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ABSTRACT

Atlas-based segmentation has been shown to provide
promising results to delineate critical structures for radio-
therapy planning. However, it requires to have a reference
image with its reference segmentation available. Classical
methods used to build an average segmentation can lead to
over-segmentation in case of high variability among the man-
ual segmentations. We propose in this paper a consensus-
based approach to construct a reference segmentation from
a database of manually delineated images. We first compute
local consensus measures to estimate a variability map, and
then deduct from it a consensus segmentation. Finally, the
proposed method is evaluated using a dataset of 64 manually
delineated images of the head and neck region.

Index Terms— Medical imaging, atlas, structure averag-
ing, kappa statistics, consensus measures.

1. INTRODUCTION

In radiotherapy planning, dose optimization consists in both
maximizing the dose on the tumor and minimizing the dose
on Organs At Risks (OARs). This requires to accurately de-
lineate OARs. Usually, these delineations are manually made
by a clinician, but this is time-consuming, tedious, and not re-
producible. Therefore, tools providing automatic delineations
of OARs are useful as they enable to save time and to give re-
producible delineations. Among these tools, atlas-based seg-
mentation has been shown to provide promising results for the
brain [1] and for the head and neck region [2, 3] but it requires
to have an atlas available.

When the inter-patient anatomical variability is low, it
may be satisfactory to use for the atlas one particular man-
ually delineated image. However, this method introduces a
bias and is therefore not appropriate in anatomical regions
with high variability. To address this problem, the standard
method is to build an average image and an average segmen-
tation from a database of manually delineated images.

The algorithm of Guimond et al. [4] can be used to con-
struct the average image, and provides the appropriate trans-
formations to bring all manual segmentations on the average

image. Several methods exist to build the average segmenta-
tion from the manual segmentations warped onto the average
image. Shape-based approaches such as [5] consist in match-
ing corresponding points between all the meshes and then per-
forming a geometric average to get the average shape. How-
ever, these methods require to parametrize shapes by extract-
ing characteristic points in the manual delineations, which is
not possible for all shapes.

Conversely, other approaches focus on a voxel-based es-
timation of the representative segmentation and therefore do
not require to parametrize shapes. Among them, the STAPLE
algorithm proposed by Warfield et al. [6] simultaneously esti-
mates the true segmentation and the performance parameters
for each segmentation of the database. This approach has the
advantage of working for multi-label segmentations. It was
already used to delineate critical structures of the head and
neck region, but an over-segmentation was noticed for some
critical structures [2].

To overcome this drawback, we propose in this article a
new approach to build a reference segmentation. This ap-
proach is based on kappa-type statistics and is composed of
two steps: (i) compute local consensus measures to construct
a variability map, and (ii) use this variability map to estimate
a consensus segmentation.

This article is organized as follows. We will first briefly
introduce kappa-type statistics in section 2 and then describe
our approach in section 3. Finally, we will present in section
4 some results and evaluations performed on a database of 64
manually delineated CT images of the head and neck region.

2. KAPPA-TYPE STATISTICS

Kappa-type statistics consist in assessing the inter-rater level
of agreement with chance-corrected coefficients. They were
historically introduced by Cohen [7] to evaluate the reliability
of medical diagnosis.

2.1. Cohen’s kappa

Let consider two raters classifying items into L mutually ex-
clusive categories. The proportion of items classified into the



category i by the first rater and into the category j by the
second rater is called p(i, j). The marginal probabilities are
named p(i, .) =

∑L
j=1 p(i, j) and p(., i) =

∑L
j=1 p(j, i).

The proportion of observed agreement pobs =
∑L

i=1 p(i, i)
is the proportion of items classified into the same category by
the two raters. However, as agreement among raters may be
due to pure chance, the previous formula over-estimates the
real level of agreement. To address this problem, the chance-
expected proportion of agreement pch =

∑L
i=1 p(i, .)p(., i)

is estimated by taking into account the marginal probabilities.
Thus, pobs − pch represents the excess of agreement beyond
chance level.

Finally, the level of agreement among the two raters can
be assessed with the normalized chance-corrected coefficient
κ = pobs−pch

1−pch
[7].

2.2. Generalizations

Many generalizations of Cohen’s kappa have been proposed.
Weighted kappa-type coefficients were introduced by Cohen
[8] in order to scale disagreement or to give partial credit to
disagreement of low gravity for two raters.

Cohen’s kappa [7] and Cohen’s weighted kappa [8] are
only defined for two raters. For more than two raters, there
are two ways to measure the level of agreement among raters:
one can measure either pairwise agreement or majority agree-
ment, also called consensus agreement.

Concerning pairwise agreement, Schouten [9] focused on
the case where every item was classified by each of the raters
whereas Fleiss [10] dealt with the case where all the items
were not necessarily classified by all the raters.

Landis and Kock [11] presented consensus agreement
measures using weights that express the extent to which
raters classified items into the same category.

3. METHODS

In this section, we describe how kappa-type statistics can be
used to build a reference segmentation from a dataset of man-
ually delineated images. As described in section 3.1, all man-
ual segmentations are at first brought into the same referential.
Then, our method is divided into two steps, which are detailed
in sections 3.2 and 3.3. First, we use consensus agreement
measures to quantify the local variability among the warped
manual segmentations. Then, from the resulting variability
map, we estimate a consensus segmentation.

3.1. Spatial normalization of manual segmentations

The variability among manual segmentations includes anatom-
ical inter-patient variability, due to corpulence or neck flexion
for instance, and inter and intra-expert variability. To over-
come the anatomical variability, we build an average image
with the method of Guimond et al. [4] and we apply the

resulting deformation fields to bring the manual segmenta-
tions on the average image. We use here the locally affine
registration method proposed by Commowick et al. [12].
However, the remaining variability after registration is high.
It results from inter and intra-expert variability and remaining
anatomical variability due to registration residual errors.

3.2. Quantification of the local variability

The manual segmentations warped onto the average image
can be considered as raters who assigned each voxel to one
of the anatomical structures or to the background. Therefore,
we can apply kappa statistics considering that the raters are
the manual segmentations warped onto the average image, the
items classified are the voxels, and the mutually exclusive cat-
egories are the anatomical structures and the background.

As the variability among manual segmentations is high,
the voxels with perfect agreement among all manual segmen-
tations (that is to say the voxels assigned to the same anatom-
ical structure in all manual segmentations) are very few in
number. Therefore, we also take into account the voxels for
which the agreement among manual segmentations is not per-
fect and we associate to each case of disagreement an appro-
priate weight reflecting the degree of local disagreement.

Using pairwise agreement measures such as [9] requires
in addition to assess the degree of gravity of each case of dis-
agreement according to its nature. In other words, it requires
to decide whether the disagreement structure A versus struc-
ture B has a higher or a lower gravity than the disagreement
structure A versus structure C. Since we do not have any ra-
tionale for doing so, we chose to use consensus agreement
measures such as Landis and Kock [11] to quantify the vari-
ability among the manual segmentations.

Let K be the number of manual segmentations in our
database and L the number of anatomical structures includ-
ing the background. Each voxel of the average image can
be associated to one of the LK possible combinations c̃ =
[c̃(1), ..., c̃(k), ..., c̃(K)] where c̃(k) ∈ [1, ..., L] represents
the index of the anatomical structure chosen for this voxel in
the manual segmentation k warped onto the average image.

The number of manual segmentations that chose the struc-
ture l in the combination c̃ = [c̃(1), ..., c̃(K)] is given by
nbSegm(c̃, l) =

∑K
k=1 δ(c̃(k), l) where δ(., .) represents the

Kronecker function.
Given these notations, a weight reflecting the level of

agreement in the combination c̃ = [c̃(1), ..., c̃(K)] can be
defined as follows:

ω(c̃) =
nbSegm(c̃, s1(c̃))− nbSegm(c̃, s2(c̃))

K
(1)

where s1(c̃) and s2(c̃) are respectively the indexes of the
first and the second anatomical structure the most represented
in the combination c̃. Thus, ω(c̃) equals 1 if all the manual
segmentations agreed for the same structure, that is to say if



c̃(k) = s1(c̃) for each k ∈ [1, ...,K]. It equals 0 if there are
as many manual segmentations that chose s1(c̃) and s2(c̃),
which is the case of highest disagreement. It is between 0 and
1 for intermediate cases.

Furthermore, as we want to quantify the local variability,
the proportion of observed weighted agreement is estimated
locally for each voxel i of the average image on a local neigh-
borhood called N (i) with the following formula:

pobs(i) =
∑

c̃

ω(c̃)
n(i, c̃)

N
(2)

where n(i, c̃) is the number of voxels in N (i) that were as-
sociated to the combination c̃, and N is the total number of
voxels inN (i). In practice, we use forN (i) a window of size
3× 3× 3 voxels centered in the voxel i.

In order to enable the comparison of local consensus mea-
sures between the different voxels, the proportion of chance-
expected weighted agreement is computed by considering all
the combinations present in the whole image as follows:

pch =
∑

c̃

ω(c̃)
K∏

k=1

pk(c̃(k)) (3)

where pk(l) is the proportion of voxels assigned to the struc-
ture l in the manual segmentation k and is computed on the
whole image.

Finally, we can quantify the local consensus agreement
among the manual segmentations in each voxel i of the aver-
age image with the following chance-corrected coefficient:

κ(i) =
pobs(i)− pch

1− pch
(4)

3.3. Estimation of a consensus segmentation

The first step of our method provides us a variability map
representing the local variability among the warped manual
segmentations. Then, we extract the regional minima of the
inverse of the variability map and use them as seeds for a wa-
tershed transformation applied on the inverse of the variability
map. This gives an estimation of the consensus segmentation.

4. RESULTS

The proposed method was evaluated using a database of 64
CT images of the head and neck region, which were manu-
ally delineated following the guidelines provided in [13]. The
anatomical structures involved are: the lymph node levels II,
III and IV, the parotids, the submandibular glands, the brain-
stem, the spinal cord, and the mandible.

Using the whole database, we constructed an average im-
age, consensus delineations using our method and consensus
delineations using the multi-label STAPLE algorithm [6]. In
section 4.1, we first show the variability maps provided by our

method and then qualitatively compare the reference delin-
eations obtained using our method with those obtained using
the STAPLE algorithm. In section 4.2, we present a quantita-
tive comparison of the two methods.

4.1. Qualitative evaluation

Figure 1 shows the resulting variability maps zoomed in on
two structures of the head and neck region. For the parotid,
there are two areas with particularly high variability among
the manual segmentations (areas marked with arrows in Fig-
ure 1). The first area corresponds to the beginning of the ac-
cessory lobe, which is a part of the parotid not present in all
patients. The second area is the deep lobe, which is a region
with low contrast and hard to delineate for clinicians.

Fig. 1. Variability maps zoomed in on two anatomical struc-
tures of the head and neck region. From left to right: right
parotid and right lymph node levels III.

Figure 2 compares on top of the variability maps the ref-
erence delineations obtained using our approach with those
obtained using the STAPLE algorithm for two structures of
the head and neck region. This figure shows that our reference
delineations are smaller than those obtained with the STAPLE
algorithm. Indeed, the outer areas of intermediate variability
as well as the areas of high variability are not included in our
contours whereas they are inside those obtained with the STA-
PLE algorithm. Therefore, our method enables us to reduce
the over-segmentation in the head and neck region.

Fig. 2. Reference delineations obtained with our method (in-
ner delineations) and with the STAPLE algorithm (outer de-
lineations) represented on top of the variability maps for two
anatomical structures of the head and neck region. From left
to right: right parotid and right lymph node levels III.



4.2. Quantitative evaluation

The visual results shown above suggest that our approach en-
ables us to reduce over-segmentation. In this section, we now
compare the quantitative results obtained using our method
with those obtained using the STAPLE algorithm.

For both methods, the atlas built with the 64 manually de-
lineated images was evaluated on each of the 64 patients suc-
cessively1. The resulting quality measures were at first aver-
aged over all the structures for each patient, and subsequently
averaged over the 64 patients. The resulting average quality
measures are presented in Figure 3. This figure shows that our
approach provides a significantly higher average specificity
than the STAPLE algorithm (0.85 versus 0.62). At the same
time, the average sensitivity is lower with our approach but
the key point is that there is no significant difference between
the two methods for the average Dice coefficient. Thus, our
approach gives smaller contours than the STAPLE algorithm
without reducing the Dice coefficient, and therefore enables
us to correct efficiently the over-segmentation.

Fig. 3. Average quantitative measures computed on 64 pa-
tients and on 13 anatomical structures with our approach (in
grey) and with the STAPLE algorithm (in black).

5. CONCLUSION AND PERSPECTIVES

We have presented in this article an original approach to
build a consensus segmentation for atlas construction from
a database of manually delineated images. The proposed
method consists in first computing local consensus measures
to map the local variability among the warped manual delin-
eations and then extracting a consensus segmentation from
the obtained variability map.

Using the resulting consensus segmentation for atlas con-
struction proved to be an efficient way to reduce the over-
segmentation in the head and neck region. Indeed, in compar-
ison with classical methods as the STAPLE algorithm, the av-
erage specificity was significantly improved with our method
without any decrease in the average Dice coefficient.

Our method has the advantage of working for multi-label
segmentations but missing structures in the delineations are
not taken into account yet. Future work will focus on the
extension to the case of missing structures in the delineations.

1Rigorously, a Leave-One-Out evaluation should have been prefered but
our experiments did not show any difference when using the whole database.
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