
 

  
Abstract—Intelligent management of medical data is an 

important field of research in clinical information and decision 
support systems. Such systems are finding increasing use in the 
management of patients known to have, or suspected of having, 
breast cancer. Different types of breast-tissue patterns convey 
semantic information which is reported by the radiologist when 
reading mammograms. In this paper, a novel method is 
presented for the automatic labelling and characterisation of 
mammographic densities. The presented method is first 
concerned with the identification of the prominent structures 
in each mammogram. Subsequently, ‘dense tissue’ is labelled in 
a mammogram data set, and BI-RADS classification is 
performed based on a 2D pdf that is contracted from a 
“ground truth” data set as well as a shape analysis framework. 
The presented method can be used in large-scale 
epidemiological studies which involve mammographic 
measurements of tissue-pattern, especially since breast-tissue 
density has been linked to an increased risk of breast cancer.  
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Decision Support Systems. 
 
 

I.  INTRODUCTION 
 
 Mammogram images are hard to interpret because of the 
complex tissue morphology of the breast and the numbers of 
imaging parameters that affect mammogram acquisition. 
Moreover, mammogram acquisition involves breast tissue 
compression, which results in a non-rigid deformation of 
breast-tissue structures. To date, most researchers have 
focused on developing holistic approaches to mass and 
microcalcification detection aiming at being invariant to the 
mammographic appearance of the breast tissue. However, 
little work has been done on the identification and 
characterisation of significant tissue categories prior to mass 
or calcification detection. Classification of breast density is 
important for epidemiological studies investigating the 
relationship between mammogram density and the 
occurrence of cancer. In addition, mammographic tissue 
appearance has been correlated with breast cancer risk [1], 
while change of appearance following Hormone 
Replacement Therapy (HRT) can also be a sign of cancer.  
 For these reasons, there is increasing interest in using 
measurements of mammographic density patterns in 
computer-aided detection. The most widely accepted pattern 
coding and characterisation system is the Breast Imaging 
Reporting and Data system (BI-RADS) suggested by the 
American College of Radiology [2]. The pattern of breast 
tissue density is an important characteristic and is routinely 
reported by physicians around the world, especially those 

following the ACR BI-RADS reporting system [2]. The 
work presented in this paper aims to automatically identify 
and characterise dense groups of tissue in mammograms and 
subsequently classify dense tissue according to the BI-
RADS criteria.  
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 Previous work on mammogram tissue identification has 
been aimed primarily at mass-detection. Li et al. [3], present 
a 3-stage method for determining the number of ‘dense’ 
tissue regions by optimising a generalised Gaussian mixture 
intensity model. This allows the identification of a number 
of ‘suspicious’ densities in each mammogram. However, the 
method includes a scale-dependent pre-processing step 
(structural elements of morphological operations) while 
results for medio-lateral mammograms, where the pectoral 
muscle makes segmentation difficult, are not presented. 
Similarly, in [4] a wavelet enhancement pre-processing step 
is used but the final ‘dense’ tissue extraction is parameter 
dependent. Finally, in [5], both a dynamic contour model 
and a region growing method are used to detect single 
densities that are suspicious for cancer.  
 Figure 1 is a schematic of the proposed method for 
mammogram tissue labelling and classification. First, each 
mammogram is labelled in 2 different classes; dense (ducts, 
lobules and connective tissue) and fat (fatty tissue including 
the edge along the breast outline and small vessels). The 
labelling methodology is presented in section II, and can be 
considered as a generalised tool for tissue labelling in 
mammograms. Subsequently, the tissue labelling method is 
applied to BI-RADS classification (section III). By using the 
‘dense’ labelled regions, a set of mammograms is classified 
based on a Parzen PDF model and shape analysis. 
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Fig. 1.  A schematic of the proposed method for tissue labelling and BI-
RADS classification. 

 
 

II.  METHODOLOGY 
 
 In this section we propose a method for labelling dense 
breast tissue. This task can be considered as an important 
generic pre-processing step, since mammograms can be 
decomposed into several consistent categories enabling 
more specific image analysis (e.g. direct matching of 
corresponding tissue classes for temporal or bilateral 
mammogram registration and examination only of the dense 
part of a mammogram, for mass detection). In order to 
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identify and label important structures in mammograms, it is 
necessary to segment the pectoral muscle, background and 
film edge from the mammogram (section II.A). This is 
necessary, since the pectoral muscle can have similar 
intensities or textures to the denser mammographic 
structures. Subsequently, each segmented mammogram is 
filtered using an adaptive anisotropic diffusion-based filter 
in order to remove small curvilinear structures and to 
homogenise the important groups of tissue prior to labelling, 
while preserving their edges (section II.B). This step 
enhances dense regions, reduces structural noise and, unlike 
morphological enhancement [3], is independent of image 
size. Finally, a fuzzy-clustering classification scheme is 
employed to identify the important tissue groups (section 
II.C). These steps are now presented in more detail: 
 
A. Segmentation 
 
 The method used for segmenting the breast background 
and film edges was developed by Highnam and Brady [6] 
and was chosen because it is fast and reliable, especially 
compared to histogram-based methods. The method is based 
on a combination of the linear Hough transform, image 
gradient operators and morphology. 
In order to also remove the pectoral muscle, each pixel 
intensity I(x, y) is transformed according to (1): 
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where r ,c are the image dimensions.  
 Subsequently, the image is classified in two classes 
using fuzzy clustering which is also used to label the 
‘important’ tissue classes (i.e. ‘dense’ and ‘fat’) and is 
explained in section II.C. A typical pectoral muscle 
segmentation result is shown in Fig. 2b. Unlike other 
reported approaches, the method does not assume linearity 
of the pectoral muscle line.  
 
B. Diffusion 
 
 In order to disregard the less important features of the 
mammogram, images are processed using an adaptive 
anisotropic diffusion-based filter [7]. This edge-preserving 
filter removes the less significant structures from the image, 
while making important mammographic entities (e.g. 
density and fat) easier to differentiate. The parameters of the 
filter are computed from a statistical analysis of the image 
gradient (2-3) and the mammogram is anisotropically 
blurred (4). The statistical analysis is based on an adaptive 
Gaussian derivative filter: 
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 I represents the intensities in a mammogram, N is the 
number of pixels in the neighbourhood δi of i, gi a measure 
of local contrast and Kσ’ the Gaussian derivative. The 
parameter λ that is used in anisotropic filtering is related to 
the image contrast and results from the estimation of gi. 
Subsequently, it is used in the computation of the 
eigenvalues used by the diffusion tensor of the anisotropic 
diffusion: 
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 where uσ  is the gradient of the smoothed image u. 
Having the values of λ1 and λ2 and their associated 
eigenvectors (one perpendicular to and one along the 
isophote), the diffusion tensor can be computed as a 
symmetric matrix. Subsequently, the flux of diffusion can be 
estimated [8]. A diffused mammogram is shown in Fig. 2c. 
 
C. Fuzzy Clustering  
 
 In this final step, both original intensities and diffused 
intensities are used to characterise each pixel. From an 
image segmentation standpoint, this can be considered as a 
trade-off between accuracy (original intensities) and 
smoothness (diffused intensities). Each non-zero pixel i is 
represented by the following vector: 
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where IDiffused is the diffused version of the original image I, 
α is the smoothness trade-off (set to 0.7) and n is an adaptive 
parameter that aims to characterise the dense-tissue content 
of each mammogram. The larger its value, the more 
‘brighter’ regions are favoured and ‘darker’ suppressed. Our 
algorithm estimates the maximum intensity Imax that avoids 
“outliers” such as noise or microcalcifications (e.g. by 
adding a constraint that the Imax frequency is larger than 50). 
This way, the useful histogram extent of each mammogram 
is estimated, avoiding small densities corresponding to 
segmentation residuals or microcalcifications. Subsequently, 
n is calculated by (5): 
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 This results in n being larger for the less dense 
mammograms, thus enhancing the ‘contrast’ in their feature 
vectors. Having calculated the feature vectors, fuzzy 
clustering assigns different degrees of membership to each 
point. The membership of a point is thus shared among 
various clusters. In order to compute the fuzzy partition of 
the data, the following cost-function is minimized 
iteratively: 
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 where q is the weighting exponent for uij and controls 
the “fuzziness” of the resulting clusters, V the feature vector, 
Ci the center of each cluster, uij the degree of membership of 
Vj in the ith cluster, M the number of non-zero pixels and K 
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the pre-defined number of desired clusters. Ci and uij are 
calculated iteratively according to (8): 
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 For mammogram tissue classification, K is initially set 
to 3, provided that the pectoral muscle, film edge and 
background have been segmented correctly. The ‘denser’ 
class (highest grey-level statistics) is an approximation to 
the mammographic density, while the ‘fat’ (lowest grey-
levels) to the fatty edge (a homogenous, low-intensity region 
near the breast edge). The ‘intermediate’ class corresponds 
to the fatty background of the mammogram. In order to 
refine the final result, the ‘intermediate’ region is classified 
again into 2 sub-regions. The denser sub-region is merged 
with the ‘dense’ class unless its statistics are ‘closer’ to the 
‘fat’ one. This results in a refinement of the ‘dense’ region 
estimation. In addition, to increase robustness, an additional 
optimisation step is included; the clustering is repeated if the 
‘dense’ region is <3% of the total mammogram area. Thus, 
the classification of small yet very bright image regions as 
the ‘entire’ breast density is avoided (e.g. 
macrocalcifications can be significantly brighter than the 
rest of the tissue). Fig. 2 illustrates the labelling process; the 
original mammogram (2a) is gradually segmented (2b), 
diffused (2c) and labelled (2d). The brighter class 
corresponds to ‘dense’ fibroglandular tissue and is used to 
characterise mammographic densities in 146 mammograms 
based on the BI-RADS criteria for breast tissue patterns. 
The results are presented in the next section, where a 2D 
Parzen PDF is constructed from a “ground truth” dataset and 
used in conjunction with a shape analysis framework for 
automated tissue-pattern classification.  
 
 

III.  RESULTS  
 

 To date, BIRADS represents the most widely accepted 
reporting systems for mammographic findings in the US and 
Europe and is therefore considered a milestone for 
developing automated methods for characterising 
mammogram findings. The American College of 
Radiologists suggests that breast composition should be 
reported in all patients using the BI-RADS [2] classification: 
I describes an almost entirely fat breast, II breasts with 
scattered fibroglandular densities, III heterogeneously dense 
breasts and IV extremely dense breasts. 

Previous work on breast-density classification has 
mainly used global texture measures to differentiate the four 
classes. The novelty of the presented approach lies in the 
fact that semantic mammogram information is extracted 
before classification, enabling the design of intuitive 
classification algorithms based on the definition of BI-
RADS criteria and not on the assumption that all categories 
have consistently difference texture, an assumption that 
doesn’t generally hold. Therefore, by using the tissue 

labelling method described in section II, it is possible to 
perform BI-RADS classification based on the morphology 
and intensity of only the dense ‘labelled’ regions of each 
mammogram. 
 

 Fig. 2.  a: the original mammogram, b: segmented mammogram (section 
A), c: diffused mammogram (section B), d: the labelled one (section C). 

 
To describe a previously labelled density, both area and 

intensity information is included, since several 
mammographic densities may have the same spatial extent, 
but different intensity profile, reflecting actual tissue density 
differences that result from variable X-ray absorption. 
Previous results in this field [9], indicate that ‘estimated’ 
density is a good measure to separate ‘high’ (III and IV) 
from ‘low’ (I and II) density mammograms, but not I from II 
and III from IV, due to a partial overlap in density and 
texture measures. Therefore, the first aim is to separate 
‘high’ from ‘low’ density classes and subsequently to try to 
further separate each one of these sub-categories. This is 
done by first calculating a 2D-PDF, and then employing a 
shape analysis framework. The results obtained in each one 
of these steps are reported in the following subsections: 

 
A. Parzen Estimation of ‘High’ and ‘Low’ Density PDF 

 
‘High’ and ‘low’ density PDFs are estimated from 65 

mammograms with identical BI-RADS descriptions 
amongst 3 different observers in [9] that define the ‘ground 
truth’ dataset. This is done to minimise inter-observer 
variability. For each mammogram the % area (labelled 
dense area divided by total area excluding pectoral muscle 
and background) and % density (defined as the sum of dense 
area intensities divided by the sum of all intensities 
excluding pectoral muscle) is calculated from the dense 
class (using the method in Section II). By using these 2D 
measurements of the “ground truth” mammograms we 
compute a 2D PDF of high’ (III, IV) and ‘low’ density (I, II) 
mammogram patterns, using Parzen window estimation: 
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where d is the data dimension (2 in this case), h the 
width of a Parzen window, and (xi, yi) the area and density 
measures of all ‘high’ and ‘low’ density mammograms of 
the ‘ground truth’ dataset. Using this dataset, the ‘high’ and 
‘low’ density 2D PDFs are estimated, as is shown in Fig. 3a. 
It is noticeable that each PDF comprises two sub-
distributions that partially overlap. This confirms that it is 
hard to separate within the ‘high’ and ‘low’ density classes. 
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Subsequently, a test set of 146 mammograms [9] is 
classified into ‘high’ and ‘low’ based on the Parzen 
probabilities. The measurements for computing the 
probabilities are shown in Fig. 3b and the separation 
accuracy between ‘high’ and ‘low’ was found to be 92%. To 
further separate III to IV a shape analysis scheme is adopted 
(section III.B). However, this analysis proved to be useful 
only for the ‘high’ density class and the classification 
accuracy for further separating I from II, based only on the 
measurements of Fig. 3 (right), was 65%. 
 

 
B. Shape Analysis 

 
According to the BI-RADS criteria, dense tissue in 

category III mammograms is more scattered than in category 
IV. Translating this criterion into an image analysis 
algorithm based on texture is rather difficult due to the large 
variability in anatomical morphology of tissue, breast 
compression and imaging parameters. However, once dense 
tissue is extracted from each mammogram (section II), the 
‘dense’ categories can be further classified by directly 
describing the shape’s solidity (Solidity = Area/Convex 
Area) and Euler number (the total number of objects in the 
image minus the total number of holes in those objects). Fig. 
4a shows a number of extracted densities from the ‘dense’ 
category of the tested set. It is noticeable that the densities 
of category IV are more compact than those of III, as 
expected. As shown in Fig. 4b, the separation accuracy 
based on shape description was 86%, while it would be less 
than 50% based only on the density-area measurements.  

Solidity and Euler number provide global shape 
information. More detailed insight into shape differences 
can be obtained by measuring the ‘jaggedness’ of the 
extracted object’s boundary, which seems to be of 
importance to separate categories III and IV (Fig. 4a). This 
can be measured by computing the fractal dimension [10]. 
The correlation of the fractal dimension and high breast 
tissue density has been reported previously [11-12], but, to 
our knowledge, this is the first time it has been used to 
differentiate between breast tissue classes according to 
established criteria such as BI-RADS.  

In Fig. 5, the fractal dimension measure, computed 
using a box-counting algorithm [13], is shown for the same 
image dataset as above. In addition, the fractal dimension 
measurements were normally distributed according to the 
D’Agostino Pearson normality test [14] at a significance 
level of 0.05. Based on this observation, the probability 
error of “overlap” was 0.18 (in the ideal case this should be 
equal to 0 i.e. no overlap between the 2 distributions). From 
a purely statistical perspective the significance probability 
that the populations generating III and IV are identical was 
less than 10-10 using both Gaussian (t-test) and non-Gaussian 
(Wilcoxon rank sum test) statistical tests. 

 

 
Fig. 3.  Characterising breast densities. a: The parzen pdfs for ‘high’ 

(interpolated surface) and ‘low’ (meshed surface) density classes based on 
the ‘standard’ dataset. b: The area, density measures for the test dataset. 

 

 
Fig. 4.  a: typical ‘dense’ labelled regions of BI-RADS III (first row) and 
IV (second row) mammograms. b: shape analysis of the ‘high’ density 

mammograms calculated in III.A. 
 
 

IV.  DISCUSSION 
 
 A fully automatic method to label mammogram tissue 
groups was presented. The main advantage of this method is 
that it is non-parametric and is based on extracting semantic 
density information rather than using non-intuitive global 
textural measures. The method was tested for BI-RADS 
classification of tissue patterns and the results were 
satisfactory, especially for discriminating the ‘high’ density 
categories III and IV, which are of greater clinical 
importance, since women with dense breast run an increased 
risk of breast cancer [1].  
 The labelling method (section II) has shown consistent 
results in hundreds of mammograms used to date. In Fig. 4a, 
the last 2 mammograms in each row are temporal, acquired 
with different compression and imaging parameters. It is 
noticeable, that their ‘dense’ labelled classes show 
consistent shape. The method has the potential to be used as 
a pre-processing tool in CAD systems for mammography. 
Computational time and false positives could be reduced by 
only considering the labelled ‘dense’ tissue regions as mass 
candidates. Moreover, tissue-labelling information can be 
pre-computed and stored in large DICOM mammogram 
databases. Last, it can be used as an alternative to the 
‘interactive thresholding’ technique that has been broadly 
used for defining the mammoghaphic densities. Although 
this method has been used in epidemiological studies 
[1,11,15], it is important to mention that density is globally 
segmented and characterised. In contrast, the presented 
method decomposes the mammogram in significant 
categories while a statistical and shape-based framework can 

Limited circulation. For review only.

Preprint submitted to 27th IEEE EMBS Annual International Conference.
Received April 8, 2005.



 

further define dense tissue patterns according to widely 
acceptable criteria (BI-RADS).  
 

 
Fig. 5.  The fractal dimension of the mammograms corresponding to 

the BIRADS III and IV categories in ascending order. 
 
 It should be noted that the presented method does not 
completely solve the problem of BI-RADS classification 
which suffers from both significant interpretation variability 
and difficulties in translating ontological criteria to 
computer measures. The long-term scientific vision of this 
work is the development of software assisted reporting 
systems for mammography aiming to reduce 
reading/reporting time and improve interoperability and 
exchangeability of heterogeneous and distributed 
mammographic data by enabling data descriptions of high 
semantic content. 
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