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Abstract—We propose a framework for the nonlinear spa-
tiotemporal registration of 4D time-series of images based on the
Diffeomorphic Demons (DD) algorithm. In this framework, the
4D spatiotemporal registration is decoupled into a 4D temporal
registration, defined as mapping physiological states, and a 4D
spatial registration, defined as mapping trajectories of physical
points. Our contribution focuses more specifically on the 4D
spatial registration that should be consistent over time as opposed
to 3D registration that solely aims at mapping homologous points
at a given time-point. First, we estimate in each sequence the
motion displacement field, which is a dense representation of
the point trajectories we want to register. Then, we perform
simultaneously 3D registrations of corresponding time-points
with the constraints to map the same physical points over time
called the trajectory constraints. Under these constraints, we
show that the 4D spatial registration can be formulated as a
multichannel registration of 3D images. To solve it, we propose
a novel version of the Diffeomorphic Demons (DD) algorithm
extended to vector-valued 3D images, the Multichannel Diffeomor-
phic Demons (MDD). For evaluation, this framework is applied
to the registration of 4D cardiac CT sequences and compared
to other standard methods with real patient data and synthetic
data simulated from a physiologically realistic electromechanical
cardiac model. Results show that the trajectory constraints act
as a temporal regularization consistent with motion whereas
the multichannel registration acts as a spatial regularization.
Finally, using these trajectory constraints with multichannel
registration yields the best compromise between registration
accuracy, temporal and spatial smoothness, and computation
times. A prospective example of application is also presented
with the spatiotemporal registration of 4D cardiac CT sequences
of the same patient before and after radiofrequency ablation
(RFA) in case of atrial fibrillation (AF). The intersequence
spatial transformations over a cardiac cycle allow to analyze
and quantify the regression of left ventricular hypertrophy and
its impact on the cardiac function.

Index Terms—Registration, 4D, Sequence, Spatiotemporal,
Cardiac, Heart, CT, Multichannel, Trajectory Constraints.
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I. INTRODUCTION

DURING the last decade, the improvement of medical
imaging technologies extended 3D image acquisitions

to 4D sequence acquisitions such as cine MRI, tagged MRI,
4D CT or 4D ultrasound. They give access to additional
information important for studying the motion of organs (such
as heart and lung) or for real-time control during image-guided
surgical procedures. Since the temporal dimension cannot be
considered as an additional spatial dimension, the extension
of 3D image processing tools to 4D spatiotemporal data is
not straightforward. Thus, the development of specific algo-
rithms for spatiotemporal data is necessary such as temporal
interpolation [1], segmentation [2]–[11], statistical analysis of
cardiac shape and dynamics [12], [13], motion tracking [14]–
[26], image-to-sequence registration [27], [28], temporal align-
ment [29], [30], and spatiotemporal registration [30]–[35].
Most of the spatiotemporal registration algorithms deal with
the registration of sequences of the same patient acquired with
different imaging modalities. Recently, research has addressed
the more complex intersubject spatiotemporal registration of
sequences. Some 3D image registration applications were ex-
tended to 4D sequences, such as registration-based segmenta-
tion [34] or atlas construction [12]. Furthermore, it opens doors
to applications specific to spatiotemporal data, for instance
by comparing the temporal evolution of local parameters of
homologous anatomical points (such as strain or depolariza-
tion/repolarization times) or by analyzing the temporal change
of intersequence transformations over a cardiac cycle to better
understand anatomical and functional differences.

Caspi and Irani [31] were among the first to propose
a framework for sequence-to-sequence alignment using spa-
tiotemporal transformations. Since their algorithm was de-
signed for the registration of different camera views of the
same dynamic scene, they constrained the spatiotemporal
transformation to a 1D temporal linear transformation to cope
with the different acquisition rates of the cameras and to a
3D affine transformation constant over time to cope with the
different camera views. They showed that folding spatial and
temporal information into a single alignment framework out-
performs a purely image-to-image alignment of corresponding
frames.

Sundar et al. [23] proposed to embed cardiac motion track-
ing into a 4D registration framework. The original sequence
is registered to a static sequence built from the image at a ref-
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erence time-point. All 3D transformations from a given time-
point to the reference time-point are determined simultane-
ously with spatiotemporal smoothness constraints. Compared
to the independent 3D registration of each time-point to the
reference time-point, this method showed more robust results.
But since this framework was limited to motion estimation in a
single sequence, issues specific to the comparison of different
sequences, like temporal misalignment and large intersequence
deformations, were not addressed.

Perperidis et al. [30] proposed to register two cardiac MR
sequences of different patients with spatiotemporal free-form
deformation models based on B-Splines. The registration algo-
rithm optimizes either the spatial and temporal transformation
models simultaneously or optimizes the temporal transforma-
tion before optimizing the spatial transformation. The temporal
transformation is a 1D B-Spline transformation that corrects
temporal misalignment caused by length differences of the
cardiac cycles and by kinetic differences of cardiac phases.
The spatial transformation is a single 3D B-Spline transfor-
mation that corrects spatial misalignment at all corresponding
time-points caused by global anatomical differences. Since
the same intersubject spatial transformation is used over time,
residual anatomical differences occur between corresponding
time-points. These differences are used to build a probabilistic
MR cardiac atlas representing the anatomy and function of a
healthy heart.

To catch those residual differences and to fully map corre-
sponding images at each time-point, a time-dependent spatial
transformation is necessary. When registering 4D lung CT
sequences of the same patient for image-guided radiother-
apy, Schreibmann et al. [35] determined a spatial 3D B-
Spline transformation independently at selected time-points.
For intersubject registration of cardiac cine MRIs where the
anatomies and motion patterns can have high discrepancies
between patients, Lopez et al. [34] extended this solution
by including image information from neighboring time-points
(called bridging points). They computed a 3D B-Spline
transformation at each time-point with an energy functional
matching simultaneously the normalized mutual information
of three pairs of images: the pair of images at the current
time-point and two pairs of images at the neighboring time-
points transformed to the geometry of the current time-point
with intrasubject motion transformations. Their results show
an improvement of the registration accuracy by comparing
endocardial and atrial segmentations. But in both methods,
the 3D B-Spline transformations are computed independently
at each time-point. Thus they are not necessarily consistent
with motion occurring in each sequence by matching the
same physical points at different time-points. This constraint
is important when comparing the temporal evolution of local
parameters of homologous anatomical points.

In this article, we propose a framework in which the result-
ing intersequence spatial transformations verify the constraints
to map the same physical points over time, called the trajectory
constraints. In this framework, the 4D spatiotemporal registra-
tion is decoupled into a 4D temporal registration, defined as
mapping physiological states, and a 4D spatial registration,
defined as mapping trajectories of physical points. A temporal

registration is performed using global cardiac physiological
state parameters. We first perform the 4D temporal registration
based on the electrocardiogram (ECG) that define a global
cardiac electrophysiological state as a percentage of the R-
R interval (interval between two consecutive R peaks of the
ECG). It provides a linear temporal transformation that ensures
to match the beginning and the end of cardiac cycles, which
is the end of diastole (ED). This linear transformation is
then refined by temporally aligning the blood volume curves
with a nonlinear transformation matching global mechanical
states such as the end of systole (ES). After this global
temporal alignment, we perform a 4D spatial registration. Our
contribution focuses more specifically on the improvement of
this 4D spatial registration step by enforcing the trajectory
constraints. A motion tracking is performed with the Diffeo-
morphic Demons (DD) algorithm [36] to determine the dense
trajectories of points in both sequences. These dense trajecto-
ries in the two sequences are used to constrain temporally the
intersequence spatial transformations. Including the trajectory
constraints, we show that the 4D spatial registration can be
formulated as a multichannel registration of 3D images at a
reference time point combined with inversions and composi-
tions of transformations. We also present a novel version of the
multichannel 3D registration algorithm based on the DD, the
Multichannel Diffeomorphic Demons (MDD). A preliminary
study of this framework has already been published in [37].
This framework is applied to the intersubject registration of 4D
cardiac CT sequences and compared to other standard methods
with real patient data and synthetic data simulated from a
physiologically realistic electromechanical cardiac model [38].
The validation of registration algorithms is not an easy task,
especially in the context of intersubject registration where
ground truth transformations are not known, and even more
difficult when dealing with sequences of images. Thus, we
evaluated the registration results of real data with LV/RV endo-
cardial and epicardial segmentations that gives the opportunity
to quantify the quality of the myocardium registration. Results
show that using the trajectory constraints yields a temporal
regularization consistent with motion whereas using the mul-
tichannel registration yields a better spatial regularization. The
combination of these two showed to be the best compromise
between registration accuracy, temporal consistency with mo-
tion tracking, spatial smoothness, and computation times. We
end this article by presenting a possible application of 4D
spatiotemporal registration with pre- and post-operative data
where intersequence transformations over time could be used
to study and quantify the coupling between anatomical and
functional remodeling.

II. SPATIOTEMPORAL REGISTRATION SETTING

In this section, we describe the general setting for the
spatiotemporal registration of 4D sequences that estimates two
different types of intersequence transformations: a temporal
transformation and a spatial transformation. First, we introduce
the temporal transformation as a physiological state mapping.
Second, we present the 4D spatial registration as a trajectory
mapping from which we derive a discrete formulation of the
trajectory constraints that should be verified.
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A. General Setting

Let’s consider the reference sequence I and the target
sequence I ′ whose acquisition space-time are respectively
Ω × τ ⊂ R3 × R and Ω′ × τ ′ ⊂ R3 × R:

I ′ : Ω′ × τ ′ −→ R
(x′, t′) 7−→ I ′(x′, t′) = i′

I : Ω × τ −→ R
(x, t) 7−→ I(x, t) = i

When registering the target sequence I ′ to the reference
sequence I , the spatiotemporal transformation S that maps
a spatiotemporal position (x, t) of I to the corresponding
spatiotemporal position (x′, t′) of I ′ must be found:

S : Ω × τ −→ Ω′ × τ ′
(x, t) 7−→ S(x, t) = (x′, t′)

The spatiotemporal transformation S can be formulated
as the combination of a spatial transformation Sspace and a
temporal transformation Stime as follows:

S(x, t) = (Sspace(x, t), Stime(x, t))

In the following, we get more into details of these two types
of transformation where the temporal transformation maps cor-
responding physiological states and the spatial transformation
maps corresponding trajectories of physical points.

B. Temporal Transformation as Physiological State Mapping

The temporal transformation Stime is defined as follows:

Stime : Ω × τ −→ τ ′

(x, t) 7−→ Stime(x, t) = t′

The idea behind the temporal transformation is to match an
event occurring at the time-point t and the spatial position x
in the reference sequence to a similar event occurring at the
corresponding time-point t′ in the target sequence. In medical
imaging, corresponding time-points can be defined as time-
points at which physiological states are the same, for instance
the end of diastole/systole for a given cardiac ventricle or the
beginning of a respiration cycle for a lung. Thus the temporal
transformation is highly dependent on which physiological
parameters we want to compare. Examples of possible global
physiological parameters are shown in Fig. 1. In previous
works, the temporal transformation Stime was determined by
matching a parameter describing a global physiological state
of the heart such as a specific event of the ECG (e.g. P, Q, R, S,
and T peaks), volume extrema of the left ventricle, the average
cross-correlation coefficient between frame intensities [30],
[39] or the path of a specific anatomical point [29]. Since
these global parameters are the same for every position at
a given time-point, the resulting temporal transformation is
independent of the spatial position x and thus a function of
time only. Actually the temporal transformation can be space
dependent when two structures have different physiological
patterns. For instance the periods of the cardiac and respiration
cycles are different and the temporal transformation of a
sequence imaging heart and lungs should be different for

Fig. 1. Wiggers Diagram [40] - This diagram shows different physiolog-
ical parameters with the same time-line of a cardiac cycle: pressure and
volume curves, ECG, and phonocardiogram (figure adapted from Wikipedia
- http://en.wikipedia.org/wiki/Cardiac cycle). These physiological parameters
can be used to detect different physiological events occurring in a cardiac
cycle such as diastole, systole, or valves opening and closing.

each organ. It could also happen with different areas of
a single organ. For instance we might want to temporally
register independently the left and right cardiac ventricles in
pathological cases such as a left bundle branch block (LBBB)
where the activation of the left ventricle is delayed, which
results in the left ventricle contracting later than the right
ventricle. We could also imagine to temporally register events
that are locally defined such as depolarization/repolarization or
maximum contraction that are spatially dependent. Obviously
the temporal transformation can become very complex when
comparing local physiological events. The complexity of the
temporal transformation and the choice of the features used
for temporal registration should be governed by the desired
application.

As mentioned previously, the temporal transformation is
determined by the registration of some signals or quantities
that may not be intensity-based (cf. Fig. 1) whereas the spatial
registration is intensity-based. Thus, when using different
data, the temporal transformation Stime can be determined
independently from the spatial transformation Sspace. The
temporal transformation can even be applied after the spatial
transformation as long as structures are not appearing and/or
disappearing during the sequences and as long as images at
each time-point in the reference sequence has an image at
the same time point in the target sequence to be compared
to. This happens when the same structures are present during
the whole sequence and when the acquisition time intervals
τ and τ ′ exactly overlap, which is the case after global
linear temporal registration. This linear transformation is often
implicitly performed in the acquisition process such as in 4D
cardiac CT sequences that are gated from the end of diastole
(ED) of a cardiac cycle to the ED of the next cycle.

In our following experiments registering 4D cardiac CT
sequences, we first define the global physiological state with
the ECG (R-R interval in Fig. 1) temporally aligned with a
linear transformation. In practice, this linear transformation
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Fig. 2. Trajectory-based registration - Spatial transformations should map
corresponding physical points X and X′ lying on the same trajectory
(respectively φX(t) and φX’(t)) at different time points.

is implicitly performed in the ECG-gated acquisition pro-
cess of 4D cardiac CT where each frame correspond to a
percentage of the R-R interval. Then, a nonlinear temporal
transformation refines the linear transformation by matching
global mechanical state defined with blood volume curves.
In this way, the following intersequence spatial registration
between corresponding frames are performed at corresponding
mechanical states and thus with similar geometries.

When the temporal transformation is known, sequences can
be temporally resampled. Due to the nature of the temporal
dimension, one should note that the temporal interpolation
cannot be performed only as an intensity-based linear interpo-
lation of images without coping with the motion occurring in
the sequence. Temporal interpolation should rely on a motion-
based interpolation of images as proposed by Ehrhardt et
al. [1]. Thus motion tracking, computed as described in the
following Section III, is necessary for the temporal resampling
of sequences.

C. Spatial Transformation as Trajectory Mapping

The spatial transformation Sspace is defined as follows:

Sspace : Ω × τ −→ Ω′

(x, t) 7−→ Sspace(x, t) = x′

To be physically meaningful when determining the time-
dependent spatial transformation Sspace, the same physical
points should be mapped at different time points in both
sequences as shown in Fig. 2. In other words, if we define
the position of a physical point X over time as the trajectory
φX :

φX : τ −→ Ω
t 7−→ φX(t) = x

we can formulate the problem as finding the transformation
Sspace such that the trajectory φX of a physical point X
in the reference sequence maps the trajectory φX′ of its
corresponding physical point X ′ in the target sequence:

Sspace
(
φX(·), ·

)
= φX′(·) (1)

With this formulation we can easily understand why match-
ing corresponding trajectories is independent from matching
corresponding time-points as mentioned in the previous sec-
tion. Indeed a temporal transformation does not modify the

(a) 4D Registration (b) Multichannel 3D Regis-
tration

Fig. 3. (a) Discretization of the 4D spatial registration with the spa-
tial transformations Sj between the sequences at time tj and the motion
transformations Mj,k and M ′j,k between frames at times tj and tk (note
that the arrows show the direction of the resampling deformation fields
used to transform the target image to the reference image) - (b) Under
trajectory constraints, the 4D registration can be parametrized by a single
reference spatial transformation S4D

j and thus formulated as a multichannel 3D
registration problem. Frames Ik and I′k of the two sequences are transformed
through the motion transformations Mj,k and M ′j,k to the reference geometry
of images Ij and I′j . The transformations S4D

k are then reconstructed from
S4D
j to satisfy the trajectory constraint: S4D

k = M ′j,k ◦ S
4D
j ◦M

−1
j,k

.

nature of a trajectory but does solely modify the speed of
a physical point along its trajectory. It simply means that
a temporal transformation does not modify the anatomical
position of a physical point but does only modify its phys-
iological state over time. Our goal here is to provide a robust
intensity-based image matching of corresponding anatomical
points when temporal alignment of sequences has already been
performed by matching corresponding physiological events as
proposed in previous Section II-B.

The temporal discretization of the 4D spatial registration
is illustrated in Fig. 3 (note that we call transformations the
resampling transformations used to deform the target image
to the reference image, the arrows show the direction of the
resampling deformation fields used to find the correspond-
ing point of the reference image in the target image). The
intersequence transformations Sj map the reference volume
Ij to the target volume I ′j at time tj knowing the trajectories
of points given by the intrasequence motion transformations
Mj,j+1 and M ′j,j+1 between the times tj and tj+1 respectively
in the reference and target sequences. In the discrete world,
Equation 1 is equivalent to stating that if a point position
x in image Ij maps a point position x′ in I ′j by the inter-
sequence transformation Sj then the remaining intersequence
transformations Sj+1 should map the displaced point position
Mj,j+1(x) to the displaced point position M ′j,j+1(x

′). This
translates into a set of constraints, called the trajectory con-
straints, that link the intersequence transformations Sj and Sk
with the motion transformations Mj,k (from Ij to Ik) and M ′j,k
(from I ′j to I ′k) :

Sk ◦Mj,k = M ′j,k ◦ Sj (2)

In the sequel, we formulate the 4D spatial registration as
the minimization of a functional including those trajectory
constraints and considering the motion tracking as a known pa-
rameter previously computed independently in each sequence.
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III. FROM 4D REGISTRATION TO MULTICHANNEL 3D
REGISTRATION

When determining the intersequence transformation Sj , the
standard approach is to minimize the image similarity measure
between the pair of images (Ij , I ′j) :

S3D
j = argmin

S

(∫
ω∈Ωj

Sim( Ij(ω), I ′j ◦ S(ω) ) dω
)

(3)

We call this intersequence transformation S3D
j the solution to

the 3D registration problem that only involves one pair of
images (Ij , I ′j).

When determining the set of intersequence transformations
(S4D
j )j=1,...,N for the 4D spatial registration, we want to si-

multaneously minimize the image similarity measure between
all pairs of images (Ij , I ′j) :

(S4D
1 , ..., S4D

N ) =

argmin
(S1,...,SN )

(
N∑
k=1

∫
ω∈Ωk

Sim( Ik(ω), I ′k ◦ Sk(ω) ) dω

)
(4)

If each transformation S4D
j is considered independent from the

others, the solution is similar to finding each transformation
S3D
j . Actually to ensure that the transformations (S4D

j )j=1,...,N

map the same physical point over time, the trajectory con-
straints of Equation 2 should be verified. Thus a strong link
exists between all intersequence transformations that cannot
be considered independent anymore. The trajectory constraints
can be reformulated as S4D

k = M ′j,k ◦S4D
j ◦M

−1
j,k that may be

interpreted as follows: to satisfy the trajectory constraints, the
transformation M ′j,k ◦ S4D

j ◦M
−1
j,k should map image Ik into

image I ′k.
Motion tracking is performed with an updated Lagrangian

scheme with Gaussian regularization. Basically, the intra-
sequence motion transformations Mj,k and M ′j,k are iteratively
computed by initializing the registration of frame tk to ref-
erence frame tj in each sequence with the motion transfor-
mations Mj,k−1 and M ′j,k−1 obtained at the previous step.
Since motion tracking is necessary to temporally resample
the sequences when using motion-based interpolation, motion
tracking is actually performed with the original sequences
before temporal resampling. Then motion tracking is also tem-
porally resampled according to the temporal transformation in
order to be consistent with the temporally resampled sequence.

In the remainder, we consider the motion transformations
Mj,k and M ′j,k as fixed when determining the intersequence
transformation S4D

j . Indeed, motion tracking is intrinsically
independent from any intersequence registration. Motion trans-
formations are estimated independently and then used to im-
prove the estimation of the intersequence transformations. This
assumption makes sense when considering that the motion
transformations are much easier to estimate than intersequence
transformations. Indeed, intersequence transformations have
larger deformations than motion transformations (especially in
sequences with high temporal resolution). Furthermore, they
are less constrained than cardiac motion, since cardiac motion
follows the law of biomechanics that can be included as an a

priori knowledge, for instance elasticity or near incompress-
ibility of cardiac tissue [24], [41]. In this way, physically
meaningful constraints on the estimation of the intrasequence
motion transformations would be indirectly included to the es-
timation of intersequence anatomical transformations through
the trajectory constraints.

Applying the trajectory constraints to the set of variables
(Sj)j=1,...,N in the minimization process, any transformation
Sk can be parametrized with a single transformation Sj at
a reference time-point tj and the motion transformations
M ′j,k and Mj,k. The number of unknown variables is highly
decreased by determining only the chosen reference transfor-
mation S4D

j that minimizes the following modified functional
of Equation 4 :

S4D
j = argmin

S

(∫
ω∈Ωj

Sim( Ij(ω), I ′j ◦ S(ω) ) dω +

∑
k 6=j

∫
ω∈Ωk

Sim( Ik(ω), I ′k ◦M ′j,k ◦ S ◦M−1
j,k (ω) ) dω


(5)

Applying the appropriate change of variable ω = Mj,k(ν) for
each term of the functional, the 4D spatial registration can be
formulated as the minimization of similarity criterion between
several pairs of images:

S4D
j = argmin

S

(∫
ω∈Ωj

Sim( Ij(ω), I ′j ◦ S(ω) ) dω +

∑
k 6=j

∫
ν∈Γj

Sim( Jj,k(ν), J ′j,k ◦ S(ν) )|Jac(Mj,k)(ν)| dν


where Jj,k = Ij ◦Mj,k and J ′j,k = I ′j ◦M ′j,k are respectively
the images at frame k transformed into the geometry of
the image at frame j in the reference and target sequences,
Γj ∈ Ωj is part of image Ij , and Jac(Mj,k) is the Jacobian of
transformation Mj,k.

In other words, the intersequence transformation S4D
j must

optimize the sum of similarity criteria between the pair of
images (Ij , I ′j) and all pairs of images (Jj,k, J ′j,k) as shown
in Fig. 3. Note also that the terms Jac(Mj,k) deriving from
the change of variables take into account volume change of
voxels when transforming Ik into Jj,k. This term acts as a
voxel-wise weight map in each similarity criterion to ensure
the equivalence of the energy functional formulated in the
original and warped spaces. Once S4D

j is estimated, the other
transformations S4D

k can be computed from S4D
j with the

trajectory constraints: S4D
k = M ′j,k ◦ S4D

j ◦M
−1
j,k .

Finally, we have shown that including the trajectory con-
straints in the estimation of the intersequence transformation
S4D
j translates the 4D spatial registration problem into a single

3D multichannel registration problem associated with pairs of
images (Ik, I ′k) transformed respectively in the reference space
of the images Ij and I ′j .

The 4D spatiotemporal registration framework can be
summarized as follows:
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4D Spatiotemporal Registration Algorithm
(1) Temporal alignment w.r.t. global physiological pa-

rameters.
(2) Compute motion tracking Mj,k and M ′j,k register-

ing each frame tk to reference frame tj .
(3) Resample motion tracking M ′j,k and target sequence

I ′ with motion-based interpolation.
(4) Transform each frame of I and I’ to the reference

frame with resampled Mj,k and M ′j,k.
(5) Compute S4D

j in the reference frame using 3D
multichannel registration algorithm (cf. IV-B).

(6) Compute S4D
k in other frames using the trajectory

constraints : S4D
k = M ′j,k ◦ S4D

j ◦M−1
j,k .

IV. MULTICHANNEL 3D DIFFEOMORPHIC DEMONS

In this section, we present a novel extension of the Diffeo-
morphic Demons (DD) [36] to multichannel data (or vector-
valued data). We have chosen to extend the DD algorithm
but this choice is not exclusive. Other registration algorithms
could also be extended to multichannel data. Due to the
trajectory constraints, the space of resulting transformations
should be stable by composition and inversion which is the
case with DD. Mainly the speed of DD algorithm is a
significant advantage when processing large 4D datasets in
a reasonable amount of time. Recently, it has been shown
in a thorough comparison of registration algorithms for brain
applications [42] that DD was one of the fastest diffeomorphic
registration algorithm [43]–[48].

We begin with the presentation of the diffeomorphic ex-
tension [36] of Thirion’s Demons registration algorithm [49]
for 3D images that is used to determine the motion transfor-
mations Mj,k and M ′j,k. Then we present a novel extension
of Demons algorithm to vector-valued images that is used to
determine the reference intersequence transformation S4D

j of
the 4D registration framework.

A. Standard 3D Diffeomorphic Demons

The original Demons registration algorithm [49] is based
on optical flow. But it has been shown that introducing a
hidden variable, called the correspondences, the Demons can
be formulated as a well-posed energy minimization with an
alternate optimization scheme [50]. When registering the target
3D image I ′ to the reference 3D image I , the update transfor-
mation u of the current transformation S is first determined by
minimizing the correspondences energy Ecorr (cf. Equation 6)
to obtain the correspondences transformation c = S ◦ u.
Second, the correspondences transformation c is regularized
to obtain the new transformation S. The linearization of
correspondences energy Ecorr is formulated as follows:

Ecorr(u) '

1

2|Ω|

∫
ω∈Ω

∥∥∥∥[I(ω)− I ′ ◦ S(ω)
0

]
+

[
GT (ω)

σ(ω)/σc Id

]
u(ω)

∥∥∥∥2

dω

(6)

where Ω is the overlap between I and I ′ ◦S, ω is the voxel
position, G(ω) = 1

2 (∇I(ω)+∇I ′◦S(ω)) is the spatial gradient

of intensity whose formulation comes from a linearization of
the ESM scheme detailed in [36], σ(ω) = |I(ω)− I ′ ◦ S(ω)|
is the local estimation of the image noise, and σc is a
fixed parameter that bounds the spatial uncertainty on the
correspondences transformation. Note that the transformation
u, which outputs a position, and its corresponding deformation
field u are differentiated by bold characters. The link between
them can be formulated as follows: u = Id + u where Id is
the identity transformation.

A closed form solution of the minimization of the corre-
spondences energy is given by the update vector field u :

u = − I − I ′ ◦ S
GTG + σ2/σ2

c

G (7)

To constrain the update transformation to be diffeomorphic,
the minimization of the functional is performed directly in the
one-parameter subgroup of diffeomorphisms with stationary
speed vector fields. Vercauteren et al. [36] showed that at
a first order approximation this is equivalent to using the
standard Demons algorithm and taking the exponential of
the update transformation u. In this way, the update vector
field u is the speed vector field parametrizing the update
diffeomorphic transformation v = exp(u). The algorithm can
be summarized as follows :

3D Diffeomorphic Demons Registration Algorithm
(from [36])

(A) Choose an initial spatial transformation S.
(B) Iterate until convergence:
(B.1) Given S, compute the update vector field u with

Equation 7.
(B.2) If a fluid-like regularization is used (typically a

Gaussian kernel), let u← Kfluid ? u.
(B.3) Fast computation of the exponential exp(u):

(a) Choose n such that ‖2−nu‖ is close
enough to 0 (e.g. max‖2−nu(x)‖ ≤
0.5 voxel).

(b) Perform an explicit first order integration:
v(x)← 2−nu(x) for all voxels x.

(c) Do n (not 2n!) recursive squarings of v =
Id + v : v ← v ◦ v.

(B.4) Let S ← S ◦ v.
(B.5) If a diffusion-like regularization is used (typically a

Gaussian kernel), let S← Kdiff ? S.

B. Extension to Multichannel or Vector-Valued Data

Multichannel nonlinear registration algorithms were mostly
developed for the registration of DT-MRI [51]–[58]. They
were recently applied to the simultaneous fusion of multiple
modalities [59] and to the construction of multichannel atlas
with different modalities [60]. Among those registration algo-
rithms, an extension of the Demons algorithm to multichannel
data has been proposed for DT-MRI registration based on
transformation invariant tensor characteristics [53]. Basically,
the authors average the update vector field computed inde-
pendently for each channel. But in this approach, the real
coupling between the channels is lost and approximated by
averaging the update vector fields. Yeo et al. [58] preserved
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this coupling by extending the Demons algorithm to vector-
valued images and also including the finite-strain differential to
take into account the reorientation of diffusion tensors [61]. In
our case, we deal with data that do not need any reorientation,
but we include a voxel-wise confidence map to each channel.
Thus, we can formulate the linearization of the multichannel
Demons correspondences energy as follows :

Ecorr(u) '
N∑
j=1

(
1

2|Ωj |
×

∫
ω∈Ωj

∥∥∥[Ij(ω)− I′j ◦ S(ω)

0

]
+

[
GTj (ω)

σj(ω)/σc Id

]
u(ω)

∥∥∥2

αj(ω) dω

)
(8)

where N is the number of channels, Ωj is the overlap between
Ij and I ′j , Gj = 1

2 (∇Ij(ω)+∇I ′j◦S(ω)) is the spatial gradient
of intensity in channel j whose formulation comes from a
linearization of the ESM scheme detailed in [36], σj is the
local noise estimation in channel j, and αj > 0 the voxel-
wise weight map for the channel j.

Its minimization gives the following equation to solve at
each voxel :

N∑
j=1

αj(GjGT
j + σ2

j /σ
2
c Id) u = −

N∑
j=1

αj(Ij − I ′j ◦ S) Gj

Considering the eigen decomposition
∑3
i=1 λ

2
i eieTi of the 3×3

symmetric positive matrix D =
∑N
j=1 αjGjGT

j , the update
vector field becomes :

u =
3∑
i=1

Pi
λ2
i + σ2/σ2

c

ei (9)

where Pi = −
(∑N

j=1 αj(Ij − I ′j ◦ S) GT
j

)
ei and σ2 =∑N

j=1 αjσ
2
j , and σc is a parameter that constrains the max-

imum step length such that the update vector field verifies
‖u‖ ≤ σc

√
d/2 (d the number of spatial dimensions in the

image). The coupling between channels relies on the eigen
decomposition of the sum D of the dyadic tensors αjGjGT

j .
This formulation should improve the speed and accuracy of
the convergence compared to previous multichannel approach
with Demons algorithm [53], especially in the case of non-
aligned gradient vectors.

The Multichannel Diffeomorphic Demons (MDD) algorithm
is similar to the Diffeomorphic Demons (DD) algorithm except
that at step (B.1) the update vector field should be computed
with Equation 9 instead of Equation 7.

V. EXPERIMENTS

In order to evaluate the advantages of the proposed reg-
istration method based on the multichannel 3D registration
with trajectory constraints, we compare it to other methods
based on the 3D registration of scalar-valued images with or
without the trajectory constraints. When trajectory constraints
are considered, the reference frame is set as the ED frame
that is the first frame of the 4D cardiac CT sequences. To
use these trajectory constraints as mentioned in section III,
motion tracking is previously performed in each sequence with

an updated Lagrangian scheme where the registration of the
current frame k to the reference frame 1 is initialized with
the registration result of the previous frame k − 1 to the
reference frame 1. We used the DD algorithm [36] described in
Section IV-A for pairwise registration with the following pa-
rameters in both synthetic and real data experiments: diffusion-
like regularization σdiff = 1, maximum update field length
bounded with σc = 1, and 30 iterations (stopped if the simi-
larity measure increases) at each of the 3 levels of multiscaling
(each dimension size divided by 2 at each level). The resulting
motion transformations M1,k and M ′1,k are considered as fixed
during the estimation of the intersequence transformations Sk.
The inversion of motion transformations is also necessary
when using trajectory constraints. This inversion is performed
by minimizing a functional as described in [62].

The different methods we use to register sequences are the
following:

• 3D direct: each intersequence transformation Sk is com-
puted independently from the others.

• 3D sequential: the computation of the intersequence
transformation Sk is initialized with the transformation
M ′k,k−1 ◦ Sk−1 ◦M−1

k,k−1 using the previously computed
transformation corrected with the motion tracking to
satisfy the trajectory constraints.

• 3D + TC: solely the intersequence transformation S1 in
the ED frame is computed independently from the others
that are then reconstructed from S1 and the motion track-
ing in both sequences to satisfy the trajectory constraints
(TC).

• 3D average + TC: solely the intersequence transformation
S1 is computed using the average grey-level image of all
the frames registered to the reference ED frame with the
motion tracking. The intersequence transformations Sk at
other time-points are then reconstructed from S1 and the
motion tracking to satisfy the trajectory constraints (TC).

• 3D MC + TC: solely the intersequence transformation
S1 is computed using the multichannel (MC) registra-
tion of vector-valued image whose components are all
the frames registered to the reference ED frame. The
intersequence transformations Sk at other time-points are
then reconstructed from S1 and the motion tracking to
satisfy the trajectory constraints (TC). This method corre-
sponds to the 4D spatial registration algorithm presented
in Section III in which the multichannel registration is
performed with the MDD detailed in Section IV-B.

These methods can be divided into three groups. First, the
group of registration methods that perform a 3D scalar-valued
image registration at each time point. We call this group
the “3D” methods (3D direct and 3D sequential). Second,
the group of registration methods that perform a 3D scalar-
valued image registration at a reference time-point and that
reconstruct the other intersequence transformations using the
trajectory constraints. We call this group the “3D + TC”
methods (3D + TC and 3D average + TC). And the last
group uses the 3D multichannel registration method at a
reference time-point and reconstructs the other intersequence
transformations using the trajectory constraints. We call this
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group the “3D MC + TC” method (3D MC + TC). The
comparison between the “3D” methods and the two other
groups of methods, “3D + TC” and “3D MC + TC” methods,
will show the advantage of registering a single reference
time-point and using the trajectory constraints to reconstruct
the other intersequence transformations. And the comparison
between the “3D + TC” methods group and the “3D MC +
TC” methods will show the advantage of using a multichannel
registration when registering the reference time-point.

When estimating the intersequence transformation Sk with
either scalar-valued (DD) or vector-valued (MDD) registration
algorithms, the following parameters are used in both synthetic
and real data experiments: fluid-like regularization σfluid = 0.5,
diffusion-like regularization σdiff = 0.5, maximum update field
length bounded with σc = 1, and 100 iterations (stopped if
the similarity measure increases) at each of the 3 levels of
multiscaling (each dimension size divided by 2 at each level).

Since registration is an ill-posed problem, solely checking
the intensity matching between the reference image and the
transformed target image to compare the different methods is
not sufficient. Different mappings can lead to the same simi-
larity measure. Thus we might perfectly match the intensities
without recovering the expected deformation field. The best
accuracy measurement of a registration algorithm would be
to compare the estimated deformation field to the expected
deformation field (e.g., gold standard). Generally these ground
truth transformations are not available [63] which makes
difficult the validation of registration algorithms, especially
in the case of intersubject registration. Thus validation of
registration algorithms is often limited to partial ground truth
information such as segmentations. To overcome the lack of
full ground truth information in patient data, we compare the
registration methods with synthetic cardiac sequences simu-
lated from a physiologically realistic electromechanical car-
diac model [38] in which the ground truth intersequence and
intrasequence transformations are known. With real 4D cardiac
CT sequences, we compare the registration methods using
semi-automatic segmentations of the LV/RV endocardium and
epicardium since the underlying ground truth transformations
are unknown. But first of all we present a general comparison
study on computation times.

A. Computation Time Comparison
Computation time is an important issue when dealing with

large data as 4D cardiac CT sequences. First, we compare the
computation time of the core scalar-valued DD and the vector-
valued MDD registration algorithms. Fig. 4 shows that MDD
is more time consuming than DD especially when the number
of channels and the image size increase significantly. Note that
when only one channel is considered, the computation times
between the two algorithms are different. Indeed, the MDD is
coded with a vectorial data structure that is more complex to
handle.

Second, we compare the computation time when registering
two sequences with the different methods. In these compu-
tation times are included the time to compute the motion
tracking in the target sequence used for temporal transforma-
tion with motion-based interpolation (all methods), the time

(a) Diffeomorphic Demons (DD) vs Multichannel
Diffeomorphic Demons (MDD) for single pairwise
registration.

(b) Different registration methods: 3D direct, 3D
sequential, 3D + TC, 3D average + TC (same curve
as 3D + TC), and 3D MC + TC for registration of
two sequences.

Fig. 4. Computation time of different registration algorithms with respect to
the number of channels (a) or frames (b), and the size of the images (same
size in every dimension X, Y, and Z). The same number of iterations has
been performed for each method (30 iterations at each of the 3 levels of
multiscaling). Experiments are performed on a PC with Intel Core 2 Duo
@ 2.26GHz processor. - (a) Comparison between pairwise registration of
scalar-valued images and pairwise registration of vector-valued images. The
vector-valued image registration is more time consuming when the number
of channels and the size of the image increase significantly. - (b) Comparison
between the different methods used to register sequences: 3D direct, 3D
sequential, 3D + TC (whose curve is similar as 3D average + TC), and
3D MC + TC. The differences between methods increases significantly when
the number of frames in the sequence and the size of the images increase.

to compute the motion tracking in the reference sequence,
compose and invert deformation fields when using trajectory
constraints (methods with TC and 3D sequential), the time
to compute the intersequence transformations (all methods).
Since 3D + TC and 3D average + TC have very similar
computation times, we only show in Fig. 4 the computation
time of 3D + TC. The results clearly show when estimating
the intersequence transformation at every frame takes longer,
even if using only 3D scalar-valued registrations that is faster
than 3D vector-valued registrations. More registrations are
necessary when using the trajectory constraints (additional
motion tracking computed in the reference sequence). But
since the motion tracking converges faster than intersubject
registration (smaller and smoother deformations), the use of
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Fig. 5. Construction of simulated sequences using a physiologically realistic electromechanical model of the heart [38]. The ED frame (Image 1) from the
4D cardiac CT sequence of a given patient is segmented (Segmentation 1) to obtain a mesh of the myocardium (Computational Mesh 1). This mesh is used
for electromechanical simulations and for creation of a synthetic but physiologically realistic motion of the heart where the deformation fields (extrapolated
outside the myocardial mesh) between each frame are known. Based on these deformation fields, the reference image (Image 1) is deformed to create a
sequence of images (Simulated Sequence 1). Next the reference ED frame is transformed into the ED frame of another patient (Image 2) with a known
deformation field that was computed to best match the anatomy of the two patients. From this image of another anatomy at ED (Image 2), we can apply
the same process as previously with Image 1 to build another sequence of images (Simulated Sequence 2). In the end, we obtain two electromechanically
simulated sequences whose intrasequence physiological motion transformations and intersequence anatomical transformations are known. These ground truth
transformations can be used to assess the accuracy of different registration methods.

trajectory constraints keeps having lower computation times.
The 3D sequential is the most time consuming since trajectory
constraints are used and intersequence transformations are
estimated at each frame. The 3D MC + TC method is not the
fastest one but has reasonable computation times compared to
the fastest 3D + TC method. The counterpart of the reasonable
computation time of the 3D MC + TC method that solves
globally the 4D registration is the memory requirements.
Compared to other registration methods that are scalar-valued,
the 3D MC + TC method has memory requirements multiplied
by about the number of channels. For instance, in experiments
with real data (174×134×174 voxels and 20 frames) detailed
in the following, a vector-valued registration requires up to
about 11 Gb RAM (which can be handled on regular 64 bits
PC), whereas a scalar-valued registration requires only up to
about 500 Mb RAM.

B. Registration of Electromechanically Simulated Sequences

1) Construction of Electromechanically Simulated Se-
quences: Previous works [64], [65] already proposed methods
to build synthetic 4D cardiac sequences. But these methods do
not provide a framework directly applicable to the evaluation
of 4D registration in which we need the joint construction of
two sequences where both intrasequence and intersequence
transformations are fully known. Thus to simulate physio-
logically realistic and fully controlled time-series of cardiac
images, we built two cardiac sequences using an electro-
mechanical model of the heart [38] from a single 4D CT frame
as described in Fig. 5.

We start from an initial frame at ED of a real cardiac CT
sequence with 190 × 150 × 190 voxels at a resolution of
1.0 × 1.0 × 1.0 mm3. A segmentation of the myocardium is

used as an input for electromechanical simulations of a full
cardiac cycle lasting 0.8 seconds. The output of the simulation
is a deformation field in the myocardium extrapolated outside
the myocardium with an iterative diffusion process. Basically,
we perform successive Gaussian smoothing of the deformation
field (σ = 1, 50 iterations) where at each iteration the
deformation field in the myocardium is reset to the simulated
one and the deformation field farther than 15 mm of the
myocardium is reset to be null. Thus, the initial grey-level
image at ED can be physiologically deformed to create a
sequence over a whole cardiac cycle with a temporal sampling
of 20 frames. In the resulting sequence, the ground truth
intrasequence motion transformations are known. In order to
build a second sequence whose intersequence transformations
with the first one are known, we register the initial frame
of the first sequence to the anatomy of another real patient.
Then, the resulting deformation field is used to transform the
initial frame of the first patient and create another cardiac
anatomy. Based on this new cardiac anatomy, we simulate
another sequence using different parameters chosen such that
both sequences have the same cardiac cycle length with corre-
sponding ED and ES physiological time-points. Thus, the two
sequences are by construction temporally aligned according to
the global physiological events defined for temporal alignment
in Section II-B. In this way, we can directly focus on the 4D
spatial registration we want to evaluate. Finally, we obtain
two electromechanically simulated sequences of 20 frames
whose intersequence anatomical and intrasequence motion
transformations are fully known. We also created a noisy
version of these simulated sequences adding Gaussian noise
with different signal-to-noise ratio (SNR ranging from 18 to
54) at each frame.
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(a) 3D direct

(b) 3D sequential

(c) 3D + TC

(d) 3D average + TC

(e) 3D MC + TC

Fig. 6. Registration accuracy with electromechanically simulated sequences
- Spatial distribution of differences between the estimated intersequence
anatomical transformation Sk and the ground truth transformations in the
myocardium of simulated sequences over a cardiac cycle (from ED of current
cycle to ED of the next cycle).

2) Results: As mentioned previously, since the solution of
the registration is not unique (aperture problem), we decided
not to use the similarity measure (SSD) as a registration
accuracy measure. For the same intensity matching, different
transformations are possible. In our experiments, we even
noticed that a better matching of the intensities did not
necessarily imply a better estimation of the expected ground
truth transformation (up to a certain extent). We used two
measures to compare the registration algorithms: the distance
to the ground truth transformations and the deviation from the
trajectory constraints. Both measures are computed solely in
a region of interest which is the myocardium.

The distance to the ground truth transformations, which
measures the accuracy of the registration at each time-point,
is presented in Figs. 6 and 7. The comparison of average
motion tracking errors (0.48 mm) and average intersequence
registration errors when using trajectory constraints (from

Fig. 7. Registration accuracy with electromechanically simulated sequences
- Difference between the computed intersequence anatomical transformations
Sk and the ground truth transformations over time in the myocardium.

1.79 mm to 2.80 mm) confirms the assumption that mo-
tion tracking is more accurately estimated than intersequence
transformations and thus can help for the improvement of
intersequence registration. The basic 3D direct registration
is not a good strategy with the lowest and most variable
registration accuracy over time. The 3D sequential registration
is an improved version of the 3D direct registration where
the intersequence transformations are linked to their temporal
neighbors by using the result of the previous time-point
registration with motion correction to initialize the registration.
The 3D sequential registration performs the best in terms of
registration accuracy after a transient period where 3D MC
+ TC registration performs better. Actually, 3D MC + TC
registration is more accurate than other methods performing
a single registration at a reference time-point (in our case the
ED frame) and reconstructing the spatial transformations at
other time-points using the trajectory constraints (3D + TC
and 3D average + TC). It shows the advantage of using
information from the whole sequence and the advantage of
combining this information in a multichannel framework. For
instance, the lower registration accuracy of the 3D average
+ TC registration shows that the multichannel registration is
a good strategy to combine the information from the whole
sequence. Averaging the images instead of keeping the original
multichannel values yields a blurring of the original informa-
tion and a loss of structural information. On the other hand
the multichannel registration preserves the original intensity
values of each frame in a vector. Only the update vector field
as formulated in Equation 9 is combining the information from
all channels without modifying the original information used
for the registration.

Furthermore, the registration methods using the trajectory
constraints (“3D + TC” and “3D MC + TC” groups) have
more consistent registration accuracy over time than methods
of the “3D” group. Trajectory constraints act as a temporal
regularization of intersequence transformations. The good re-
sults of the 3D MC + TC registration show that taking into
account the information from the whole sequences even in a
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Fig. 8. Deviation from trajectory constraints - The deviation from trajectory
constraints is measured by computing the distance between the transforma-
tions Tk = M ′−1

1,k
◦ Sk ◦M1,k that should be the same if they satisfy the

trajectory constraints. For electromechanically simulated data, we compute it
in the whole myocardium. For real data since the accuracy of the registration
is restricted to the LV/RV endocardial and epicardial surfaces, we also limit
the measure of the deviation to trajectory constraints on these surfaces.

Fig. 9. Trajectory constraints with electromechanically simulated sequences
- The deviation from the trajectory constraints in the myocardium is computed
by measuring the distance between the transformations Tk corresponding to
a given pathway using the intersequence transformation Sk as described in
Fig. 8. A log-scale is used for a better visualization of the methods that by
construction satisfy the trajectory constraints (3D + TC, 3D average + TC,
and 3D MC + TC). The other methods are significantly less consistent with
the motion tracking.

single 3D registration at a given time-point helps to improve
the registration accuracy.

The deviation to the trajectory constraints measures the
consistency between the intersequence anatomical transfor-
mations and the intrasequence motion transformations. This
measure of consistency is computed as described in Fig. 8.
We perform a pairwise comparison of all the transformations
Tk = M ′−1

1,k ◦ Sk ◦M1,k matching the initial reference frames
of the two sequences and obtained through different pathways.
This measure is complementary to the registration accuracy
and different from the registration consistency in loops pre-
sented in [27], [28]. A better estimation of the intersequence

Fig. 10. Harmonic energy with electromechanically simulated sequences -
The harmonic energy quantifies the amount deformation in the transformation.
The 3D MC + TC registration gives a much smoother deformation field at
the initial reference frame where the multichannel registration is computed.

METHOD µdist σdist dTC HE
3D direct 3.08 mm 1.90 mm 1.27 mm 0.21

3D sequential 1.78 mm 1.33 mm 1.76 mm 0.59
3D + TC 2.65 mm 1.93 mm 0.06 mm 0.22

3D average + TC 2.80 mm 1.92 mm 0.07 mm 0.23
3D MC + TC 1.79 mm 0.97 mm 0.04 mm 0.18

Fig. 11. Results summary of the registration of electromechanically simulated
sequences (in myocardium) where µdist is the distance to ground truth
transformations, σdist is the standard deviation of the distance to ground truth
transformations, dTC is the deviation from trajectory constraints, and HE is
the harmonic energy.

transformations does not necessarily mean that the deviations
to the trajectory constraints get lower, since these deviations
are computed with an estimation of the apparent motion, and
not the ground truth motion we are not supposed to have
access to. In Fig. 9, results show that trajectory constraints are
not properly satisfied when computing independently the inter-
sequence transformations at each time-point (“3D” group). In
the “3D + TC” and “3D MC + TC” groups, the deviation to
trajectory constraints is very low. It was expected since by
construction these methods satisfy the trajectory constraints.
Actually these errors we observe correspond to residual errors
due to composition and inversion of transformations in the
reconstruction process. It is important to see that these errors
are very low compared to the deviations observed in the “3D”
group. It shows that these higher deviations are not due to
computational errors when determining the transformations Tk
but are mostly due to low consistency between intersequence
and intrasequence transformations.

We also measure the smoothness of the intersequence trans-
formation with the harmonic energy of their corresponding
deformation fields (the average norm of the Jacobian). As
shown in Fig. 10, the harmonic energy are almost the same
for every method except the 3D sequential whose smoothness
decreases when registration accuracy increases. Thus the 3D
MC + TC seems to be a good compromise between registration
accuracy and smoothness of the resulting deformation field.

Fig. 11 summarizes the performances of each registra-
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tion method in terms of registration accuracy, deviation to
trajectory constraints, and harmonic energy. Similar results
were obtained with noisy simulated sequences except that
the registration accuracy with every method dropped in the
same proportion compared to noise-free simulated sequences.
All these results support the thesis that the 3D MC + TC
registration is the best compromise between accuracy, spatial
smoothness, and temporal consistency with motion tracking.
But even if these results are obtained with physiologically re-
alistic simulated sequences, the different registration methods
still need to be evaluated on experiments with real patient data
as in the following.

C. Registration of Real Sequences

1) Data and Processing: In the following experiments, we
used 4D cardiac CT sequences acquired with contrast agent at
a spatial resolution of about 0.825× 0.825× 1.00 mm3 with
256×256×231 voxels on 5 different patients with pulmonary
stenosis. Since the field of view (FOV) of each acquisition is
different, the sequences were cropped to get similar structures
in the surrounding area of the heart. The images are then
resampled at a spatial resolution of 1.00 × 1.00 × 1.00 mm3

with 174 × 134 × 174 voxels. The temporal acquisition is
synchronized to the ECG from ED over a cardiac cycle with 20
frames. At this temporal resolution, each frame correspond to
an acquisition after 5% of R-R time interval (interval between
two consecutive R peaks of the ECG).

Since sequences were acquired with contrast agent, we can
easily differentiate the blood pool that has higher intensity
values than the myocardium. Unfortunately the SSD similarity
criterion for registration is meaningless in the blood pool
where the intensity values are highly variable in space and
time. Since these artifacts can mislead the registration, we
first decrease the range of intensity values of the blood pool
by linearly transforming the part of the image histogram
(basically the intensities higher than a given threshold). Fur-
thermore there might also be intersequence differences in the
intensity histogram (for instance a sequence of our dataset
had obviously higher intensity values for the myocardium).
To avoid a mismatch of corresponding structures using the
SSD similarity criterion, we perform a matching of the in-
tensity histogram (HistogramMatchingImageFilter from ITK
Software Library [66]) between each corresponding frames of
the reference and target sequences. The histogram matching
is only performed for intersequence registration and not when
performing the motion tracking between frames of the same
sequence whose intensity histogram are stable over time.

Given the standardized acquisition process of 4D cardiac
CT sequences, the global linear temporal registration between
different sequences to match the R-R interval is intrinsically
performed. The nonlinear part of the temporal transformation
is based on blood volume curves (basically obtained with an
intensity threshold followed by a main connected component
extraction and a closing) that defines a global mechanical state
of the heart. Fig. 12 shows the normalized volume curves
of each sequence before and after alignment. The temporal
transformation is obtained with a Piecewise Cubic Hermite

(a) Before Temporal Registration (b) After Temporal Registration

(c) Temporal Transformations

Fig. 12. Normalized blood volume curves (a) before and (b) after temporal
registration in each sequence. The dashed black curve is the reference
sequence. The continuous curves are the target sequences. The temporal
transformations are shown in figure (c).

Interpolating Polynomial (PCHIP) matching specific points of
the curves: the first and last frames that corresponds to the
linear matching of the R-R interval, the null first derivative
of the curve that corresponds to ES, and two null second
derivatives of the curves. The resulting transformations have
been compared to transformations obtained from ground truth
segmentations used in the following to measure the accuracy of
4D registration. Results showed that the error on the temporal
transformation was significantly below the temporal resolution
of 1 frame: an average of 0.26 frame, a standard deviation of
0.19 frame, and a maximum error of 0.59 frame. It shows
that the basic segmentation we proposed is sufficient for the
estimation of the temporal transformation. The result of the
temporal alignment is shown in Fig. 12. Once the temporal
transformation is known, the target sequence is temporally
resampled using a motion-based interpolation [1], as well as
its corresponding intrasequence motion transformations.

For 4D spatial registration, we first choose the reference
frame as the ED frame (first initial frame in each sequence that
correspond to the acquisition at the R peak of the ECG). This
reference frame is used to perform motion tracking with an
updated Lagrangian scheme that provides a temporal causality
: estimation of the motion transformations M1,k registering a
given frame at a time-point tk to the reference frame at the
reference time-point t1 with an initial transformation set as
the motion transformation M1,k−1. Then a reference sequence
is chosen among the dataset on which the other ones are
registered using the methods presented at the beginning of
section V. The intersequence registrations are initialized with
an affine transformation determined by matching the blood
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(a) Endocardium (b) Epicardium

(c) Myocardium (d) Ventricles

Fig. 13. Registration accuracy with real sequences - We measure the accuracy
of the registration by computing a symmetric distance between the reference
and transformed LV/RV endocardial (a) and epicardial (b) surface meshes. We
also measure the accuracy of the registration by computing the volume overlap
of the myocardium (c) and ventricles (d) between the reference sequence and
the transformed target sequence. The improvement of the volume overlap of
the ventricles is low by using 3D TC + MC method. And the volume overlap of
the myocardium is significantly improved. All registration accuracy measures
are an average over all the patients.

volumes previously determined for temporal alignment.
2) Results: Since we do not have access to the ground

truth transformations, we rely on a partial ground truth
information, the segmentations of the myocardium with a
semi-automatic delineation of the LV/RV endocardium and
epicardium. Thanks to the image quality and the high contrast
of intensities between the myocardium and the blood pool,
the endocardium is easily identified in the sequences. We
performed a supervised segmentation of the endocardium in
the reference frame (ED) using a single connected-component
surface isovalue that has been interactively restricted to be
below the valve plane and visually checked. On the other hand,
the epicardium is difficult to define solely in terms of intensity
features due to the low intensity gradient between the heart
and neighboring organs in some areas. The segmentation of
the epicardium is performed interactively by manually adding
landmarks that lie on the epicardial surface interpolated with
radial basis functions. These segmentations in the reference
frame are then propagated over the whole sequence with
motion transformations.

To measure the accuracy of the registration, we first com-
pute in each frame a symmetric distance between the reference
surface transformed with Sk and the target surfaces. Results
show that the 3D MC + TC registration performs better than
others (see Figs. 14, 13, and 18) with an improvement of
about 11% compared to the second best method and about

17% compared to the 3D direct method. For every method,
registration accuracy is locally lower in areas where structures
are more complex and where there is low intensity gradient
between neighboring organs for the epicardium. To cope
with this low intensity gradient, an additional information is
necessary to guide the registration. For instance, one could
think about segmenting organs surrounding the myocardium
before registration and use it to constrain the registration. For
instance, the RV apex is a narrow region where the complex
structures of trabeculæ that are highly variable between pa-
tients make the registration more difficult. The 3D sequential
registration does not perform as well with real data as with
electromechanically simulated data but still improves the 3D
direct method. It probably shows some limitations of simulated
data which are not as complex as real data. For instance,
both simulated sequences were built from the same reference
intensity image making the registration task easier. For real
data, we observe that the group of “3D” methods are clearly
not as good as the others. It shows the limitations of the
3D pairwise registration of scalar-valued images for large
intersubject deformations, especially when getting closer to
the ES frame. When using the information from the motion
tracking, which is easier to obtain with more accuracy than
intersubject anatomical registration, the registration is more
consistent over time. The use of the trajectory constraints acts
as a temporal regularization of the intersequence transforma-
tions with a stronger and more realistic a priori regularization
between intersequence transformations than a basic smoothing
that could not handle high motion speed and acceleration
between frames. We also computed the volume overlap of
the ventricles and the myocardium between the reference and
transformed target sequences [30] to evaluate the registration
accuracy as shown in Fig. 13. These volume overlaps are
improved when using motion tracking information and even
more when using multichannel registration.

As described in Fig. 8, the deviation to trajectory constraints
is measured comparing the reference endocardial surface de-
formed with the transformations Tk = M ′−1

1,k ◦Sk ◦M1,k. The
transformation Tk corresponds to the pathway from ED of the
reference sequence to ED of the target sequence using the
intersequence transformation Sk. When trajectory constraints
are satisfied, all transformations Tk should be the same and
thus all transformed endocardial surfaces should match. The
deviation to trajectory constraints quantifies the consistency
between motion and intersequence transformations. The use of
trajectory constraints in the registration process clearly shows
the improvement compared to methods computing indepen-
dently the intersequence transformations at each frame (see
Figs. 15 and 16). In this way, the trajectory constraints act as
a temporal regularization of the intersequence transformations.
This advantage is particularly significant in areas of high
curvature of the structures (e.g. the right ventricular apex).
As mentioned previously, this high curvature can explain the
locally lower registration accuracy but mostly the temporal
change of this curvature due to cardiac motion can explain
the discrepancies of registration accuracy over time.

To measure the quality of the registration, we also compared
the spatial smoothness of the resulting deformation fields. To
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Fig. 14. Registration accuracy with real sequences - We illustrate the accuracy of the registration by showing the transformed LV/RV endocardial and
epicardial surfaces with the transformation fields computed with different methods. We only show one method for each group for a better visualization of the
differences. The color codes are: 3D direct in red, 3D + TC in yellow, 3D MC + TC in blue, and the ground truth in green. The differences are not apparent
everywhere but the 3D MC + TC provides an overall better registration. Lower registration accuracy appears in areas where structures have high curvature
for the endocardium and in areas where there is a low intensity gradient between the heart and neighboring organs for epicardium.

(a) Without trajectory constraints (3D direct)

(b) With trajectory constraints (3D MC + TC)

Fig. 15. Trajectory constraints with real sequences - We illustrate the deviation from the trajectory constraints with the transformation of the LV/RV endocardial
and epicardial surfaces through different pathways in case of 3D direct registration (first row in red) and in case of 3D MC + TC registration (second row
in blue). The ground truth segmentations are shown in green. When trajectory constraints are satisfied all the transformed contours should perfectly overlay
to form a single contour. When the trajectory constraints are not used in the registration process (first row), it is obvious that the transformed contours have
high discrepancies showing that the intersequence transformations are not consistent with the motion tracking. On the other hand, when trajectory constraints
are used in the registration process (second row), we barely see the differences between transformed contours. The trajectory constraints are satisfied by
construction as expected in theory. But it also shows that in practice numerical errors from composition and inversions of transformations are not significant.
Showing the ground truth contour in green, we can visualize at the same time the quality of the registration. When trajectory constraints are not used, high
discrepancies in quality of registration show that the quality of registration is not consistent over time.

quantify the smoothness of the resulting deformation field, we
compute at each time-point their harmonic energy. The lowest
is the harmonic energy, the smoothest is the deformation
field and the more likely it is to be a realistic solution. As
shown in Fig. 17, the 3D MC + TC method provides the
smoothest transformations. Combining the information coming
from different time-points directly on the update vector field
as formulated in Equation 9 provides intrinsically a smoother
deformation field. On the contrary, when using trajectory
constraints with 3D scalar-valued registration (“3D + TC”
group), the resulting deformation fields are sharper than the
“3D” group.

In terms of computation times, different methods have pretty

similar computation times except for the 3D sequential method
that is slower than others (cf. Fig. 18). In addition to temporal
alignment (mostly motion tracking in target sequence) and spa-
tial registration (scalar-valued or vector-valued), computation
times also take into account the time for motion tracking in ref-
erence sequence, inversion and reconstruction of intersequence
transformations with trajectory constraints when necessary.
The advantage of using the trajectory constraints is that motion
tracking is already available for the reference sequence if
willing to compare motion between the two sequences.

Finally, results with real data also support the thesis that the
3D MC + TC method is a good compromise between regis-
tration accuracy, temporal consistency with motion tracking,



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, NOVEMBER 2009 15

(a) Endocardium (b) Epicardium

Fig. 16. Trajectory constraints with real sequences - The deviation from the
trajectory constraints is computed with a distance between transformed seg-
mentations through different pathways as shown in Fig. 8. We compare all the
transformed segmentations to each other. We plot this deviation with respect to
the distance in frames between the two intersequence transformations used by
a given pathway. A log-scale is used for a better visualization of the methods
that by construction satisfy the trajectory constraints (3D + TC, 3D average
+ TC, and 3D MC + TC). The other methods are less consistent with the
motion tracking as also shown in Fig. 15 with the transformed segmentations.

Fig. 17. Harmonic energy with real sequences - The harmonic energy
quantifies the amount of deformation in the transformation. A method that
gives similar accuracy results with a smoother transformation are more
likely to be realistic. The 3D MC + TC registration provides the smoothest
transformation. Whereas the 3D + TC and 3D average + TC do not improve
and even increase the harmonic energy compared to 3D direct or 3D sequential
methods.

spatial smoothness, and computation time.

D. Ventricular Remodeling Analysis after Therapy

We present here an example of potential clinical application
where 4D spatiotemporal registration could help in analyz-
ing the remodeling process of the heart after therapy. Pre-
and post-operative sequences are compared in case of atrial
fibrillation (AF) before radiofrequency ablation (RFA) and
3 months after. AF is the most common sustained cardiac
arrhythmia where electrical impulses from sinoatrial nodes are
overwhelmed by disorganized electrical impulses coming from
the atria and pulmonary veins. The conduction of irregular
impulses to the ventricles affects the rhythm of ventricular
contraction and thus the cardiac mechanical function. It leads
to hypertension, left atrial enlargement, and left ventricular
hypertrophy. In case of hypertrophy, the contraction is faster
and more powerful to cope with the increase of pressure but
it has a limited range of motion with a difficulty to relax
properly. RFA is a common intervention for AF where the
correction of the electrical activity in the left atrium is related

METHOD VO dTC HE Time
3D direct 60.6 % 3.82 mm 0.96 56 min

3D sequential 65.9 % 4.07 mm 0.88 86 min
3D + TC 63.1 % 0.12 mm 0.99 47 min

3D average + TC 59.9 % 0.12 mm 1.05 49 min
3D MC + TC 71.3 % 0.05 mm 0.79 59 min

(a) Myocardium

METHOD µdist σdist dTC

3D direct 2.45 mm 1.79 mm 4.03 mm
3D sequential 2.31 mm 1.57 mm 4.12 mm

3D + TC 2.20 mm 1.55 mm 0.13 mm
3D average + TC 2.20 mm 1.56 mm 0.12 mm

3D MC + TC 1.88 mm 1.33 mm 0.06 mm
(b) Endocardium

METHOD µdist σdist dTC

3D direct 3.52 mm 2.36 mm 3.60 mm
3D sequential 3.30 mm 2.16 mm 4.02 mm

3D + TC 3.41 mm 2.27 mm 0.11 mm
3D average + TC 3.46 mm 2.34 mm 0.12 mm

3D MC + TC 3.10 mm 2.08 mm 0.04 mm
(c) Epicardium

Fig. 18. Results summary of the registration of real sequences where µdist
is the distance to ground truth transformations, σdist is the standard deviation
of the distance to ground truth transformations, dTC is the deviation from
trajectory constraints, HE is the harmonic energy, VO is the volume overlap,
and Time is the computation time. Computation times were performed with
a PC with an AMD Opteron 246 @ 2GHz processor with 12Gb RAM.
In these computation times are taken into account the time to perform the
intersequence registration, to compute motion tracking, to align temporally
the sequences, and to reconstruct of transformations with trajectory constraints
when necessary.

to the regression of left ventricular hypertrophy [67].
Common indices of cardiac function are not always suf-

ficient to explain remodeling processes of the heart after
therapy. We propose to use the 4D spatiotemporal registration
framework to refine the analysis of the regression of left
ventricular hypertrophy after therapy and its impact on cardiac
function.

We used two 4D cardiac CT sequences acquired with
contrast agent at different spatial and temporal resolutions.
The pre-operative sequence is acquired at a spatial resolution
of 0.51 × 0.51 × 1.00 mm3 with 512 × 512 × 249 voxels
and a temporal resolution of 10 frames for a cardiac cycle.
The post-operative sequence is acquired at a spatial resolution
of 0.88 × 0.88 × 1.00 mm3 with 256 × 256 × 182 voxels
and a temporal resolution of 20 frames for a cardiac cy-
cle. Both sequences are resampled at a spatial resolution of
1.00× 1.00× 1.00 mm3 with 226× 226× 182 voxels and a
temporal resolution of 10 frames for a cardiac cycle.

The post-operative sequence is spatiotemporally registered
to the pre-operative sequence under trajectory constraints with
MDD as described in Section V-C. First of all, the temporal
transformation (computed from the ECG and the blood volume
curves) shows a lengthening of the systolic phase from 20% of
R-R interval before therapy to a more standard value of 35%
after therapy (cf. Fig. 19). Then we estimate the intersequence
transformation at each frame of the cardiac cycle that matches
cardiac anatomies at corresponding physiological states. As
one of the possible measurement of the impact of anatomical
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(a) Temporal transformation (b) Remodeling strains over a cardiac cycle of
pre-operative sequence

(c) Average radial remodeling strain over a
cardiac cycle (bull’s eye view)

Fig. 19. (a) Temporal transformation between pre- and post-operative sequences showing a modification of cardiac dynamic with a lengthening of systolic
phase after therapy. - (b) Remodeling strains in radial, circumferential, and longitudinal directions of the prolate coordinate system over a cardiac cycle with
temporal alignment of the sequences. Negative strain values mean that contraction occurs after therapy (for instance wall thickness decreases after intervention
when radial strain is negative). - (c) Average radial remodeling strain over a cardiac cycle in AHA zones showing regional wall thickness differences due to
hypertrophy of left ventricular myocardium.

remodeling on the LV function, we propose to analyze these
transformations between pre- and post-operative sequences.
We introduce here the new concept of remodeling strain
defined as the Lagrangian finite strain tensor Rk is computed
from the intersequence transformations Sk = Id + Sk:

Rk = 1/2 (∇Sk +∇S>k +∇S>k∇Sk)

The projection of this strain tensor in the prolate coordinate
system provides the radial, circumferential and longitudinal
remodeling strains (respectively Rrad

k , Rcirc
k and Rlong

k ) at each
frame. The radial remodeling strain can be interpreted as
intersequence wall thickness change that for instance occurs in
case of hypertrophy. Negative radial remodeling strain means
a decrease of wall thickness.

As shown in Fig. 19, the average radial remodeling strain
between pre- and post-operative sequences is about −12%
showing the anatomical remodeling effect of RFA with a
global regression of hypertrophy. The temporal variation of
radial remodeling strain over the cardiac cycle shows that
intersequence wall thickness change is more important at ED
than at ES. This higher radial remodeling strain at ED (about
−20%) can be explained by the combination of two phenom-
ena: the regression of hypertrophy (anatomical remodeling)
and the improvement of the relaxation stage during diastole
(functional remodeling). A bull’s eye view of the average
regional radial strain in each AHA zone presented in Fig. 19
shows a higher regression of left ventricular hypertrophy in
the anterior and lateral zones.

This example shows the potential of 4D spatiotemporal reg-
istration to analyze the impact of therapy on cardiac anatomy
and function by estimating the intersequence transformations
over time. Further studies on remodeling strains with larger
databases would help to better understand the anatomical and
functional impact of remodeling processes.

VI. CONCLUSION AND PERSPECTIVES

The spatiotemporal registration of different 4D sequences
(or any time-series images such as longitudinal studies) is
a complex registration problem whose solution should match
corresponding time-points and trajectories of physical points.
In this article, we presented a “divide and conquer” method
that first decouples the 4D temporal and spatial registrations.
The temporal transformation is defined as matching corre-
sponding physiological states and the spatial transformation is
defined as matching corresponding anatomical points at each
corresponding time-point preserving the homology between
points over time. Second, this “divide and conquer” method
decomposes the 4D spatial registration problem into a single
3D intersequence anatomical registration and intrasequence
motion tracking. First, the newly proposed method has better
accuracy than other standard methods. Our registration algo-
rithm showed to be a good solution to solve the 3D intersubject
registration by properly combining information from the whole
sequence to obtain a more accurate registration and smoother
spatial regularization at the same time. Second, it satisfies by
construction the trajectory constraints and thus preserves the
homology between physical points over time. The use of the
trajectory constraints can be seen as a temporal regularization
consistent with the motion occurring in each sequence as
opposed to standard regularization methods (for instance, B-
Spline or Gaussian smoothing).

Since in this framework the temporal transformation is
not solely image-driven (e.g. using electrophysiology like the
ECG), we stated that the temporal transformation matching
corresponding physiological events could be determined in-
dependently from the spatial transformations. Purely image-
driven joint spatial and temporal registrations could also have
been considered. But as shown in Perperidis et al. [30],
this joint registration increases a lot the computation time.
Moreover, the interpretation of the temporal transformation in
terms of physiological events is not apparent. But on the other
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hand, joint spatial and temporal registrations could still be
useful when no physiological event has been clearly identified
for temporal registration.

This framework also rely on the estimation of the motion
transformations used with the trajectory constraints to simplify
the registration. Any improvement of the motion tracking
algorithm, for instance by including biomechanical constraints
such as near incompressibility, would improve the estimation
of the intersequence anatomical transformations. Furthermore,
we use trajectory constraints as hard-constraints. One could
think of relaxing these hard-constraints by including uncer-
tainties of motion tracking.

The 4D registration under trajectory constraints with Multi-
channel Diffeomorphic Demons showed promising results on
both real patient data and synthetic data simulated with a
physiologically realistic electromechanical cardiac model. A
more thorough validation is still necessary on a larger database
of patients and with a specific clinical application. Neverthe-
less our study already showed the new possibilities offered
by the 4D spatiotemporal registration method to compare two
time-series of cardiac images of different patients (intersubject
comparison of anatomy and function) or of the same patient
at different times (intrasubject comparison such as before and
after therapy, or at rest and during exercise).
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