach to detecting microcalcifications in x-ray
mammography has been explored. The method is based on the use of
the physics-based image representation hin: [1] and use of anisotropic
diffusion to filter hin: images. The diffusion process becomes a method
of detecting both noise and microcalcifications in mammograms.

1 Theory

The h;,; representation results from a model of the mammogram image forma-
tion process. The appearance of mammograms varies massively according to the
specific conditions, though the object of interest, the breast anatomy, remains
invariant. The h;,; model offers an alternative quantitative representation of
the breast tissue, where the h;,; of a pixel represents the amount of non-fatty
breast tissue at that point. Figure 1.a shows a depiction of the h;,; surface of
a breast. An h;,; representation can be easily visualised as an image, since the
hint values are in float format, where brighter parts correspond to regions of the
breast with more interesting (non-fatty) tissue or calcifications, as shown in Fig-
ure 1.b. While microcalcifications appear in about 14% of mammograms, they
are typically small and sparse. For this reason, Highnam and Brady’s algorithm
for estimating h;,; [1] assumes only two types of tissue: fat and non-fat (i.e.
parenchymal, tumour). Since the attenuation coefficient of microcalcification is
typically 26 times that of interesting tissue, microcalcifications appear in h;p;
images as tall thin towers, Figure 2.a.

One of the major characteristics that we use in detecting microcalcifications
is the difference that should be visible in the shape of a microcalcification ver-
sus noise [1]. While microcalcifications are anatomical structures with slightly
blurred edges which appear in mammograms due to the effect of x-ray beams
passing through the breast anatomical structure, noise tends to have extremely
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Fig.1. (a) A depiction of the h;,: surface of a breast, (b) an hin: representation
visualised as an image.

sharp edges, as shown in Figure 2.b. Shot-noise may drastically influence the lo-
cal image characteristics and represents the main source of false positives (FPs)
in algorithms for microcalcification detection. We have previously demonstrated
that the hg,; representation can eradicate this type of noise [2], but since our
method aims to detect shot noise as well, we did not remove shot noise from
the images we tested. The appearance of h;,; images would be extremely noisy,
mainly due to the removal of the glare effect [2], extra-focal and scattered radia-
tion [1] (which accounts for up to 40% of the total radiation exiting the breast).
This would make the examination of the regions of interest difficult, making it
harder to distinguish small structures in mammograms. Since microcalcifications
correspond to high peaks in h;,; images, only the most prominent spots of noise
may lead towards FPs, the smaller ones being easily removed by the diffusion
process. If glare is removed, facilitating the elimination of shot noise, the price
to be paid is a massive decrease in the signal to noise ratio (SNR) in At [5].
Yam [6] attempts to overcome this visible increase in noise by Wiener filtering
the original image before generating h;,; surfaces, an approach that improves
slightly the SNR. We prefer to work with the glare de-convolved (no shot noise
removed) image and use anisotropic diffusion to differentiate edge sharpness of
noise and microcalcifications.

2 Filter Model

We choose an anisotropic diffusion-based filter [3], [4] which aims to blur the
input mammographic image while preserving some small regions of interest. The
process relies on the use of a set of different parameters, e.g. time, contrast, size,
and it is essential to determine the right choice of parameters. Figure 3 shows
different output images after using anisotropic diffusion on a grey-level digital
mammogram containing both a calcification and a large spot of noise.
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Fig.2. (a) The plot of a filtered intensity image containing a microcalcification at
position 150, (b) the plot of a filtered intensity image containing noise at position 147.

We found that Weickert’s solution [4] for the diffusion tensor is best suited
to our problem. We used a similar simplified tensor having eigenvalues (1), (2):

1 |Vu,| =0,

Al = _ 1
1—exp <(|Vu"}/)\) > |[Vu,| >0 (1)

A2 =1. (2)

Nonlinear anisotropic filtering proves to be highly flexible due to the variabil-
ity of its parameters which help in covering a rather extensive set of possibilities
in multi-scaling filtering with respect to the output one can get by filtering med-
ical images, as Table 1 shows.

Table 1. Variation of anisotropic diffusion parameters: k - the contrast factor, o - the
scaling factor and t - the number of iterations;  represents an increase, while \ is a
decrease of the parameter or feature.
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Having obtained the anisotropically diffused image, we subtract it from the
less blurred original. Some differences in the way microcalcifications, as opposed
to noise, are diffused can be seen in Figure 4. Microcalcifications tend to be
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Fig. 3. (a) The original 533x386 grey-level image containing a microcalcification in
the centre-right of the image and a large spot of noise on the lower side of the image;
(b) the diffused image with £ = 5,0 = 0.6 and ¢ = 20; (c) the diffused image with
k = 5,0 = 0.5 and t = 40, where only the important small structures are kept and
their edges enhanced.

smoothed faster than prominent noise spots, for an appropriate choice of param-
eters. After a certain number of iterations, the surface of the difference image
contains significant changes for noise only.

3 Results

We first show some results of applying nonlinear anisotropic diffusion filtering
to samples of real mammograms containing microcalcifications. We de-noise h;p;
images while preserving only calcifications and significant noise, Figure 5.a, .b,
e, .f.

a. b. C.

Fig. 4. (a) The original preprocessed hin: 500x500 image containing a microcalcifica-
tion on the left side, a large spot of noise on the lower right side and several other
smaller noise structures; (b) the 3D plot of the difference image between the origi-
nal image diffused with ¥ = 15,0 = 0.6 and ¢ = 5 and the same one diffused with
k =150 = 0.6 and t = 10; (c) the 3D plot of the difference image between the orig-
inal image diffused with & = 15,0 = 0.6 and ¢ = 10 and the same one diffused with
k=150 =0.6 and ¢t = 15.
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In order to reduce processing time and the intervention of the operator in
the filtering process, we chose a large value for the contrast factor k. We still
chose a rather small value for the scaling factor o for preserving tiny anatomical
structures or noise over the first iterations in the process of diffusion. Due to
the strong variability that exists in mammographic images (e.g. contrast, size of
interesting tissue) a multi-scale approach would be preferable. Since the whole
process should be robust and easy to use, we reduced the number of variable
parameters to one, keeping constant the contrast and scale factors and varying
only the number of iterations over a small range. We found that the time factor
t gives optimal results for the filtering process over the whole set of h;,; images
when we used values between 3 and 7 iterations.

In demonstrating the efficiency of our method in increasing the number of
true positives (TPs) we also considered images with high likelihood to present
false positives. Such an example is presented in Figure 5.c, .d, .g, .h.

The detection method, of both calcifications and noise was based initially on
the association one can make between the original h;,; mammograms containing
the structures of interest and the surface we built from the filtered images after
just a few iterations. Since radiologists may have doubts when searching the
original image for microcalcifications, the surface we present would show either
hill-shaped structures for microcalcifications or sharp-edged formations for noise
in the locations corresponding to the structures of interest. Moreover, we found
the simple visual comparison of the two h;,; images — the original noisy one and
the filtered one — to be quite reliable in differentiating between microcalcifications
and noise. While noisy structures tend to be better preserved by the filtering
method applied with our final specific choice of parameters, microcalcifications
fade faster and look like imploding structures.

3.1 Coarse Calcifications

The algorithm was initially tested on a set of 13 samples of average 32-float h;,:
mammograms containing 10 coarse calcifications pre-labeled by a radiologist and
several artifacts. The size of the images varied between 124x180 and 251x251 at
50 pm resolution. The algorithm applied to the enhanced images gave a detection
rate of 100%. No FPs were detected during our experiments. The free-response
receiver operating characteristic (FROC) curve is shown in Figure 6.a.

3.2 Microcalcifications

The algorithm was then further tested on 20 samples of 32-float h;;,; mammo-
grams containing 27 isolated microcalcifications pre-labeled by a radiologist and
various pixels of noise. The size of the samples was 200x250 at a resolution of 50
pm. The set was meant to offer an overview of possible clinical aspects related to
microcalcifications of different sizes, some of them clear while some other feint.
The TPs fraction was 92.6 % for a number of 0.1 FPs per image.

We further applied an implementation of Yam et al.’s algorithm [5] to the
same set of microcalcifications. The process differed slightly in this case. The



6 M.G. Linguraru et al.

Fig. 5. (a) An original preprocessed h;n: 500x500 image containing a microcalcification
on the left side and a large spot of noise on the lower right side; (b) the diffused
image from (a) with £k = 15,0 = 0.6 and ¢ = 5, we notice that the microcalcification
has almost faded, while the noise is still preserved with high contrast; (c) an original
preprocessed hin: 400x490 image containing only noise structures, the largest piece of
noise on the upper right side could be easily considered of being a microcalcification
since it does not present very high contrast from the surrounding tissue; (d) the diffused
image from (c) with £k = 15,0 = 0.6 and t = 3; (e) the 3D plot of the original hint
image in (a), we notice the extremely noisy appearance where the important structures
can be hardly distinguished; (f) the surface of the diffused h;,: image in (b), the
microcalcification appears as a hill with smoother edges than those of the very sharp-
edged noise structures in the same image; (g) the surface of the original h;,; image
in (c) with highly noisy appearance; (h) the surface of the diffused hin+ image in (d)
where all structures have very sharp edges and are labeled as noise.
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original 32-float h;,; mammograms were translated into i f images without con-
trast enhancement, in order to preserve a fixed scale for all mammogram samples.
The algorithm developed by Yam et al. [5] was applied to the filtered versions
of the original images. We obtained a 100% fraction of TPs with a number of
0.3 FPs per image. The FROC curve of the detection using the combination of
the anisotropic diffusion filter and the algorithm implemented by Yam et al. is
shown in Figure 6.b.
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Fig. 6. (a) The FROC curve of the detection method for the set of 13 samples con-
taining coarse calcifications; (b) the FROC curve of the combined detection method
for the set of 20 samples containing different types of microcalcifications

4 Discussion

An important issue in the use of this new filtering method in x-ray mammogra-
phy is the preservation of tiny anatomical structures over the diffusion process.
Unlike most filters which actually blur the whole image and blend small re-
gions together, our method preserves the anatomical independence of all small
structures encountered in an image.

A major source of FPs in mammography corresponds to shot noise. The
noise maps obtained after removing the glare-effect in the process of generating
hint images can be used as a further step to exclude this specific type of noise
from mammograms and therefore reduce the number of FPs. We would therefore
expect significantly improved results in the detection process presented in Section
3. As Yam et al.’s algorithm is built to use a combination of grey-level and h;,;
images, using its original implementation on h;,;s only is expected to give poorer
results. We believe that some changes in the algorithm, such as introducing a
threshold that would remove shot noise or any other relevant bits of noise by
means of detecting the small area change over the height of the structure, would
eliminate most of the detected FPs and would not need to make use of the shot
noise maps.
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Time is important in the development of real-time clinical applications and
filtering algorithms make use of a lot of it because of the subsequent application
of kernels over one image. In order to reduce the necessary time for the diffusion
process, we used a higher value for the contrast factor k. A higher & leads to faster
diffusion over the image and fewer iterations are requested. The consistence of
our choice is based on the high h;,; values corresponding to both shot noise
and calcifications. Both structures are preserving their characteristics for high
contrast over a few number of iterations.

5 Conclusion

We have presented a filtering method based on anisotropic diffusion, a process
known for its scale-space and edge detection properties. Our method implements
such nonlinear diffusion filtering for the first time in digital mammography and
aims to be an alternative to the Wiener filter used previously on breast images.

Our method uses the normalised representation of mammograms that the
hint generation provides, namely a robust and consistent physical-based ap-
proach to digital mammography. The initial results are encouraging and further
improvements to the method promise better rates of detection. The algorithm is
also reliable in detecting both calcifications and noise in a single step by taking
into account the physical appearance of different structures of interest. While
the term noise refers to shot noise only, as the main source of false positives,
the term calcifications would include coarse calcifications as well as microcalci-
fications. Quantum mottle, an important source of errors in mammography, has
little interference in our application as it is smoothed by our filter, with a right
choice of the contrast and scaling factors. Furthermore, anisotropic diffusion is
blurring the images in a more intelligent way than other more usual smoothing
filters, making use of the edge enhancement property.
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