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Abstract. We describe an application of the previously proposed iLogDemons
algorithm to the STACOM motion-tracking challenge data. The iLogDemons
algorithm is a consistent and efficient framework for tracking left-ventricle
heart tissue using an elastic incompressible non-linear registration al-
gorithm based on the LogDemons algorithm. This method has shown
promising results when applied to previous data-sets. Along with having
the advantages of the LogDemons algorithm such as computing defor-
mations that are invertible with smooth inverse, the method has the
added advantage of allowing physiological constraints to be added to
the deformation model. The registration is entirely performed in the
log-domain with the incompressibility constraint strongly ensured and
applied directly in the demons minimisation space. Strong incompress-
ibility is ensured by constraining the stationary velocity fields that pa-
rameterise the transformations to be divergence-free in the myocardium.
The method is applied to a data-set of 15 volunteers and one phantom,
each with echocardiography, cine-MR and tagged-MR images. We are
able to obtain reasonable results for each modality and good results for
echocardiography images with respect to quality of the registration and
computed strain curves.

1 Methodology

1.1 Cardiac Motion Tracking using Physiological Constraints

Tracking cardiac motion from 3D images is a difficult task due to the complex
movement of the myocardium through the cardiac cycle. The left ventricular
(LV) movement includes a contraction of the ventricle with a longitudinal motion
towards the apex as well as a twisting motion from the base of the ventricle in the
circumferential direction. Common methods for motion tracking using non-rigid
registration are able to capture the dilation of the ventricle, however capturing
the twisting motion is a difficult task. The incompressible log-domain demons
algorithm described in [1] (iLogDemons for short) aims to tackle this problem
by imposing physiological constraints (such as incompressibility and elasticity
in the myocardium) in the previously proposed log-domain demons algorithm
(LogDemons) [2]. For the purpose of this work we don’t provide here a state of
the art on cardiac motion tracking algorithms, but rather refer the reader to [1]



and references therein. We apply the iLogDemons method to a 3D data-set of 15
volunteers and one phantom with echocardiography, cine-MR and tagged-MR
image sequences. The method is described here in brief, for a more thorough
and descriptive analysis see [1].

1.2 Review of the Log-Domain Demons Algorithm

The iLogDemons algorithm is an extension of the LogDemons algorithm [2]. The
LogDemons algorithm estimates a dense non-linear transformation φ that best
aligns a template image T to a reference imageR. The transformation φ is param-
eterised by stationary velocity fields v through the exponential map φ = exp(v)
[3]. The images R and T are registered by minimising in the space of velocities
(the log-domain) the energy functional: ε(v,vc) = 1/σ2

i ‖ R − T ◦ exp(vc) ‖2L2

+1/σ2
x ‖ log(exp(−v) ◦ exp(vc)) ‖2L2

+1/σ2
d ‖ ∇v ‖2, where σ2

i relates to the
noise in the images and σ2

d controls the regularisation strength. The velocity
field v parameterises the transformation φ, and vc parameterises an intermedi-
ate transformation φc = exp(vc) that models the correspondences between the
voxels of the two images. During the optimisation step, ε(v,vc) is minimised with
respect to vc. Under the diffeomorphic update rule φc ← φ◦exp(δv), the optimal
update velocity writes δv(x) = (R(x)−T ◦φ(x))/(‖ (J(x) ‖2 +σi/σ(x))J(x). In
this equation, J(x) is the symmetric gradient J(x) = (∇R(x) +∇(T ◦φ)(x))/2.
The correspondence velocity vc is then updated using the first order approx-
imation of the Baker-Campbell-Hausdorff (BCH) formula vc = Z(v, δv) =
v + δv + 1/2[v, δv] + 1/12[v, [v, δv]] +O(‖ δv ‖2), where the Lie bracket [·, ·] is
defined by [v, δv] = (∇v)δv− (∇δv)v. Finally, the regularisation step estimates
the optimal regularised transformation φ by minimising ε(v,vc) with respect to
v, which is approximated by smoothing the correspondence velocity vc with a
Gaussian kernel Gσ.

1.3 Modeling Elasticity in the Myocardium

In order to incorporate an elastic regularizer into the LogDemons framework,
a consistent mathematical formulation of the LogDemons regularisation is re-
quired. In [1] a closed-form expression of the demons Gaussian regulariser εreg(v) =
1/σ2

x ‖ log(exp(−v) ◦ exp(vc)) ‖2L2
+1/σ2

d ‖ ∇v ‖2 is given by linearising the
first term using the BCH formula and replacing the second term with the infinite
sum Tikhonov regulariser. We could then replace the Gaussian regularizer by an
elastic-like one, in a consistent way. The proposed elastic regularizer amounts to
filtering the correspondence velocities by the elastic-like kernel:

v =
(
GσId+

σ2κ

1 + κ
HGσ

)
? vc = Gσ,κ ? vc (1)

where σ2 = 2/σ2
d, HGσ is the Hessian of the Gaussian kernel Gσ and Gσ,κ is

the elastic-like vector filter. In this formulation, κ > 0 penalises the global com-
pressibility, and setting κ = 0 gives the Gaussian filter used in the LogDemons
algorithm.



1.4 Incorporating Strong Incompressibility in the Myocardium

Incorporating incompressibility into the LogDemons consists in constraining the
velocity fields v to be divergence-free. Demons optimisation step is not modified,
as it optimises vc only, but demons regularisation energy is now optimised un-
der the divergence-free constraint, which amounts to minimising the Lagrange
function:

P (v, p) =
1
σ2
x

‖ vc − v ‖2L2
+
∫
Ω

+∞∑
k=1

Qkel(v)
σ2
xσ

2k
d

− 2
σ2
x

∫
Ω

p∇ · v. (2)

where Qkel is the kth order isotropic differential quadratic form (IDQF) of a vector
field v defined by Qkel(v) = αkδi1...ikvik+1δi1...ikvik+1 +βkδi1...ikvik+1δi2...ikvi1 . In
this equation, the Lagrange multiplier p is a scalar function of the Sobolev space
H1

0 (Ω) that vanishes at infinity. The second term is the elastic-like regularizer
that leads to the filter previously mentioned. We refer the reader to [1] for details.

Optima of (2) are found by solving δvP (v, p) = 0:

v +
∞∑
k=1

(−1)k

σ2k
d

(αk∆kv + βk∆
k−1∇∇Tv) = vc −∇p (3)

with p = 0 at the domain boundaries δΩ. The divergence of (3) under the optimal
condition ∇ · v = 0 yields the Poisson equation ∆p = ∇ · vc with 0-Dirichlet
boundary conditions, which can be solved independently of v to get p. The right
hand side of (3) is thus the L2 projection of vc onto the space of divergence-
free vector fields. Computationally, the divergence-free constraint on the velocity
fields is enforced by smoothing the velocity field then projecting onto the space
of divergence-free velocity fields. This is theoretically the same as projecting
onto the space of divergence-free velocity fields then smoothing the results since
convolution and derivatives commute (up to issues at the boundary).

Algorithm 1 summarises the main steps of the method. Implementation of
this algorithm is described in the following section. A more thorough description
of the derivations of the previous equations can be found in [1].

Algorithm 1 iLogDemons: Incompressible Elastic LogDemons Registration
Require: Stationary velocity field v0. Usually v0 = 0 i.e. φ0 = Id.
1: loop {over n until convergence}
2: Compute the update velocity: δvn (see [1]).
3: Fluid-like regularisation: δvn ← Gσf ? δv

n , Gσf is a Gaussian kernel.

4: Update the correspondence velocity: vn ← Z(vn−1, δvn) (see [2]).
5: Elastic-like regularisation: vn ← Gσ,κ ? vn (see [1]).
6: Solve: ∆p = ∇ · vn with 0-Dirichlet boundary conditions.
7: Project the velocity field: vn ← vn −∇p.
8: Update the warped image T ◦ φn = T ◦ exp(vn).
9: return v, φ = exp(v) and φ−1 = exp(−v).



2 Implementation

The algorithm has been implemented using ITK and the open source implemen-
tation of the LogDemons algorithm [4]. The Poisson equation (which is solved
at the incompressible domain) is discretised on the image grid using finite dif-
ference schemes [5] as the incompressible domain Γ may be of irregular shape.
Image gradients are computed with periodic boundary conditions over the entire
image domain [4] and the Gaussian filters are implemented with ITK recursive
filters.

Despite the additional constraints, the complexity of the algorithm remains
reasonable with respect to the LogDemons algorithm. Demons update velocity
is computed at each voxel. The elastic-like filter is computed using Gaussian
convolutions, therefore no significant overhead is added to the original Gaussian
filtering. The complexity of the divergence-free projector directly depends on the
number of voxels of the incompressible domain Γ .

The algorithm requires computing i) the divergence of the velocity field, ii)
the gradient of the pressure field p, and iii) solving a linear system with n × n
elements, where n is the number of voxels of the incompressible domain. The
divergence and gradient operators are linear in the number of voxels. The Poisson
Equation is solved at each iteration using iterative solvers like GMRES [6].

The codes are written in C++ and require as input the fixed image file
and moving image file, as well as optional input of the mask image file, and
registration parameters. The parameters used in the registration are summarized
in the table below. These values were chosen based on tests performed on similar
data-sets that concluded that the key parameter of interest is σ, which defines
the weight of the Gaussian smoothing of the velocity field (in mm). The original
voxel size of the images are0.67×0.68×0.58 for echocardiography, 1.25×1.25×8
for cine-MR and 0.96× 0.96× 0.96 for tagged-MR. The choice of σ is generally
based on the voxel size to be around 1-2 times the largest original voxel size.
Given the large difference in voxel size for cine-MR σ was a trade-off between the
largest and smallest voxel size. More levels were used for the echocardiography
sequences to speed up convergence of the simulation. This could also be done
for the cine-MR sequences but was not considered necessary in this case. For
the tagged-MR sequences, increasing the number of multi-resolution levels can
remove the tags from under-sampling.

3 Image Pre-Processing

In order to apply the algorithm to the different data types, some pre-processing
is needed to prepare the data. The method is defined in a way such that the user
can give as input a region (which we define as a binary image with value 1 in
the incompressible region and value 0 outside) where the incompressibility con-
straint is imposed. This region is defined at one time-frame only (end diastole).
If no input is given the entire image is constrained to be incompressible, other-
wise the user can turn off the incompressibility constraint (giving the standard



Input parameters: Echo Cine Tag

Multi-resolution levels (frame-by-frame registration) 3 2 2
Multi-resolution levels (refinement step) 2 1 1
Number of iterations / level 100 100 100
Sigma (update field) in mm 0.5 0.5 0.5
Kappa (update field) in mm 0 0 0
Sigma (stationary velocity field) in mm 0.5 2 2
Kappa (stationary velocity field) in mm 1 1 1
Incompressibility update field (0-Disable,1-Enable) 0 0 0
Incompressibility velocity field (0-Disable,1-Enable) 1 1 1

LogDemons algorithm). Therefore, in order to use the iLogDemons algorithm,
we need to define the region where we impose the incompressibility constraint by
delineating the left ventricle myocardium using image segmentation tools (since
in this case we are interested in the deformation of the left ventricle). Note that
for the cine-MR sequences we segmented also the right ventricle since it is clearly
visible in all the images and provides added information to the registration.

Myocardium Segmentation to Define the Incompressible Region For each image
sequence we used an interactive 3D segmentation tool that builds a 3D mask im-
age and mesh. Control points are added by the user to define the inside, outside,
and border of the region, from which a 3D mesh is constructed using an implicit
variational surfaces approach. The tool is included within the CardioViz3D soft-
ware package available for download3. For further details on the tool see [7].
We segmented the LV endocardium and the LV epicardium and then applied
arithmetic tools to obtain the LV myocardium image. We then dilate the result-
ing mask to ensure that the full myocardium is covered and to avoid possible
boundary effects. The incompressibility domain is shown in yellow for each of
the the imaging modalities (see Fig. 1). A screenshot of the segmentation tool
is shown in Fig. 2.

Fig. 1: The incompressibility domain shown on a cine-MR image (left), tagged-MR
image (center) and echocardiography image (right). This domain defines where the
incompressibility constraint is enforced in the registration algorithm.

3 http://www-sop.inria.fr/asclepios/software/CardioViz3D/



Fig. 2: A screenshot of the interactive segmentation tool in CardioViz3D which can be
downloaded from http://www-sop.inria.fr/asclepios/software/CardioViz3D/. The tool
requires the user to place control points, from which a surface is build using implicit
variational surfaces approach.

Isotropic Resampling The cine-MR images have anisotropic voxel sizes. To cor-
rect for this, we re-sampled the voxels to be isotropic in all directions. Isotropic
voxel size improves the registration since the transformation is defined on a grid
with enough resolution to avoid ”aliasing” effects (as is true for any demons
algorithm). The echocardiography and tagged-MR image sequences had already
isotropic voxels.

Contrast enhancement To enhance the image contrast we clamped the tails of
the grey-level histogram to exclude the 1st and 99th quantiles. The grey level
intensities were then normalized for each slice using a fixed scale. This was done
for each image in the sequence independently. An example of the before and
after image is shown in Fig 3. This processing also reduced the effects of tag
fading, thus further improving registration results.

4 Application to Challenge Data

The algorithm was applied to a data-set of 15 volunteers and one phantom, each
with cine-MR, tagged-MR and echocardiography images. The resulting defor-
mation fields for each modality are included in the motion tracking challenge.
To demonstrate the performance of this method we show the results for each
modality for one patient from the data-set of 15 volunteers as well as the results
for the phantom data. Similar results were obtained for the remaining volunteers.



Fig. 3: Original image (left) and processed image (right) after histogram clamping and
normalization to improve image contrast.

4.1 Results for Echocardiography Sequences

The method was first applied to echocardiography image sequences. In this case,
the images show well the endocardium (inside the heart) but the epicardium is
difficult to see, particularly in the free wall. However, the motion is more ap-
parent in the echocardiography sequences than in cine-MR due to the speckle
that is ”stitched” to the muscle and thus follows it as the heart deforms, though
this speckle is consistent only between few time frames. Figure 4 (first two rows)
shows one patient image at full contraction (systole) with the mask propagated
using the deformation field computed in the registration overlaid on the image
and similarly for the phantom. The masked deformation field is shown on the
patient and phantom at full contraction to illustrate the direction and magni-
tude of motion. In each case the registration captures the expected longitudinal
contraction, and circumferential twisting of the ventricle. We can also observe
that, although it is difficult to distinguish clearly the epicardium for this modal-
ity, the algorithm is able to produce reasonable strain curves, as shown in Fig
5.

4.2 Results for Cine-MR Image Sequences

The algorithm was applied to the short-axis cine-MR images. These images show
clearly the myocardium, though there is little information in the apex due to too
few slices in the through plane. The algorithm is able to capture a realistic motion
of the myocardium, as shown in the middle two rows of Fig 4. The strain curves
for cine-MR are under-estimated mainly due to lack of texture information in the
images but show the expected trends (increase in strain towards peak systole,
followed by decrease at rest (see Fig 5).

4.3 Results for Tagged-MR Image Sequences

As expected, the tagged-MR registration captures the twisting motion of the
myocardium very well, this is particularly evident in the phantom (see Fig 4
bottom row second to the right), as well as the longitudinal contraction. The
strain curves for the tagged-MR data shown in Fig 5 show a reasonable trend,
however the standard deviation over the given regions is high in this case.



Fig. 4: Top row: Long axis and short axis views of echocardiography images for one
patient (left two columns) and the phantom (right two columns) shown at full contrac-
tion overlaid with the mask deformed by the deformation computed using iLogDemons.
Second row: Two views of the computed deformation field (normal of intensities and
vectors) shown only in the mask region for one patient image (left columns) and the
phantom (right columns). Similarly for cine-MR (third and fourth rows) and tagged-
MR (fifth and sixth rows). For each modality a realistic motion is obtained (rows one,
three and five), as well as the desired direction and magnitude of motion (rows two,
four and six), particularly for the phantom. In particular, the longitudinal motion cap-
tured by the algorithm can be seen by the vectors pointing downwards towards the
apex in the long axis views of rows two, four and six, and the circumferential motion
can be seen in the short axis views where the vectors appear to be wrapping around
the muscle to an extent.



5 Strain Estimation

The strain curves in each of the 17 AHA regions in each of the radial, circum-
ferential and longitudinal directions were computed for each of the modalities.
The strain was computed using the 3D Lagrangian finite strain tensor

E(x) =
1
2

[∇u(x) +∇uT (x) +∇uT (x)∇u(x)] (4)

for the estimated displacement u(x) from the iLogDemons registration at the
spatial positions x. The computed strain tensors were then projected onto a local
prolate coordinate system as described in [1].

The strain curves for each modality in each direction are shown in Fig 5. The
curves show a good consistency between the modalities in respect to curve trends,
with the strain rising to a peak in the middle of the cycle at peak systole, and
decreasing back towards zero (note that the curves are not temporally synchro-
nized). The curves for the echocardiography sequence show a good agreement to
those previously found for cine-MR and tagged-MR presented in [1]. However,
the curves for the cine-MR sequence show less consistency with previously pub-
lished results in [8], as they are under-estimated in all directions. Possible reasons
for this could be too much smoothing, a lack of texture information, poor image
resolution or errors in the tracking. The curves of the standard deviation among
the zones shown are similar to the mean curves shown in green, which displays
the consistency among the AHA regions which is expected in healthy subjects
with synchronized movement among the regions. Note that here we exclude the
apical regions since the apex is not clearly visible in all images.

6 Discussion

In general, this method provides reasonable results for tracking the myocardium
in the three modalities. In particular, the method gives good results for the
echocardiography sequences for both the tracking and estimation of strain even
given data with poor visibility and little structural information. The method is
particularly useful for cardiac motion tracking due to the fact that it can be
applied to the imaging modalities that are most commonly used in cardiology.

6.1 Incompressibility constraint

We discuss here the advantages and disadvantages of enforcing the incompress-
ibility constraint in the myocardium. The constraint was integrated into the
LogDemons method initially to be used on cine-MR sequences, which are known
to exhibit only apparent motion in the image. For this reason, it seemed natu-
ral to constrain the myocardium to be incompressible to reduce the number of
unknowns to force a circumferential and longitudinal deformation when there
is a radial contraction/expansion. In the case of echocardiography sequences
and tagged-MR sequences, there is more texture information in the image that



Fig. 5: Strain curves in the radial (left), circumferential (middle) and longitudinal
(right) directions for echocardiography sequence (top row), cine-MR sequence (mid-
dle row) and tagged-MR sequence (bottom row) for one subject. Mean (solid line) and
standard deviation (dashed line) are shown for one patient in green, and the mean
and standard deviations for systolic strain reported in [8] are shown in blue. Note that
the curves have not been temporally synchronized. We can see that the magnitudes
are under-estimated, though the curve trends are consistent with what is expected
with a peak strain at peak contraction in the radial direction, minimum strain at peak
contraction for circumferential and longitudinal strain.

aids in capturing this motion (speckles in echocardiography images, tag grids
in tagged-MR). Nonetheless, for the purposes of the challenge we applied the
method to all modalities to analyse the results.

Myocardium Segmentation Since the method requires a mask of the myocardium,
we segmented these prior to running the algorithm using the tool described in
Section 3. The incompressibility constraint relies heavily on the accuracy of the
segmentation, therefore errors in the tracking can arise due to mis-segmentation
of the tissue. This is a problem in particular for the echocardiography and tagged-
MR images, which are known to be hard to segment given the poor image quality,
poor visibility of the myocardium and noise from the top of the cone in echo
images. However, this is the case for any method using localized incompressibility



constraint to track the myocardium. In this work, we used a binary mask for the
myocardium. To avoid possible problems related to the boundary conditions, we
dilated the mask by 2 voxels.

Constrained incompressibility vs. compressibility A common point of discussion
for constraining the myocardium to be incompressible is that the myocardium is
not in fact fully incompressible. In the literature, the myocardium is observed to
have a volume change of around 5% [9]. In the case of the LogDemons algorithm,
there is no constraint on the compressibility of the myocardium, which results in
up to 30% volume change, compared to less than 7% of numerical volume change
for the iLogDemons algorithm (see Fig 6). Therefore, while the iLogDemons
algorithm may under-estimate the volume change in general, with the uncon-
strained LogDemons algorithm it can be greatly-overestimated. Furthermore,
improved strain curves were obtained in [1] compared to those computed from
the LogDemons algorithm. Hence, the incompressibility constraint is a useful
prior for cardiac motion tracking, though penalising rather than constraining
the compressibility may be more physiologically realistic.

Fig. 6: Average jacobian determinant in each of the 17 AHA regions for the LogDemons
algorithm (top row) and iLogDemons (bottom row) for each of the modalities (echo-
left column, cine-MR - centre column, tagged-MR - right column). The iLogDemons
algorithm constrains the compressibility to be less than 7% for each modality compared
to up to 30% compressibility for LogDemons.

6.2 Field of View

In some of the sequences in the challenge data-set, the myocardium was on or
very close to the border of the image, particularly in the tagged-MR sequences



which have a very narrow field of view. How the image and the deformation
are treated at the boundary of the image (extrapolated to invisible data) is a
key problem in most registration algorithms. Currently the iLogDemons algo-
rithm works in such a way that the intensities on the border of the image are
extrapolated outside the image in a given region.

7 Conclusion

The iLogDemons algorithm was applied to a data-set of 15 subjects and one
phantom each with an echocardiography, cine-MR and tagged-MR image se-
quence. This method was developed for the heart to model elasticity of the
tissue and incompressibility in the myocardium. The results show that given few
changes in the input parameters, the method is able to retrieve realistic motion
of the heart as well as reasonable strain curves for each of the three modali-
ties and is thus a versatile registration algorithm for cardiac motion tracking.
However, future work is needed to further analyse the incompressibility prior,
possibly including a change in the way the prior is incorporated into the model
by means of a penalisation of the compressibility rather than the current method
of constraining the velocity fields to be divergence-free.
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