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Abstract. Radiotherapy treament planning implies to delineate on the
CT image of the patient the organs at risk where the dose has to be
controlled. To avoid manual contouring that is tedious and prone to
inter-expert variability, algorithms able to provide these delineations au-
tomatically can be helpful for the clinicians. This paper presents a multi-
atlas based segmentation procedure to segment the parotid glands in the
context of the Head And Neck Auto-Segmentation Challenge 2010. In this
procedure, the images of the training database and their manual segmen-
tations are first resampled on the query image through the intermediate
coordinate system of an average atlas. Then, a voxel-wise combination
strategy based on a weighted majority vote rule is performed to esti-
mate the segmentation of the query. For each voxel, the weight assigned
to a given resampled segmentation reflects the local degree of similarity
between the corresponding resampled image and the query image. We
applied our method with the database provided by the workshop.

1 Introduction

During a radiotherapy treatment planning, the clinicians have to parametrize
and shape the beams in order to maximize the dose received by the target tumor
while controlling the dose received by the surroundings organs at risk. Manual
contouring can provide these delineations but it is time consuming and prone to
inter-expert variability. To overcome these drawbacks, algorithms can be used
to get automatic delineations of the organs at risk. The Head and Neck Auto-
Segmentation Challenge 2010 aims at comparing several of these algorithms in
the context of the delineation of the parotid glands, that are among the most
critical structures in the head and neck. Indeed, these glands are the most im-
portant salivary glands and their irradiation can result in xerostomia and dental
complications. Therefore, sparing them from irradiation as much as possible is
essential to preserve the quality of life of the patient after the treatment.

Atlas-based approaches have been proposed to get automatic delineations
of the organs at risk in the brain [1], and automatic delineations of the lymph
nodes and/or organs at risk in the head and neck region [2, 3]. When using
atlas-based segmentation, the choice of the atlas is crucial, and several strategies
have been proposed. The first introduced strategy was to use a single atlas for



segmenting all the images. This atlas can be an artificial delineated volume [1]
or a particular manually delineated image but the accuracy of the resulting
segmentation may be low for patients whose anatomy is too different from the
atlas. If a database of several manually delineated images is available, there are
two ways to solve this problem. The first way is to build an average atlas from the
database and to use it for segmenting the patients [3]. If the database is sufficient
to represent the variability of the population, this solution enables defining an
atlas that is in the center of the population, and therefore close enough to most
of the patients. However, such an atlas can still fail to segment some particular
anatomies that are not well-represented in the database (for instance corpulent
patients or patients with high neck flexion). The second way to take advantage
of the training database is to select, for each new query image to segment, the
image of the database that is the most similar to the query image, and to use
it as atlas [4, 5]. This enables being more robust to non-common anatomies. By
extension, it has also been proposed to select several of the most similar images
and to combine their segmentations for segmenting the query image [6]. This
approach is commonly called multi-atlas segmentation.

In the multi-atlas segmentation approaches, the selection of the most similar
images can also be performed regionally as in [7–10] instead of globally. We pro-
pose here to go one step further by using a voxel-wise selection. In addition, in-
stead of selecting the most similar images and combine their segmentations with
equal weights, we keep all the images and weight their segmentations according
to an intensity-based weighting system. Though a bit different, our approach has
some similarities with one method proposed in [11].

Finally, we applied our method with the database provided by the Princess
Margaret Hospital, which is composed of 10 training images and 8 testing images.

2 Method

We denote by P a query image to segment. We assume that a training database
of N manually delineated images {Ik}k∈[1...N ] is available.

2.1 Efficient resampling of the training images on the query image

Registering each training image Ik on the query image requires to perform N
non-linear registrations. To avoid these multiple registrations, we use here the
intermediate coordinate system of an average intensity image M . This average
intensity image is built from the N training images using the algorithm of Gui-
mond et al. [12]. As registration method, we perform an affine registration [13]
and then a non-linear registration [14] that are both based on a block-matching
framework. Guimond’s algorithm not only provides us the average intensity im-
age M , but also the transformations TIk←M enabling to resample each image Ik

of the database on M . All these preliminary steps are done off-line.
Then, the query image and the average intensity image M are non-linearly

registered using the same framework than the one detailed above. This provides
the transformation TM←P . At the end, each image Ik and its segmentation can
be resampled on the query image with the transformation TIk←M ◦ TM←P .



2.2 Intensity-weighted majority vote rule

Let us denote by s ∈ [1 . . . L] the labels of the anatomical structures of interest,
the label s = 0 representing the background. At this step, the images Ik and
their associated segmentations Sk have been resampled onto the query image
P . We call Ĩk and S̃k the images and segmentations resampled onto P . Each
resampled segmentation S̃k can be seen as a candidate segmentation for the
query image. Combining the N candidate segmentations {S̃k}k∈[1...N ] enables
compensating the local errors that can be introduced by some of them, and can
therefore enhance accuracy and robustness.

To estimate the probability p(x ∈ s) of the voxel x to belong to each label
s ∈ [0 . . . L], we apply a weighted majority vote rule, as described below:

∀s ∈ [0 . . . L] p(x ∈ s) =
1PK

k=1 ωk(x)

KX
k=1

ωk(x) δ
“
S̃k(x), s

”
(1)

where δ(S̃k(x), s) = 1 if S̃k(x) = s and 0 otherwise. In this equation, the weight
ωk(x) reflects the local degree of similarity between P and Ĩk on a neighborhood
V (x) of the voxel x. We defined it as the inverse of the SSD (Sum of Squared
Differences), so that high weights are given to the candidate segmentations S̃k

for which the intensity similarity between P and Ĩk is high on V (x):

∀k ∈ [1 . . . K] ωk(x) =
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Then, we assign the voxel x to the label s̃(x) having the highest probability:
s̃(x) = arg maxs∈[0...L] p(x ∈ s). In case there is one or several images Ĩk for which
SSDV (x)(P, Ĩk) = 0, then we compute s̃(x) using a simple majority vote rule
from the corresponding S̃k, without taking into account the other segmentations.

Finally, we apply a morphological closing to smooth the resulting segmenta-
tion and we extract the main connected component.

3 Evaluation

The database of images was provided by the Princess Margaret Hospital in
Toronto. The training database was composed of 10 images for which the parotids
were manually delineated by an expert. The testing database was composed of
8 images. The voxel size was 0.976562× 0.976562× 2 mm3 for almost all images
and the matrix size was 512 × 512. To increase the size of the training database,
we symmetrized each training image and its manual delineations with respect to
the mid-sagittal plane. Thus, we had a training database of N = 20 delineated
images. We built an average intensity image from these 20 images using [12].
Then, for each of the 8 query images of the testing database, we resampled the
20 images of the training database on it (as described in 2.1), and we performed
the multi-atlas based segmentation process in the coordinate system of the query
image (as described in 2.2). In this last step, the local similarity measures were
computed on a 3×3×3 neighborhood. The figure 1 and the overlap and Hausdorff
distance raw results were provided by the organizers of the workshop.



3.1 Qualitative Results

Figure 1 shows the automatic and manual segmentations for a particular patient
of the testing database. The top images illustrate well the problem of dental
artifacts, which are one of the main issues in segmenting organs of the head
and neck on CT images. Indeed, these artifacts introduce a bias in the inten-
sity distribution especially in the area of the parotids, which can corrupt our
intensity-based similarity metric and result in local errors in the segmentation.

Fig. 1. Qualitative results of segmentation obtained with our method (red
contours) compared to the ground truth manual segmentation performed
by a single observer (green contours).



3.2 Quantitative Results

The quantitative evaluation is based on overlap measures (Dice index, presented
in Table 1) and distance measures (Hausdorff distances (HD), presented in Table
2). These measures were computed slice by slice and the average/median values
over all the slices are shown in the columns 2 and 3 of Tables 1 and 2. The
volumetric Dice was also computed (column 4 of Table 1). Finally, the column
4 of Table 2 contains the number of slices for which the Hausdorff distance was
greater than 3mm. More details on these measures can be found in [15].

First, the quantitative measures show that our method fails to segment the
dataset #13. The particularity of this dataset is that it has a truncated field of
view and an important neck flexion compared to the majority of the patients
in the training database. We visually inspected the intermediate results for this
patient, and concluded that the failure occurred during the non-linear registra-
tion of the query image with the average atlas. The rigid and affine part of this
registration work pretty well and the truncated field of view of the patient is
well-taken into account in the registration. The failure appears in the non-linear
part of the registration and is due to the high neck flexion of the patient. As the
remaining of the algorithm (resampling of the training images/segmentations on
the query and multi-atlas segmentation) directly relies on this registration, the
resulting automatic segmentation is not localized in the correct area and the
numerical results are very bad (Dice ≈ 0 and HD > 40mm).

Statistics computed on the remaining of the testing datasets (ie left and right
parotids of datasets #11, #12, #14, #15, #16, #17 and #18) are shown at the
bottom of Tables 1 and 2. Numerical results obtained for both parotids were
considered together to compute these statistics. We chose to exclude the dataset
#13 to compute statistics in order to illustrate the capacities of the algorithm
when no registration failure happens. We believe that such registration failure is
quite rare (this is confirmed by experiments launched on another database, with
registration failure occuring for only 2 images out of 105) and that taking it into
account while computing statistics over 8 datasets only would introduce a bias.
All remaining datasets provided a median slice HD that ranges between 3.91mm
and 10.34mm, with an average of 6.42mm. As to the median slice overlap values,
they range between 75.0 % and 90.4 %, with an average of 85.3 %.

Finally, our algorithm does not perform very well with respect to the number
of slices for which the Hausdorff distance was greater than 3mm (column 4 of
Table 2). Indeed, the best case is the left parotid of dataset #16 for which 22
slices out of 29 have an HD greater than 3mm.

3.3 Discussion

The low accuracy obtained for dataset #13 is caused by a failure in the regis-
tration between the query image and the average atlas. This failure is due to
the different neck flexions in the two images to register (high neck flexion in the
query image, and standard neck flexion in the average atlas). Actually, this kind
of problem could potentially occur with any other particular anatomy that is
marginally represented in the training database (like corpulence for instance).



Dataset No. Average slice OV Median slice OV Total volume OV
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11 81.6% 87.1% 85.7%
12 81.7% 83.2% 83.5%
13 4.0 % 0.6 % 4.0 %
14 85.3% 89.0% 87.6%
15 83.6% 88.4% 88.3%
16 79.9% 83.7% 82.6%
17 77.8% 83.3% 82.9%
18 80.8% 85.1% 84.5%
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d

11 77.0% 82.1% 83.5%
12 82.8% 87.4% 86.2%
13 0.0 % 0.0 % 0.0 %
14 85.3% 90.4% 88.8%
15 83.1% 86.0% 86.9%
16 82.4% 85.4% 84.5%
17 67.7% 75.0% 76.4%
18 80.0% 83.5% 83.1%

Statistics with dataset #13 excluded:

Min-Max [67.7% - 85.3 %] [75.0% - 90.4%] [76.4% - 88.8%]

Average 80.6% ± 4.5 % 85.0% ± 3.8 % 84.6% ± 3.1 %

Median 81.7% 85.3% 84.5%

Table 1. Overlap (OV) statistics for left and right parotid segmentation in the testing
datasets.

Dataset No. Average slice HD Median slice HD
No. of slices

( HD > 3mm )
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11 7.04 6.69 32 (32)
12 5.35 5.61 30 (30)
13 41.22 40.06 26 (26)
14 5.12 4.63 24 (23)
15 7.32 7.03 26 (24)
16 4.89 4.88 31 (25)
17 9.12 6.91 27 (27)
18 6.38 5.90 25 (23)
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11 6.72 6.40 34 (33)
12 5.70 4.63 28 (26)
13 50.32 48.65 26 (26)
14 6.19 6.94 24 (20)
15 8.96 7.91 23 (23)
16 4.37 3.91 29 (22)
17 12.37 10.34 33 (33)
18 8.15 8.07 24 (24)

Statistics with dataset #13 excluded:

Min-Max [4.37 - 12.37] [3.91 - 10.34] -

Average 6.98 ± 2.13 6.42 ± 1.69 -

Median 6.55 6.55 -

Table 2. Hausdorff distance (HD) statistics for left and right parotid segmentation in
the testing datasets.



A way to avoid this kind of problem is to directly register each training
image with the query image instead of using the average atlas as intermediate
coordinate system. Indeed, the resulting segmentation does no longer rely on a
single registration but on multiple independent registrations. If the query image
has a particular anatomy that is represented by a small minority of datasets in
the training database, then at least the direct registrations with those particu-
lar datasets will succeed, which would be sufficient to improve significantly the
accuracy of the resulting segmentation. Of course, the main drawback of this
method is that it increases the computation time. However, the recent advances
in parallel programming may help to solve this problem.

In the perspective of evaluating our algorithms before submission to the
workshop, we also provided to the organizers the resulting segmentations ob-
tained for the testing database when the query image was directly registered
to each training image. The improvement with respect to the algorithm using
the average atlas as intermediate coordinate system is significant for the dataset
#13: the total volume overlap reaches 47 % instead of 4 % for the right parotid,
and 15 % instead of 0 % for the left parotid. There is no significant difference be-
tween the two methods for the other datasets, indicating that the approximation
TIk←P ≈ TIk←M ◦ TM←P is valid for these datasets.

4 Conclusion

We presented a multi-atlas based segmentation approach and applied it with the
database provided by the Head And Neck Auto-Segmentation Challenge 2010.
Our method uses a pre-built average intensity image as intermediate coordinate
system to deform the images/segmentations of the training database onto the
query. Then, a multi-atlas segmentation algorithm is performed in the coordinate
system of the query. This algorithm enables weighting locally the influence of
each training dataset with respect to its local intensity similarity to the query.

Our results show that our approach provides segmentation with reasonable
accuracy for 7 testing datasets out of 8 (average Dice of 84.6 %). Our framework
fails to segment the remaining patient (dataset #13) because of its high neck
flexion that causes errors in the registration with the average atlas. We demon-
strated that registering directly each training image to the query enabled im-
proving significantly the segmentation accuracy for this dataset. This approach
is therefore more robust to particular anatomies (high neck flexion, corpulence)
than the approach that uses the average atlas as intermediate coordinate system.
However, it is computationally too expensive for the on-site live contest, which
is the reason why we submitted the approach that uses the average atlas.

As to the evaluation, this study uses 10 training images and 8 testing images.
Increasing the training database would enable a better representation of the
anatomical variability present in the head and neck region, and it is likely to
improve the results as our method consists in weighting the training images
according to their similarity to the query. As to the testing database, the online



contest will enable assessing our method on 7 more unseen datasets, which will
increase the statistical significance of the results.

Finally, we will study the impact of the neighborhood size on the weights
and also test to what extent undersampling to 256×256 decreases the accuracy.
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