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Abstract

In this thesis, we addressed the problem of comparing cardiac anatomy and function from
medical images. The �rst part focuses on cardiac anatomy with a statistical study of cardiac
�ber architecture from di�usion tensor magnetic resonance imaging (DT-MRI). The second
part focuses on a joint comparison of cardiac anatomy and function with the non-linear
spatio-temporal registration of two sequences of 4D CT sequences of di�erent patients or
of the same patient at di�erent times.

Cardiac muscle �bers are locally bound to form a plane called the laminar sheets. More-
over, the orientation of �bers and laminar sheets is spatially variable in the myocardium.
This complex organisation of cardiac muscle �bers has an important in the electromechan-
ical behaviour of the heart, and thus in cardiac function. We performed a study of this car-
diac �ber architecture from DT-MRI. To achieve it, we proposed novel computational tools
for the statistical analysis of a population of di�usion tensors based on the Log-Euclidean
metric. The novelty of this approach lies in a statistical analysis performed directly on dif-
fusion tensors (symmetric de�nite positive matrices) by analyzing their covariance matrix
giving the variability of �ber and laminar sheet directions among the population.

We applied this computational framework to a dataset of canine DT-MRI acquired
ex vivo not only providing an average model (or atlas) of cardiac �ber architecture but
also revealing a consistency of �ber orientation and a higher variability of laminar sheet
orientations. Then, this atlas of canine hearts is compared to a human heart and a synthetic
model currently used for electromechanical simulations or image analysis. The human heart
had similarities in �ber orientation whereas discrepancies in laminar sheet orientation. The
synthetic model was too simple to describe in details to describe properly the complexity
of �ber architecture.

The acquisition of time-series of cardiac images gives the opportunity to observe car-
diac motion and thus its function in addition to its anatomy. In order to compare this
cardiac function, we proposed a novel non-linear spatio-temporal registration algorithm of
sequences of images. The spatio-temporal registration is decoupled into a temporal registra-
tion that aims at mapping corresponding physiological events and into a spatial registration
that aims at mapping corresponding anatomical points ensuring a consistency with their
respective motion. This consistency is ensured by de�ning trajectory constraints linking
intra-sequence transformations describing cardiac motion to inter-sequence transformations
describing anatomical di�erences over time. Under these trajectory constraints, the 4D spa-
tial registration problem can be simpli�ed to 3D multichannel registration problem solved
using a new version of the Di�eomorphic Demons called the Multichannel Di�eomorphic
Demons.

This new registration method is applied to the inter-subject registration of 4D cardiac
CT sequences for evaluation. Its comparison to other possible methods showed that it was
the best compromise between accuracy, spatial and temporal regularization, and computa-
tion times. A possible clinical application of the spatiotemporal nonlinear registration is
proposed by comparing cardiac anatomy and function before and after therapy by studying
the remodeling strains over a cardiac cycle.





Résumé

Ce travail de thèse s'est consacré à la comparaison de l'anatomie et de la fonction cardiaques
à partir d'images médicales. Une première partie se concentre sur l'anatomie cardiaque avec
une étude statistique de l'architecture des �bres musculaires du c÷ur à partir d'IRM de
tenseur de di�usion. Dans la deuxième partie est proposée une comparaison la fonction
cardiaque de di�érents patients ou du même patient a di�érents instants par le recalage
spatiotemporel de séquences 4D CT.

La complexe organisation des �bres musculaires cardiaques a un rôle très important
dans le comportement électrique et mécanique du c÷ur. Pour étudier cette architecture des
�bres, nous avons proposé de nouveaux outils algorithmiques d'analyse statistique d'IRM
de tenseurs de di�usion. La nouveauté de cette approche est de réaliser cette analyse
statistique directement sur les tenseurs de di�usion l`a où la plupart des études statistiques
se font sur des vecteurs ou angles d'orientation décrivant les directions des �bres et des
feuillets. La variabilité de l'orientation des �bres et des feuillets est ensuite directement
donnée par la matrice de covariance des tenseurs de di�usion de laquelle sont extraites les
variabilités des vecteurs propres.

L'application de ces outils a une base de données d'IRM de tenseur de di�usion de
c÷urs de chiens acquis ex vivo a permis d'obtenir un atlas de l'architecture des �bres mais
aussi de révééler une cohérence de l'orientation des �bres et une plus grande variabilité
de l'orientation des feuillets. Ensuite, nous avons comparé l'atlas de c÷urs de chien à un
c÷ur humain et un modèle synthétique couramment utilisé pour des simulations électromé-
caniques ou l'analyse d'images cardiaques. Le c÷ur humain s'est révélé plus proche des
c÷urs de chien au niveau de l'orientation des �bres que de celle des feuillets. Le modèle
synthétique quant à lui s'est montré trop simple pour décrire en détails la complexité de
l'architecture des �bres.

L'acquisition de séquences d'images cardiaques permet d'observer le mouvement car-
diaque et donc sa fonction. Nous avons proposé un nouvel algorithme de recalage non-
linéaire spatiotemporel de séquences d'images qui permet de comparer cette fonction car-
diaque. Le recalage temporel assure la mise en correspondance d'instants physiologiques
similaires. Le recalage spatial quant à lui doit assure une cohérence entre le mouvement
des points physiques intra-séquence et leur mise en correspondance inter-séquence. Cette
cohérence est assurée par les contraintes de trajectoires liant les transformations intra-
séquences décrivant le mouvement cardiaque aux transformations inter-séquences décrivant
les di�érences anatomiques au cours du temps. Sous ces contraintes de trajectoires, le re-
calage spatial 4D est simpli�é en un recalage multicanal 3D résolu avec une nouvelle version
des Demons Di�eomorphes Multicanaux.

Cette méthode de recalage spatiotemporel est appliquée au recalage inter-sujet de
séquences 4D CT pour évaluation. Comparée a d'autres techniques existantes, cette tech-
nique de recalage s'est révélée le meilleur compromis en terme de précision, de régularité
spatiale et temporelle, mais aussi de temps de calcul. Un exemple d'application possible
du recalage spatiotemporal est proposé avec la comparaison de l'anatomie et de la fonction
cardiaques avant et après thérapie.





�Anyone whose goal is 'something higher' must expect someday to
su�er vertigo. What is vertigo? Fear of falling? No, vertigo is something
other than fear of falling. It is the voice of the emptiness below us which
tempts and lures us, it is the desire to fall, against which, terri�ed, we
defend ourselves.� - Milan Kundera
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Chapter 1

Introduction

Contents
1.1 Importance of Cardiovascular Diseases . . . . . . . . . . . . 3
1.2 Towards a Better Understanding of the Heart . . . . . . . . 5
1.3 Overview and Contributions . . . . . . . . . . . . . . . . . . . 5

The research work presented in this thesis was done in the Asclepios Team at
INRIA and in collaboration with Siemens that funded this PhD. This close collab-
oration was realized by sharing knowledge, computational tools, and data through
a couple of stays (for a total of about 9 months) in the Interventional Imaging
Group of the Imaging and Visualization Department at Siemens Corporate Re-
search (Princeton, NJ, USA). This research work was also done in the context of
CardioSense3D 1, a 4-year Large Initiative Action launched in 2005 and funded by
the French national research center INRIA which focused on the electromechanical
modeling of the heart.

The main purpose of this thesis was to compare cardiac anatomy and function
with the computational analysis of medical images. The �rst research project fo-
cused on a speci�c aspect of cardiac anatomy, the cardiac �bre architecture, that
has an important role in the electrical and mechanical function of the heart. This
project lead to a collaboration with the National Institute of Health (NIH) and
Johns Hopkins University (JHU) through the person of Professor Elliot McVeigh
for provision of ex vivo DT-MRI data of canine and human hearts. The second
research project focused on the joint comparison of cardiac anatomy and function
with the analysis of 4D cardiac CT sequences provided by Dr Harold Litt, a clinical
research collaborator of Siemens Corporate Research from the Hospital of University
of Pennsylvania.

1.1 Importance of Cardiovascular Diseases
Cardiovascular diseases are a large group of pathologies of the heart and blood vessels
including hypertension, coronary heart disease, cerebrovascular disease, peripheral
vascular disease, rheumatic heart disease, congenital heart disease, heart failure,

1more details at http://www-sop.inria.fr/CardioSense3D
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Figure 1.1: Cardiovascular diseases are the largest cause of death over the world in 2002
(from �The world health report 2004 - changing history� of World Health Organization).

and cardiomyopathies. The most frequent cardiovascular causes of death are heart
attacks due to coronary heart diseases and strokes due to cerebrovascular diseases.

Cardiovascular diseases are the largest cause of death over the world and are
projected to remain so. Nearly 17 million people died from cardiovascular disease
in 2002, representing 30% of all deaths (see Figure 1.1). If current trends continue,
World Health Organization estimates that more than 20 million people will die
from cardiovascular diseases by 2020, representing 31.5% of all deaths. In developed
countries such as Europe, mortality due to cardiovascular diseases is even higher
representing nearly 48% of all deaths with over 4.3 million deaths per year. Car-
diovascular diseases are not only a cause of mortality, but also a cause of morbidity
(diseased state, disability, or poor health) that is more di�cult to measure. The
main measure of the burden of diseases is the Disability Adjusted Life Year (DALY)
combining years of life lost due to premature death and years of healthy life lost
due to disability. In Europe, 23% of all DALYs are due to cardiovascular diseases
and only 10% over the world. For example, the American Heart Association (AHA)
estimated in 2004 that about 60 million people in the United States (nearly 23% of
the population) have a form of cardiovascular disease.

The high incidence of cardiovascular diseases is a major �nancial burden. For
instance, in European Union (EU), the cost of cardiovascular diseases for the health-
care system was just under 110 billion euros in 2006. This accounts for 10% of the
total health expenditure in the EU. And the overall cost for the EU economy is
estimated to 192 billion euros a year.

Due to the social and economical impacts of cardiovascular diseases, their preven-
tion (prophylaxis), detection and identi�cation (diagnosis), prediction of evolution,
and therapy are important issues in developed countries.
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1.2 Towards a Better Understanding of the Heart
Not only at macroscopic level with shape but also at microscopic level with �bre
structure, the cardiac anatomy has an important role in the electromechanical be-
havior of the heart, and thus in cardiac function. For instance, an alteration of
cardiac anatomy due to pathologies or therapy, called remodeling, a�ects cardiac
function. Conversely, an alteration of cardiac function can initiate a remodeling
process to restore it. Studying both cardiac anatomy and function is essential for a
better understanding of cardiovascular system and diseases.

Including a wide range of di�erent modalities, cardiovascular imaging non-
invasively provides information about cardiac anatomy and function whose anal-
ysis relies on more and more elaborated image processing tools. This analysis is
not only useful for a better general understanding of the heart, from which can be
built physiological [Hunter 2003, Ayache 2004, Sachse 2004, Smith 2004] and patho-
physiological models [Sermesant 2005, Reumann 2009], but also for clinical applica-
tions, such as diagnosis or guidance of therapies when planning (use of pre-operative
data), monitoring (fusion of pre- and per-operative data) and assessing (comparison
of pre- and post-operative data) interventions.

Moreover, the fusion of comprehensive generic models and patient-speci�c car-
diac imaging can provide powerful quantitative predictive tools for clinicians to
improve diagnosis, prediction, and therapy of cardiovascular diseases, such as in ra-
diofrequency ablation (RFA) and cardiac resynchronization therapy (CRT). In RFA,
cardiac tissue is burnt to correct pathological electrical pathways in the heart. An
electrophysiology (EP) study measures the cardiac electrical potentials interpreted
by the cardiologist to locate the ablation zones. This interpretation requiring signif-
icant training depends on the cardiologist experience. In CRT, a pacemaker is im-
planted to the heart to correct the asynchronous ventricular contraction. The choice
of the number, positions and delays between electrodes makes this intervention so
di�cult that shows no improvement in 30% of them. A personalized electrome-
chanical model of the heart can help to predict results of both therapies and thus
to customize and optimize them [Sermesant 2005, Sermesant 2008, Reumann 2007,
Plank 2008, Romero 2008, Reumann 2008].

1.3 Overview and Contributions
The research work presented in this thesis deals with the comparison of cardiac
anatomy and function by proposing novel medical image analysis tools. An overview
of the thesis follows with the main contributions highlighted in bold characters.

Chapter 2 �From Microstructure to Function of the Heart� describes the car-
diovascular system and cardiac imaging techniques that give access to
information about the heart at the di�erent scales of microstructure, anatomy
and function.
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An analysis of the cardiac anatomy, more speci�cally the cardiac �bre ar-
chitecture, is presented in the next two chapters composing the part II of the
thesis, called �Comparison of Cardiac Fibre Architecture from DT-MRI�.

Chapter 3 �Statistical Analysis of Cardiac DT-MRI � describes a computational
framework to build a statistical atlas of cardiac �bre architecture
from di�usion tensor MRI. This framework is based on a groupwise reg-
istration of cardiac DT-MRIs whose reorientation is necessary when warping
the space to a reference geometry. Insights on di�erences between the
most common reorientation strategies of cardiac di�usion tensors
are detailed. A complete analysis of the statistical atlas of DT-MRI as car-
diac �bre architecture variability is proposed with a novel analysis of the
covariance matrix of di�usion tensors decomposed into eigenvalues
and eigenvectors variabilities.

Chapter 4 �A Canine Cardiac DT-MRI Atlas� presents the results of the con-
struction of a statistical atlas of cardiac �bre architecture from nine canine
ex vivo cardiac DT-MRIs. This atlas is the �rst average description of
the full cardiac �bre architecture built from a population of hearts
and associated to its intra-species variability. Thanks to the rare
access to a single human heart acquisition of DT-MRI, we performed a �rst
quantitative inter-species comparison between the canine atlas and
a human heart con�rming inter-species consistency of �bre orientations
and discrepancies of laminar sheet orientations. We also compared the
atlas to synthetic models of cardiac �bre architecture showing locally
oversimpli�ed descriptions of cardiac �bre orientations.

An analysis of cardiac anatomy and function with 4D time-series of images
is presented in the next two chapters composing part III of the thesis, called
�Comparison of Cardiac Function and Anatomy from 4D CT�.

Chapter 5 �Spatio-Temporal Registration of Time-Series of Images� presents a
general setting for the spatio-temporal registration of 4D time-series
of images decoupled into temporal and spatial registration. The temporal
registration aims at mapping corresponding physiological events. The spatial
registration aims at mapping trajectories of homologous physical points. This
trajectory mapping yields the de�nition of speci�c constraints, called
the trajectory constraints (TC), that simplify the 4D spatial regis-
tration problem into a multichannel 3D registration problem. To
solve the multichannel 3D registration problem, we propose a new extended
version of 3D Di�eomorphic Demons (DD) to vector-valued images,
called Multichannel Di�eomorphic Demons (MDD).
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Chapter 6 �Registration of 4D Cardiac CT Sequences: Evaluation and Applica-
tion� presents an evaluation of the proposed 4D registration method
under trajectory constraints (TC) with Multichannel Di�eomorphic
Demons (MDD). This evaluation is performed by comparing the proposed
method to other standard methods in the context of inter-subject non-linear
registration of 4D cardiac CT sequences with real patient data and synthetic
data simulated from a physiologically realistic electromechanical
model. Results show that the trajectory constraints act as a temporal
regularization consistent with motion whereas the multichannel registration
acts as a spatial regularization. As an example of new possible clinical
application of 4D spatio-temporal registration, we measure the e�ects
of remodeling after radiofrequency ablation (RFA) in atrial �brilla-
tion (AF) by comparing cardiac anatomy and function with the analysis of
inter-sequence spatial transformations over time between pre- and
post-operative 4D CT sequences.

Chapter 7 �Conclusion and Perspectives� summarizes the contributions and re-
sults followed by the perspectives of the research work presented in this thesis.
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2.1 At the Heart of the Cardiovascular System
The cardiovascular system is composed of the heart, blood, and the blood vessels (di-
vided into veins that carry blood to the heart at low pressure and arteries that carry
away blood from the heart at high pressure). The cardiovascular system ensures the
circulation of blood throughout the body to maintain homeostasis delivering oxy-
gen and nutrients to the cells and removing wastes. The circulation of blood in the
cardiovascular system can be divided into several steps as follows (see Figure 2.1):

1. deoxygenated blood is pumped from the heart into the lungs through pul-
monary arteries;

2. in the lungs, the blood is reoxygenated;

3. oxygenated blood is carried back to the heart through the pulmonary veins;

4. oxygenated blood is then pumped from the heart to the many organs and
tissues of the body through aorta and arteries;

5. in the tissues, the arteries narrow to capillaries where blood is deoxygenated;

6. the capillaries widen into the veins, which carry the deoxygenated blood back
to the heart.
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Figure 2.1: Schematic diagram of the blood �ow throughout the cardiovascular system.
The blood �ow can be followed by the arrows on the diagram. Oxygenated blood is in red,
while deoxygenated is in blue (from http://academic.kellogg.edu/).

The heart has the key active role of pumping the blood to make it �ow in the car-
diovascular system. In this chapter, we describe how the cardiac function is achieved
at di�erent levels of observation with di�erent phenomenologies (mechanical, elec-
trical, chemical). At the anatomical level (see Section 2.1.1), the heart is a muscular
organ acting as a mechanical pump that distributes the blood in the body through
the vascular network. Cardiac mechanics is achieved by the contraction of cardiac
muscle �bres. This contraction is involuntary activated by an electrical impulse trig-
gered by cells of the cardiac conduction system. The rate of triggering is regulated
by the autonomic nervous system. This electrical impulse propagates in the heart
�rst through the conduction system and then through the rest of the cardiac mus-
cles. The propagation of the electrical impulse and the mechanical contraction are
mainly along cardiac muscle �bres. Thus their spatial organization and orientation
have an impact on the cardiac function (see Section 2.1.3). At the cellular level (see
Section 2.1.2), cardiac muscle �bres consist of highly aligned cardiomyocytes con-
taining myo�brils oriented parallel to the �bre axis. When the membrane potential
of cardiomyocytes is modi�ed, a ionic exchange occurs to command the contraction
of the cells.
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Figure 2.2: Anatomy of the heart and blood �ow that can be followed by the
arrows on the diagram, oxygenated blood in red and deoxygenated in blue (from
http://www.texasheart.org/).

2.1.1 Cardiac Anatomy
The heart is a muscular cone-shaped organ about the size of a clenched �st of the
same person. It is located in the upper body (chest area) between the lungs. The
basic anatomy of the heart (illustrated in Figure 2.2) may be described as follows:

The Cardiac Chambres The heart is divided into right and left sections sep-
arated by the interventricular septum. The right section pumps the deoxygenated
blood and the left section pumps the oxygenated blood. Each of these right and left
sections is also divided into upper and lower chambres known as atria (one is called
an atrium) and ventricles, respectively. The four main chambres of the heart are
therefore:

• the right atrium (RA), pumps blood into the right ventricle;

• the right ventricle (RV), pumps blood into the pulmonary artery;

• the left atrium (LA), pumps blood into the left ventricle;

• the left ventricle (LV), pumps blood into the aorta.



12 Chapter 2. From Microstructure to Function of the Heart

Figure 2.3: Layers of the myocardium (adapted from http://catalog.nucleusinc.com and
http://www.ncbi.nlm.nih.gov/).

The Cardiac Valves To ensure the blood to circulate always in the same direc-
tion, the heart includes a series of valves (see Figure 2.2):

• the tricuspid valve separates the right atrium from the right ventricle;

• the pulmonary valve separates the right ventricle from the pulmonary artery;

• the mitral valve (also known as the bicuspid valve) separates the left atrium
from the left ventricle;

• the aortic valve separates the right ventricle from the aorta.

The pulmonary and aortic valves passively open and close with pressure di�er-
ence between the ventricles and the arteries. The tricuspid and mitral valves are
actively controlled by papillary muscles to avoid back�ow of blood in atria when
blood pressure increases in the contracting ventricles.

The Cardiac Layers The heart has three layers of tissue (see Figure 2.3):

• the endocardium, the inner layer of the heart wall tissue that make a barrier be-
tween blood and cardiac muscle, and whose cells are similar to the endothelial
cells in blood vessels;

• themyocardium, the middle layer of the heart wall composed of cardiac muscle;

• the epicardium, the outer layer of the heart wall composed of connective tis-
sues.
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Figure 2.4: Heart cut away showing the cardiac conduction system.

Moreover, the heart is surrounded by a double-walled sac known as the peri-
cardium (see Figure 2.3). The pericardium consists of two parts: a strong external
layer composed of tough �brous tissue, called the �brous pericardium, and an inter-
nal double-layered sac, called the serous pericardium. Protecting the heart against
sudden over�lling, the �brous pericardium surrounds the roots of the great vessels
and is attached by ligaments to the spinal column, the diaphragm, and other parts
of the body. The two layers of serous pericardium are the parietal pericardium and
the visceral pericardium. The parietal pericardium is fused to the internal surface of
the �brous pericardium. The visceral pericardium is re�ected onto the heart where
it forms the epicardium. The potential space between the parietal and visceral lay-
ers of the serous pericardium is called the pericardial cavity. This cavity contains
a thin �lm of lubricant �uid, called the pericardial �uid, that enables the heart to
move and beat in a frictionless environment.

The Cardiac Conduction System Electrical impulses in the heart originate in
specialized cardiac muscle cells, known as autorhythmic cells. These self-excitable
cells are able to generate an action potential without external stimulation by nerve
cells. Solely the rate of self-excitability is regulated by the autonomous nervous
system depending on needs of the body. The autorhythmic cells serve as a pacemaker
to initiate the cardiac cycle and provide a conduction system to coordinate the
contraction of muscle cells throughout the heart. The cardiac conduction system
can be divided into �ve parts enumerated in the direction of propagation of the
electrical impulse (see Figure 2.4):

1. the sino-atrial node (SA), located in the upper wall of the right atrium, initi-
ates the cardiac cycle by generating an electrical impulse that spreads through
both atria;
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(a) Cardiac cells (b) Inside a cardiac cell.

Figure 2.5: Cardiac cells.

2. the atrio-ventricular node (AV), located near the lower region of the interatrial
septum, receives the electrical impulse generated by the SA node. A slight
delay of the electrical transmission occurs here, allowing the atria to fully
contract before the electrical impulse propagates into the ventricles;

3. the bundle of His, receives the action potential from the AV node and transmits
the electrical impulse to the ventricles by way of the right and left bundle
branches;

4. the left and right bundle branches, propagates the electrical impulse in two
di�erent parts of the heart, the left and right ventricles;

5. the Purkinje �bres, conduct the action potential from the interventricular sep-
tum, down to the apex, and then upward through the ventricles.

The electrical function of the heart can be observed with the electrocardiogram
(ECG), which gives a global electrical state of the heart (see Figure 2.8). The three
main features of the ECG are the following:

1. P wave, indicating that the atria are electrically stimulated to pump blood
into the ventricles.

2. QRS complex, indicating that the ventricles are electrically stimulated to pump
blood out.

3. T wave, indicating the recovery period of the ventricles.

2.1.2 Cardiac Myo�bres
Cardiomyocytes (or cardiac myocytes) are the major component of cardiac muscle
representing about 70% of its volume. Cardiomyocytes are faintly striated, branch-
ing, mononucleated cells about 10-20 µm wide and 80-100 µm long (see Figure 2.5).
Adjacent cardiomyocytes are connected at their ends through the intercalated disks.
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These intercalated disks connect adjacent cells structurally with desmosomes and
electrically with gap junctions (see Figure 2.5). This connectivity of cardiomyocytes
helps to coordinate the muscle contraction and create the cardiac function. The rest
of cardiac muscle is composed of a dense vascular network and connective tissues.
Microcirculation in cardiac muscle is carried out by capillaries following the long
axis of the cardiomyocytes and by other blood vessels lying between myo�bres.
The connective tissue, mainly collagen, binds the cardiomyocytes and the vascular
network with the interconnection between cardiomyocytes, the connection between
cardiomyocytes and capillaries, and the connection between bundles of cardiomy-
ocytes, called myo�bres.

Cardiomyocyte contraction can be triggered either chemically or electrically.
Chemically, the release of activating neurotransmitters from the sympathetic ner-
vous system regulates the entry of extra-cellular calcium into the cell. Since the ionic
channels are also voltage sensitive, they open and close in response to a change in
the voltage di�erence across the membrane. Thus, contraction is also triggered
electrically by cellular transmembrane potential.

2.1.3 Cardiac Fibre Architecture
As mentioned previously, by propagating the electrical stimulus and contracting, the
cardiomyocytes create the cardiac function. At a larger scale, this function is also
realized by the spatial arrangement of cardiomyocytes. First, they are arranged into
distinct layers, known as laminar sheets [LeGrice 1995a], of about four cells thick
separated by extracellular collagen network (see Figure 2.6). The cardiomyocytes
are tightly coupled within the same laminar sheet, but sparsely coupled between
adjacent laminar sheets. This structure makes the cardiac muscle an orthotropic
tissue. The electrical propagation and mechanical contraction are mainly along the
�bre axis, whereas they are constrained in the normal direction of the laminar sheets.
Second, due to this anisotropy, the spatial variation of the �bre and laminar sheet ori-
entations in the myocardium has also an important role in the realization of the car-
diac function [Rijcken 1999, Costa 1999, Costa 2001, Arts 2001, Hooks 2007]. Fibre
orientation has been shown to be designed for maximum homogeneity of strain along
�bres during ejection [Rijcken 1999]. And laminar sheets have been shown to explain
systolic wall thickening with relative sliding of laminar sheets [LeGrice 1995b] and to
coincide with planes of maximum systolic shear [Arts 2001]. The electrical properties
have also been shown to be in�uenced by laminar sheets [Hooks 2002, Hooks 2007]
but also by the presence of collagen in the cleavage planes between laminar
sheets [Pope 2008].

The cardiac �bre architecture, determined by the �bre and laminar sheet
orientations, can be measured by several methods: studies of histological
slices [Streeter 1979, LeGrice 1995a], optical mapping studies using the di�rac-
tion of polarized light [Jouk 1995], or di�usion tensor magnetic resonance imag-
ing (DT-MRI) [McCulloch 1998, Hsu 2001], that have been shown to be related
to �bre [Scollan 1998, Hsu 1998, Holmes 2000] and laminar sheet [Tseng 2003,
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(a) Schematic view of cardiac �bre architec-
ture (from [LeGrice 2001]).

(b) Prolate coordinate system to describe �-
bre and laminar sheet orientations (adapted
from [Helm 2005a]).

(c) Histological section showing �bre ori-
entation described with helix angle θ

(from [Helm 2005a]).

(d) Histological section showing laminar
sheet orientation described with intersection
angle φ (from [Helm 2005a]).

Figure 2.6: Cardiac Fibre Architecture
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Helm 2005c] orientations. Histological studies are laborious methods that are by
de�nition limited to a 2D projection of the �bre architecture that requires a re-
construction in 3D prone to errors. Optical mapping only measures the out-of-
plane component of orientations also requiring a reconstruction in 3D. On the con-
trary to other methods, DT-MRI is an non-destructive way to observe the cardiac
�bre architecture and moreover provides the orientations directly in 3D. Recent
work [Dierckx 2009] also proposed to image the cardiac �bre architecture with Q-
ball imaging that could help to study the intravoxel presence of several structures
of �bres and laminar sheets in the myocardium.

The �rst quantitative studies of cardiac �bre architecture reconstructed in 3D
were performed with histological slices. The 2D nature of histological slice con-
strained to measure projection of �bre directions describing the cardiac �bre ar-
chitecture with angles in the prolate coordinate system [Nielsen 1991]. Due to the
circular symmetry of cardiac �bre architecture, mainly two angles were necessary to
describe the most relevant spatial variation of �bre and laminar sheet orientations:
the helix (or elevation or inclination) angle θ for �bre orientation and the intersec-
tion angle φ for laminar sheet orientation. These angles are de�ned in the prolate
coordinate system (r, c, l) where r is the radial direction normal to the surface of
the heart, c is the circumferential direction tangential to the surface of the heart,
and l is the longitudinal or axial direction tangential to the surface of the heart
(see Figure 2.6). The �bre direction f is described with the helix (or elevation or
inclination) angle θ between the projection f′ of f in the tangent plane (de�ned by
l and c) and c. And the direction normal to the laminar sheet n is described with
the intersection angle φ between the projection n′ of n in the radial plane (de�ned
by l and r) and r.

All studies con�rmed a gradual transmural variation of the helix angle from
epicardium to endocardium with opposite extremal values and a full circumferential
�bre orientation at the mid wall. The transmural variation of intersection angle has
been shown to be more complex with the presence of two di�erent populations of
laminar sheets [Helm 2005c] that both coincide with planes of maximum systolic
shear [Arts 2001].

At a macroscopic scale, a new concept of cardiac anatomy and function was pro-
posed by Torrent-Guasp in 1972 and �rstly published in 1980 [Torrent-Guasp 1980,
Torrent-Guasp 2005, Kocica 2006]. He observed that the ventricular myocardium
could be seen as a continuous muscular band that folds to form the ventricular cavi-
ties (see Figure 2.7). But this theory of a helical ventricular myocardial band is still
controversial [von Segesser 2005].

2.1.4 Cardiac Function
Since the heart has a periodic motion, the description of the cardiac function can
be limited to one cardiac cycle. The cardiac cycle is divided into two general cate-
gories: systole and diastole. The systole includes events associated with ventricular
contraction and ejection, and the diastole includes the rest of the cardiac cycle,
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Figure 2.7: Torrent-Guasp Band [Torrent-Guasp 1980] (�gure from The Cardiothoracic
Surgery Network - http://www.ctsnet.org/).

ventricular relaxation and �lling. Usually, the cardiac cycle is described from end of
diastole (ED) of the previous cycle to the end of diastole of the current cycle. The
cardiac cycle is further divided into seven phases:

1. the atrial systole: It refers to the contraction of the atrial muscle. As the atria
contract, the pressures within the atrial chambers increase, this drives blood
from the atria, across the open atrio-ventricular valves, and into the ventricles.
This phase starts when the P wave occurs on the ECG.

2. the isovolumetric contraction: This phase includes the contraction of the ven-
tricle with all valves closed. The pressure in the ventricle increases. It is during
this phase that the �rst heart sound is heard when the atrio-ventricular valves
close. This phase starts when the R wave occurs in the ECG.

3. the rapid ejection: When the intraventricular pressures exceed the pressures
within the aorta and pulmonary artery, the aortic and pulmonary valves open
and blood is ejected out of the ventricles. While blood is ejected and ventricu-
lar volumes decrease, the atria continue to �ll with blood from their respective
venous in�ow tracts. The opening of healthy valves is silent.

4. the reduced ejection: During this phase ventricular pressure falls slightly below
out�ow tract pressure; however, outward �ow still occurs owing to kinetic en-
ergy of the blood that helps to propel the blood into the aorta and pulmonary
artery. Atrial pressures gradually rise during this phase owing to continued
venous return into the atrial chamber. This phase is characterized by the end
of the T wave on the ECG.

5. the isovolumetric relaxation: In this phase the ventricles relax, the intraven-
tricular pressure decreases. When this occurs, a pressure gradient reversal
causes the aortic and pulmonary valves to abruptly close, causing the second
heart sound.
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Figure 2.8: Wiggers Diagram [Richardson 1998] - It shows di�erent parameters of the
cardiac function during a cardiac cycle (from http://en.wikipedia.org/wiki/Cardiac_cycle).

6. the rapid in�ow : When the ventricular pressures fall below atrial pressures,
the atrio-ventricular valves open and ventricular �lling begins. The ventricles
brie�y continue to relax, which causes intraventricular pressures to continue
to fall despite on-going ventricular �lling. Filling is very rapid because the
atria are maximally �lled just prior to atrio-ventricular valve opening. Once
the valves open, the elevated atrial pressures coupled with the low resistance
of the opened atrio-ventricular valves results in rapid, passive �lling of the
ventricle.

7. the diastasis: This reduced �lling phase is the period during diastole when
passive ventricular �lling is nearing completion. Increased intraventricular
pressure reduces the pressure gradient across the atrio-ventricular valves so
that the rate of �lling declines, even though atrial pressures continue to in-
crease slightly as venous blood continues to �ow into the atria. Aortic pressure
and pulmonary arterial pressure continue to fall during this period as blood
�ows into the systemic and pulmonary circulations.

These phases can be detected by the temporal evolution of di�erent parameters
such as: the ECG, sound of the heartbeat, volume curves, and pressure curves. The
Figure 2.8 summarizes the evolution of these parameters over a cardiac cycle. The
most common and simple parameters used to assess the cardiac function are the left
ventricular (LVEF) and right ventricular (RVEF) ejection fractions. They represent



20 Chapter 2. From Microstructure to Function of the Heart

the fraction of blood pumped out of a ventricle with each heart beat.

2.2 Cardiac Imaging
Imaging techniques make possible to visualize anatomical structures and morpho-
logical anomalies of the heart. Due to the inherent nature of cardiac function, the
temporal visualization of cardiac anatomy allows a better assessment of cardiac
motion and mechanical function. Beyond cardiac anatomy and motion, metabolic
function of the heart can also be observed with molecular imaging techniques. We
brie�y present here the most common imaging techniques that allow to observe
cardiac structure, anatomy, and function based on di�erent physical principles.

• Echography (US) measures the gradient of acoustic impedance at the inter-
face of tissues with the intensity of re�ected acoustic waves. It has the ad-
vantage to non-invasively image in real-time and has been recently extended
from time-series acquisitions of 2D images to 3D volumes. Echocardiography
is used for assessment of shape, thickness and motion of the cardiac walls
and of the heart valves. Measuring frequency shifts between emitted and re-
�ected acoustic signal, Echo-Doppler Imaging can also provide an additional
motion information displayed as a color overlay on the standard echography
sequences. Typically, positive Doppler shift signals corresponding to �ow to-
wards the transducer are displayed at the red end of the spectrum and �ow
away from the transducer at the blue end. It is mostly used to study blood
�ow characterized by high velocities with low amplitude. It is also used to
measure myocardial wall motion characterized by low velocities with high am-
plitude. In this case, we talk more speci�cally about Tissue Doppler Imaging
(TDI). Combined with contrast agent (microbubbles of gas) with di�erent
acoustic properties from that of tissues, Echography can enhance both normal
grey-scale and �ow-mediated Doppler signals. It can also be used as molecular
imaging method by targeting speci�c molecules with labeled microbubbles.

• Computed Tomography (CT) measures the density of tissues with the inten-
sity attenuation of X-Rays passing through the patient. The improvement of
technology enabled the acquisition of time-series of 3D volumes (dynamic 4D
CT). Contrast agent can be used to enhance the contrast between blood and
cardiac tissues. Cardiac CT is especially useful in evaluating the myocardium,
coronary arteries, pulmonary veins, thoracic aorta, pericardium, and cardiac
masses, such as thrombus of the left atrial appendage.

• Nuclear Imaging (SPECT and PET) uses low doses of radioisotopes (the
marker) linked to compounds (the tracer) usually involved in a metabolic
process. Nuclear imaging is restricted to functional and perfusion informa-
tion and cannot be used for assessment of cardiac and coronary artery mor-
phology. Single photon emission computed tomography (SPECT) uses tracers
which emit gamma rays with an energy between 50 and 500 keV. Individual
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photons are detected using either a rotating gamma camera or special purpose
multi-detector devices. All detectors used for single photon imaging require
some form of gamma ray collimation and, hence, su�er basic limitations to
spatial resolution and, more particularly, sensitivity. SPECT is used to detect
areas of normal and reduced perfusion in the myocardium. Positron emission
tomography (PET) uses radioactive tracers labeled with radioisotopes emitting
positrons during their radioactive decay. The subsequent positron annihilation
within a millimeter of the emission point leads to the production of two back-
to-back 511 keV gamma rays detected with a positron camera surrounding the
patient. PET can be used to measure myocardial perfusion or to identify ar-
eas of normal and reduced metabolism in order to separate viable and necrotic
myocardium, for instance after a heart attack.

• Magnetic Resonance Imaging (MRI) measures magnetic material prop-
erties of tissues (mostly water and fat) due to di�erent relaxation times and
density of 1H proton spins after magnetic excitation. Standard MRI has shown
applications in the diagnosis of cardiac morphology but also in the assessment
of cardiac function, myocardial perfusion and myocardial viability by means
of dynamic and functional imaging. Cine Magnetic Resonance Imaging (Cine-
MRI) acquires time-series of 2D slices during a cardiac cycle. Tagged Mag-
netic Resonance Imaging (Tagged-MRI) is an extension of Cine-MRI, which
consists in tattooing the myocardium with lines or grids using selective spa-
tial presaturation pulses (SPAMM - Spatial Modulation of Magnetization).
Analysis of the tattooed images calls for techniques like HARP (Harmonic
Phase MRI) that quickly and automatically extract the deformations consec-
utive to cardiac motion. Velocity-Encoded Cine-Magnetic Resonance Imag-
ing (VEC-MRI), another extension of Cine-MRI based on the principle that
moving protons change phase in proportion to their velocity, can measure a
through plane blood velocities and �ows. Di�usion Weighted Magnetic Res-
onance Imaging (DW-MRI) measures the di�usion of water molecules in tis-
sues with the attenuation of the magnetic signal after successive dephasing
and rephasing in di�erent directions (gradient directions). It is used mainly
in stroke diagnosis to detect an ischemic cytotoxic edema, to date the stroke
event and to distinguish between acute and subacute strokes. This di�usion
imaging technique has been also used to measure the directional di�usion of
water molecules related to the tissue structure, such as with Di�usion Tensor
Magnetic Resonance Imaging (DT-MRI). Magnetic Resonance Spectroscopy
(MRS) measures the relaxation of other nuclei than 1H. For instance, 31P-MR
spectroscopy allows the study of cardiac high-energy phosphate metabolites
ATP and phosphocreatine. The phosphocreatine/ATP ratio is considered an
index of the energetic state of the heart.

Among these many imaging techniques, we will focus more particularly on di�u-
sion tensor magnetic resonance imaging (DT-MRI) and dynamic computed tomog-
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(a) Acquisition of projections in the reference direction 0◦ and after a
rotation θ of the X-ray source.

(b) Reconstruction of the slice from its sinogram.

Figure 2.9: (a) Acquisition and (b) reconstruction of a CT slice (adapted from
http://scien.stanford.edu/).

raphy (4D CT) acquisition techniques to have a better understanding of the research
work presented in this thesis.

2.2.1 4D Computed Tomography (CT)
Computed tomography (CT) is an imaging technique using X-rays [Prokop 2003,
Ohnesorge 2003, Halpern 2008]. The basic principle of X-ray imaging can be de-
scribed as follows. A source generates X-rays. The X-rays pass through the body
that attenuates their intensity according to the tissue density. The more dense is
the tissue, the more attenuated is the X-ray. The transmitted X-rays are measured
by the �ux of photon hitting a detector. The �ux φ of transmitted photons is given
by the Beer-Lambert law:

φ(M) = φ0 e
− RL(M) µ(x)dx (2.1)

where
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- φ0 is the �ux of emitted photons,
- M is the position on the detector where the �ux of photons is measured,
- L(M) is the straight line from the source to the detector position M ,
- µ(x) is the tissue density at the position x.
The output of the CT scan is an intensity IH given in Houns�eld Units (HU)

de�ned by the relative tissue density µ compared to water density µ0:

IH =
µ− µ0

µ0
1000

On the contrary to traditional radiography that only shows superimposition of
structures in a 2D image, a CT scan provides a 3D volume of tissue density. Di�erent
geometries of CT scanners exist (see Figure 2.10) but the fundamental principle of
slice image acquisition is to rotate the source of X-rays around the patient to measure
the attenuation on detectors in every direction (see Figure 2.9). The recorded signals
form a sinogram from which can be reconstructed 2D/3D images by solving an
inverse problem with �ltered backprojection, iterative or analytic reconstruction
methods. The reconstruction method mainly depends on the type of source (line,
fan or cone beam collimation), the geometry of the CT scanner and the acquisition
process.

The �rst generation of scanners creates �nely collimated X-ray beam and uses a
single pair of planar source-detector moving in a translate-rotate mode. The second
generation creates a narrow fan beam (∼ 10◦) and uses multiple pairs of source-
detectors moving in a translate-rotate mode. The third generation uses a single
source of X-ray cone beam and multiple detectors that jointly rotate around the
patient. The fourth generation of CT scanners has a full static ring of detectors and
only the X-ray cone beam source rotates around the patient.

Two acquisition processes exist. First, the axial (or sequential) CT is a �step-
and-shoot� acquisition process where each 2D slice is reconstructed independently
to �nally form a 3D volume (see Figure 2.11). The table, on which the patient
lies, is translated at each step to select a slice. Then the source rotates around the
patient to acquire the image projection in every directions. Second, in helical (or
spiral) CT, the patient continuously translates while the source rotates around him.
In the reference frame of the patient, the trajectory of the source is a helix as shown
in Figure 2.11. The 3D volume is then reconstructed with 2D slices interpolated
from the signal acquired. The slices can be de�ned a posteriori at any position as
opposed to axial CT, in which the slices are de�ned by the acquisition process itself.
Hence, a helical CT acquisition is closer to a real 3D scan than axial CT that is
only a succession of contiguous 2D scans. Helical CT has the advantage to provide
a faster volume coverage speed combined with a lower dose irradiation.

The technological breakthrough of multi-slice CT (MSCT) using multi-detector
systems extended 2D slice to 3D volume reconstruction. Indeed, the image projec-
tion of all detectors are used simultaneously to solve the reconstruction problem
directly in 3D. But since detectors do not form a closed surface, MSCT has to
deal with truncated data and thus use speci�c 3D reconstruction algorithms. The
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(a) 1st generation. (b) 2nd generation.

(c) 3rd generation. (d) 4th generation.

Figure 2.10: Four generations of CT scanner geometries (from
http://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine/X-
Ray_CT_in_Nuclear_Medicine).

combination of multi-slice and helical CT highly improved the acquisition speed
and limited dose irradiation opening doors to new applications such as sequence
acquisitions for lung and heart.

To cope with the lung motion, an acquisition of the heart must be performed
during breathhold. In static 3D cardiac imaging, the CT acquisition is synchro-
nized with the peak of the ECG R-wave. This peak is commonly used to de�ne the
end of diastole (ED) where the least amount of cardiac motion occurs. Axial scan-
ning is a prospective ECG-triggered scanning, in which the instant of acquisition is
prede�ned. Helical scanning is a retrospective ECG-gated scanning, in which the ac-
quisition is performed during the whole cardiac cycle while simultaneously recording
the ECG. The necessary projection data are selected only during the reconstruction
process with the help of the ECG.

When acquiring dynamic 4D CT, the reference time-point is the ED detected
with the peak of the ECG R-wave. The temporal positions at which the acquisition
is performed are de�ned by either the percentage of the RR-interval covering the
whole cardiac cycle or the absolute time distance relatively to the R-wave (positive
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(a) Axial (�step-and-shoot�) and helical
(continuous) scan modes.

(b) Helical scan mode: continuous translation of
the table.

Figure 2.11: Two di�erent scan modes for CT acquisitions (adapted from
http://imaging.cancer.gov/).

values mean after the R-wave and negative values mean before). When acquiring
cardiac 4D CT data, the speed of rotation of the source limits the temporal resolution
of the sequence. To improve the temporal resolution, a di�erent section of the full
rotation is completed at the same time of several cardiac cycles. The drawback
is a higher radiation dose and blurring due to non-periodicity of the heart. Dual
source scanners were also proposed to acquire twice faster a full rotation. Similarly
to temporal resolution, when the �eld of view is limited by the size of the detectors,
the full heart can be acquired translating the table over multiple cardiac cycles. Over
the last years, the size of the detectors has increased rapidly up to 320 slices with
160 mm coverage allowing a lower dose imaging of a sequence in a single heart-beat.

2.2.2 Di�usion Tensor Magnetic Resonance Imaging (DT-MRI)
We present the principle of nuclear magnetic resonance that is used to acquire
magnetic resonance images [Hashemi 2004, Lardo 2004]. Based on this acquisition
technique, di�usion weighted magnetic resonance has been developed to measure
the average di�usion of water molecules in the tissue or a more complex model of
di�usion with directional information [Mori 2007].

Nuclear Magnetic Resonance Protons (hydrogen nuclei 1H), widely present
in many biological tissues, have intrinsic angular momentum I, called nuclear spin,
and an associated magnetic momentum µ = γI where γ is the gyromagnetic ratio.
Without external magnetic �eld, the momenta of protons are randomly oriented
and hence create a null net magnetization (or macroscopic magnetization) M (see
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(a) (b) (c) (d)

Figure 2.12: Nuclear Magnetic Resonance - (a) No external magnetic �eld. (b) Paral-
lel and anti-parallel states within external magnetic �eld B0. (c) Precession about the
axis of the magnetic �eld B0. (d) Within external magnetic �eld B0 (adapted from
http://www.easymeasure.co.uk/).

Figure 2.13: MRI pulse sequence and evolution of the magnetic momentum M during the
TE (adapted from http://www.easymeasure.co.uk/).

Figure 2.12(a)). Within an external magnetic �eld B0, nuclear spins align with the
external �eld (parallel) or against the �eld (anti-parallel) (see Figure 2.12(b)) and
precess about the axis of the magnetic �eld B0 with Larmor frequency ω0 = γB0

(see Figure 2.12(c)). The magnetic momentum vector of spinning protons can be
decomposed into two orthogonal components: a longitudinal component along B0,
and a transverse component, orthogonal to B0. Since the orientations of spins are
more parallel with low energy state than anti-parallel with high energy state, the
longitudinal net magnetization Ml has the same orientation as B0. Moreover since
there is no phase coherence between spins, the transverse net magnetization Mt is
null (see Figure 2.12(d)).

When a radiofrequency (RF) pulse B1 lying in the plane perpendicular to B0

at the Larmor frequency ω0 = γB0, the nuclear spins are in resonance with the
RF pulse and absorb its energy to align with B1. This absorption of energy, called
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excitation, modi�es the energy level and spin phases. During excitation, the longi-
tudinal magnetization decreases due to the alignment of spins with B1 whereas the
transverse magnetization increases due to the spins getting into phase coherence.
The return of the nucleus to its state of equilibrium with an emission of electromag-
netic energy is called relaxation. The recovery of the net magnetization is due to two
di�erent phenomena: a longitudinal relaxation due to the realignment of spins with
the external magnetic �eld B0 and a transverse relaxation due to the loss of phase
coherence. These two relaxations follow an exponential law with di�erent recovery
rates characterized by tissue-speci�c time constant T1 and T2. The time constant T1

corresponds to the time for longitudinal magnetization to return to 63% of its �nal
value whereas the time constant T2 corresponds to the time for transverse magneti-
zation to decrease by 63% of its original value. T2, which is unrelated to magnetic
�eld strength, is always shorter than T1, which is longer at higher magnetic �eld
strength.

Magnetic Resonance Imaging With the acquisition of the emitted electromag-
netic signal during relaxation, MRI scanners can measure magnetic properties of
tissues that depend on the proton density ρ and the relaxation times T1 and T2. For
MRI acquisition, many pulse sequences exist but we limit here the description to the
spin echo (SE) sequence, the most common pulse sequence. The electromagnetic
signal is measured at echo time (TE) after excitation by two successive pulses (see
Figure 2.13). A �rst 90◦ RF pulse at time 0 causes a rotation of the longitudinal
magnetization into the transverse plane and the dephasing of the transverse mag-
netization starts. A second 180◦ RF pulse at time TE/2 causes a rephasing of the
spins to recover transverse magnetization, producing a spin echo at the acquisition
time TE. Then, the sequence of pulses is repeated at the repetition time TR.

The signal measured by MRI scanners is the transverse net magnetization
strength Mt. In a spin echo pulse sequence, it satis�es the following equation:

Mt = M0(ρ) (1− e
−TR

T1 ) e
−TE

T2

By modifying the length of pulse sequence parameters TR and TE, one can select
the most in�uent magnetic tissue property (proton density ρ, relaxation times T1

or T2) on the measured magnetization strength Mt. The choice of the echo time
(TE) and the repetition time (TR) to obtain Proton Density-weighted, T1-weighted
or T2-weighted images is presented in Figure 2.14.

Image TR TE Measured Signal
PD-weighted long short Mt 'M0(ρ)

T1-weighted short short Mt 'M0(ρ) (1− e
−TR

T1 )

T2-weighted long long Mt 'M0(ρ) e
−TE

T2

Figure 2.14: Choice of the pulse sequence parameters TR and TE to image di�erent tissue
contrasts.
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Figure 2.15: In�uence of microstructure on di�usion properties. Di�usion is called isotropic
when water molecules are free to move in every directions. Di�usion is called anisotropic
when water molecules have constrained directions of propagation (from [Rosenbloom 2003]).

The spatial position is encoded by applying di�erent magnetic gradient �elds
(Gx, Gy and Gz) for each spatial direction (respectively x, y and z). First, a slice
selection (SS) gradient Gz perpendicular to the desired slice plane is added to the
external magnetic �eld such that B0 = B0 + z Gz during the excitation by RF
pulses. Thus, the Larmor frequency depends on the slice position along Gz. When
a RF pulse is applied at the resonance frequency of a given slice, only the protons in
this slice are excited. The second step of spatial localization is called phase-encoding
(PE). A magnetic gradient �eld Gy is applied brie�y after the �rst RF pulse in a
direction perpendicular to Gz. As the change in frequency is very brief, when the
gradient is switched o�, it causes a change in phase that is proportional to the mag-
netic �eld amplitude and thus to the position in the y direction. The last step of
spatial localization is frequency-encoding (FE). A magnetic gradient �eld Gx is ap-
plied during data acquisition in the direction perpendicular toGz andGy. Thus, the
Larmor frequency of nuclear spins varies in the direction of the frequency-encoding
gradient. The MR signal is a mix of signals with all these frequencies (encoding in
the frequency-encoding direction) and phase shifts (encoding in the phase-encoding
direction) that give access to the image slice in the frequency domain. The image
slice is reconstructed in the spatial domain using a 2D inverse Fourier transform.

Di�usion Tensor Magnetic Resonance Imaging Di�usion magnetic reso-
nance imaging [LeBihan 1985, Basser 1994, Mori 2007] measures the mobility of the
water molecules inside a voxel due to their Brownian motion [Einstein 1956] con-
strained by the tissue structure (see Figure 2.15). The di�usion of water molecules
is measured with a T2-weighted sequence including two additional di�usion gradient
�elds Gdi�. The �rst gradient pulse is applied for a short time δ and introduces
a phase shift that is dependent on the strength of the gradient at the position of
the spin. Before applying the second gradient pulse after a di�usion time ∆, the
180◦ RF pulse reverse the phase shift. Protons staying at the same position along
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the gradient direction recover their original phase. Protons moving to a di�erent
position from their original position are rephased with a di�erent �eld strength and
do not recover their original phase. This �nal phase shift due to motion results in
a reduction of the measured signal. This reduction due to the application of the
di�usion gradient pulse can be related to the amount of di�usion that is occurring
through the following Stejskal-Tanner formula:

S = S0 e−γ2G2δ2(∆− δ
3)D = S0 e−bD (2.2)

where
- S0 is the T2-weighted signal intensity without the gradient pulses,
- S is the signal with the gradient pulse,
- γ is the gyromagnetic ratio,
- G is the strength of the di�usion gradient,
- δ is the duration of the gradient pulse,
- ∆ is the di�usion time between the two gradient pulses,
- D is the tissue-speci�c di�usion constant.

To determine the reference signal S0 from which is measured the signal loss
due to di�usion, a baseline image b0 is acquired without gradient pulse, which cor-
responds to a T2-weighted image. Then acquiring di�usion weighted images with
di�erent directions and strength of the magnetic di�usion gradient Gdi� and com-
paring them to the baseline image b0, an average di�usion value called apparent
di�usion coe�cient (ADC) can be estimated with a least square approximation of
the parameter D in Equation 2.2.

Instead of estimating an average di�usion value over all directions, a directional
model of di�usion D where the b-value is a vector can be estimated. A simple and
common di�usion model is the di�usion tensor model that needs at least six gradient
directions to be estimated. The resulting image is called di�usion tensor magnetic
resonance image (DT-MRI). In this way, the tissue structure surrounding water
molecules can be characterized. This description of tissue structure is particularly
useful in the heart that has a highly anisotropic structure with �bres and laminar
sheets. But to obtain high resolution images, di�usion imaging is limited to ex vivo
acquisitions. In vivo acquisition of high resolution DT-MRI is still a challenging
research topic in progress. Due to the acquisition of several di�usion weighted
images with di�erent magnetic di�usion gradients, the main issue is the temporal
resolution that is too low to cope with cardiac motion. But still some studies have
shown the interest of low resolution acquisitions for clinical applications.
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3.1 Introduction
The recent emergence of di�usion MRI [LeBihan 1985], and in particular di�usion
tensor MRI [Basser 1994], has opened novel applications by imaging the structure
of tissues, in particular its anisotropy. Di�usion MRI consists in measuring, in
a speci�c direction of space, the motion of water molecules. This motion is bet-
ter known as the Brownian motion formalized as the average squared distance of
displacement per unit of time [Einstein 1956]. From the acquisition of di�usion
values in di�erent directions of space, we can compute an average di�usion value,
called the apparent di�usion coe�cient (ADC). A more complex description of dif-
fusion can be inferred from these acquisitions by using a directional model of dif-
fusion in the tissue. Di�erent models were proposed: 2nd order di�usion tensor
model [Basser 1994], bi-tensor model [Alexander 2001a, Tuch 2002], CHARMED
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Figure 3.1: Visualization of a di�usion tensor as an ellipsoid. The eigenvectors v1, v2, and
v3 give the direction of the main axis of the ellipsoid. The eigenvalues e1, e2, and e3 give
the radii of the ellipsoid. The colors from blue to red show the directional distribution of
increasing di�usion values.

[Assaf 2005], Q-Ball [Tuch 2004], orientation density function [Tournier 2004], or
even higher order tensors [Barmpoutis 2007].

The most commonly used model of di�usion is the 2nd order di�usion tensor
model (or di�usion tensor), which uses a Gaussian directional distribution of dif-
fusion values. Mathematically, a di�usion tensor is represented by a symmetric
positive de�nite matrix whose eigenvectors and corresponding eigenvalues give the
main directions of di�usion and corresponding di�usion values, respectively. The
eigen decomposition of a di�usion tensor D gives:

D = V E V > = e1 v1v>1 + e2 v2v>2 + e3 v3v>3

where V is the orthogonal matrix of eigenvectors and E is the diagonal matrix of
eigenvalues:

V =



| | |
v1 v2 v3

| | |


 and E =




e1 0 0
0 e2 0
0 0 e3




When sorted in decreasing order, the eigenvalues e1, e2, and e3 are called the
primary, secondary, and tertiary eigenvalues, respectively. These eigenvalues are
strictly positive since they are homogeneous to a squared distance per unit of time.
By extension, their corresponding eigenvectors v1, v2, and v3 are called the primary,
secondary, and tertiary eigenvectors, respectively. It is commonly visualized with
a 3D ellipsoid whose axes directions are the eigenvectors and whose radii are the
eigenvalues (see Figure 3.1).

By measuring the directional di�erences of di�usion, the anisotropy of the un-
derlying tissue can be observed. In the case of cardiac DT-MRI, the primary
eigenvector is related to the cardiac muscle �bre direction [Scollan 1998, Hsu 1998,
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Figure 3.2: Cardiac �bre structure and eigenvectors of di�usion tensor (adapted from
LeGrice et al. [LeGrice 1995a]). The cardiac �bre structure constrains the di�usion of
water molecules in the tissue. The primary eigenvector v1 of a di�usion tensor D is along
the �bre direction. The secondary eigenvector v2 is orthogonal to the �bre direction lying
in the laminar sheet plane. The tertiary eigenvector v3 is normal to the laminar sheet
plane.

Holmes 2000] and the tertiary eigenvector to the normal direction of the laminar
sheet plane [Tseng 2003, Helm 2005c] (see Figure 3.2).

In this chapter, we propose a uni�ed computational framework to build an atlas
of the cardiac �bre architecture that is learned statistically from a population of
DT-MRI. Our approach di�ers from other cardiac studies in computing statistics
directly on the di�usion tensors instead of using angles [Helm 2005a, Gilbert 2007]
or vectors [Sundar 2006, Garcia-Barnes 2009]. This approach has the advantage
to work directly on entities that contain the complete description of �bre structure.
However, since di�usion tensors are symmetric positive de�nite matrices that do not
lie on a vector space, standard Euclidean multivariate statistics are not consistent
with the positivity constraint on the eigenvalues. Riemannian geometry, based on
either a�ne-invariant [Moakher 2005, Batchelor 2005, Pennec 2006, Lenglet 2006,
Fletcher 2007] or Log-Euclidean [Arsigny 2006] metrics, gives a general and consis-
tent computational framework. Statistics on di�usion tensors have already been
used to build brain atlases. But none of them de�ned a complete and consistent
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framework with the most recent advances on di�usion tensor processing. Jones
et al. [Jones 2002] computed �rst-order statistics with a Euclidean metric. Their
second-order statistics were limited to features of the di�usion tensor (the dyadic
tensor [Basser 2000] formed from the primary eigenvector). Second-order statis-
tics on the whole di�usion tensor were computed for model-based di�usion tensor
tractography [Masutani 2006] in the brain but only with a Euclidean metric. A
population study of brain di�usion tensors used statistics with the Log-Euclidean
metric but was limited to their averaging [Goodlett 2009].

Unlike previous works on statistical analysis of DT-MRI, the proposed compu-
tational framework is both complete and consistent in terms of the following three
aspects. First, we use a Riemannian metric to be consistent with the positivity con-
straint on the eigenvalues. Second, we compute the average and covariance matrix of
the whole di�usion tensors. Third, we employ new tools to extract the variabilities
of the eigenvectors and eigenvalues from the covariance matrix that are better suited
for studying the variability of the cardiac �bre and laminar sheet orientations.

The work�ow to compute statistics on cardiac DT-MRI can be divided into three
parts (see Figure 3.3):

• Registration of anatomical MRI (Section 3.2). To compare di�erent hearts,
we �rst need to �nd an inter-subject mapping for normalizing their geome-
tries. This mapping is obtained from a groupwise registration of anatomical
MRI. To ensure the accuracy of the atlas we build, matching corresponding
anatomical structures is necessary. Thus, we propose to include interactive
guidance of pairwise registrations [Azar 2006] in a standard work�ow for atlas
building [Guimond 2000].

• Transformation of DT-MRI (Section 3.3). Once a mapping between the hearts
is known, an important issue is to transform the di�usion tensors properly.
These tensors contain a directional information of di�usion linked to the ref-
erence frame of the image. When warping an image, this reference frame is
modi�ed. Thus, the di�usion tensors have to be transformed according to the
modi�cation of the reference frame. Di�erent transformation strategies have
been proposed [Alexander 2001b]. We compare these strategies on synthetic
data to characterize their impacts on di�usion tensors and give insights on
how to determine the most suited transformation strategy.

• Complete and consistent statistics on di�usion tensors (Section 3.4). This is
realized by computing average di�usion tensors and their corresponding covari-
ance matrices in the Log-Euclidean framework. The di�culty is to interpret
directly the covariance matrix of di�usion tensors, especially in terms of car-
diac �bre architecture. Thus, we propose new e�cient tools to extract from
this covariance matrix the variability of the eigenvectors and eigenvalues.
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Figure 3.3: Overall work�ow of the proposed framework to build a DT-MRI atlas that is
compared to human and synthetic data.
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3.2 Atlas Building
The choice of information used for the spatial normalization of cardiac geome-
tries is fundamental. We can use either the DT-MRI that holds �bre architec-
ture information or the baseline T2 (unweighted) MRI used for DT-MRI estima-
tion that only holds anatomical information. Registering the geometries based on
the DT-MRIs [Ruiz-Alzola 2002, Rohde 2003, Park 2003, Zhang 2006, Cao 2006,
Van Hecke 2007, Chiang 2008, Yeo 2009] implies a minimization of the di�erences
between di�usion tensors. In this case, we make the assumption that there are
similarities between cardiac DT-MRIs. Actually, it is exactly what we want to eval-
uate in the following statistical analysis. To avoid introducing a bias, we prefer
to register only anatomical information with the baseline T2 (unweighted) MRIs.
These anatomical MRIs have the advantage to be acquired in the same geometry
as the DT-MRIs, image distortion induced by magnetic �eld eddy-current being al-
ready corrected for DT-MRI estimation [Mans�eld 1977, Jezzard 1998, Rohde 2004,
Finsterbusch 2009]. Thus, the deformation �elds used to transform the anatomical
MRIs can be directly used to transform the DT-MRIs to the same geometry.

To register the anatomical MRI to a common coordinate system, we propose
here a standard work�ow for atlas building. First, we give an overview of existing
atlas building strategies. Then, we present a pairwise registration algorithm allowing
interactive guidance that ensures the quality of the inter-subject mapping. Finally,
we describe the alternate groupwise registration of the anatomical MRI based on
pairwise registration steps.

3.2.1 Introduction to Atlas Building
To study intra- and inter-population variabilities, the construction of an atlas is
useful to map all 3D images to the same common reference frame. In this way, local
parameters can be compared at corresponding anatomical positions. Furthermore,
the transformations matching all images to the atlas image can be used to study
shape variabilities.

The choice of the common reference frame (or template image Iatlas) is impor-
tant since the arbitrary choice of an image in the dataset as a template would
introduce a bias. In [Park 2005], they propose to choose the template image
as the image in the dataset that minimizes the distance with all other images.
Other methods [Guimond 2000, Marsland 2004, Bhatia 2004, Beg 2004, Joshi 2004,
Avants 2004, Marsland 2004, Zollei 2005, Bossa 2007] proposed to build an unbiased
atlas from a set of images by de�ning the template image as an average represen-
tation of geometries and intensities of all images. A �template free� approach was
also proposed in [Studholme 2004] where intensity values of transformed images are
not averaged in the common reference frame. The transformed images are stored in
a vector-valued image used for registration. This vector-valued image can actually
be seen as a more complex template than an image with average intensities.

Intuitively, the unbiased atlas building problem has been de�ned as follows.
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Given a set of N images {Ii}i=1,...N , we want to estimate the atlas image Iatlas and
the set of transformations {Ti}i=1,...N mapping the set of images {Ii}i=1,...N to the
atlas image Iatlas such that:

Iatlas =
1
N

N∑

i=1

Ii ◦ Ti (3.1)

In this unbiased approach, the estimation of the atlas image Iatlas and the esti-
mation of the transformations Ti are mutually dependent problems. The transfor-
mations Ti are needed to compute the atlas image Iatlas. And the average template
Iatlas is needed to estimate the transformations Ti by registering each image Ii to
Iatlas. Actually, the atlas building can also be formulated as a more general problem
of alternate minimization of an energy functional:

(Iatlas, T1, . . . , TN ) = argmin
(Ĩatlas,T̃1,...,T̃N)




N∑

i=1

(
Sim

(
Ĩatlas, Ii ◦ T̃i

)
+ Reg

(
T̃i

))

+ Regset
(
T̃1, . . . , T̃N

)




(3.2)
where

- Sim is a similarity measure between two images,
- Reg is a spatial regularization term for a given transformation,
- Regset is a regularization term for a set of transformations.

The alternate minimization has two main steps. First, the atlas image Iatlas is
estimated with �xed transformations Ti. It has been shown in [Joshi 2004] that the
intuitive de�nition of the atlas is actually the solution that minimizes Equation 3.2
for �xed transformations Ti when using the sum of squared di�erences (SSD) as the
similarity measure. Second, the transformations Ti are estimated with Iatlas �xed by
registering each image Ii to Iatlas. Furthermore, the transformations Ti are usually
constrained such that they equally contribute to the geometry of the atlas image.
These constraints can be included to the regularization term Regset by coupling
transformations. For instance, in [Bhatia 2004] the sum of the displacement vector
�elds Ti are constrained to be null. In the remainder, we di�erentiate displacement
vector �elds from deformation �elds (or transformations) with bold characters. To
simplify the problem, this coupling is usually included as an additional step after
estimating independently each transformation Ti. These transformations are cor-
rected with the inverse of the average transformation T−1

mean to center the geometry
of the template image among the set of images {Ii}i=1,...N as follows:

Iatlas =
1
N

N∑

i=1

Ii ◦ Ti ◦ T−1
mean (3.3)

In [Guimond 2000], the average transformation is computed with the arithmetic
mean of the displacement vector �elds Ti, whereas it is computed on the curved
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(a) The average distance of the model to the
image set elements decreases.

(b) The distance between successive models
decreases.

(c) Average model of geometries and intensities based on deformation and intensity averaging.

Figure 3.4: Average model construction method (from [Guimond 2000]).

space of di�eomorphisms using velocity vector �elds in [Beg 2004, Avants 2004,
Marsland 2004, Bossa 2007] to ensure the resulting transformation to be invert-
ible. The general spirit of these methods are summarized with the average model
construction [Guimond 2000] described in Figure 3.4.

The direction of registration between an image and the template (formulated in
the similarity term) is also important. We presented here the backward scheme for
atlas building, which estimates the atlas by registering each image to the common
template reference frame. This scheme is the most widely used method for its lower
computational complexity. But recently the forward scheme, which estimates the
atlas by registering the template to each image, has been shown to provide a well-
posed method for atlas building [Allassonnière 2007, Ma 2008, Durrleman 2009].
Indeed, this forward scheme considers images as noisy transformations of a noise-
free template. In the backward scheme, images and their noise are transformed to
the template image. Thus, the nature of noise is modi�ed between the two schemes.
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3.2.2 Pairwise Registration
The mapping of cardiac geometries is challenging due to large di�erences in align-
ment and scales of the data. Thus, there is a need for a robust a�ne registration
before using any non-linear algorithm. In [Beg 2004], they proposed a landmark-
and image intensity-based large deformation di�eomorphic metric mapping (LD-
DMM) method for non-linear registration of cardiac anatomies using MRI. But the
landmarks are only used to initialize the non-linear registration.

We propose here to use pre-de�ned landmarks to constrain the initial a�ne
transformation but also to interactively de�ne landmarks to guide and correct the
following non-linear registration.

3.2.2.1 Constrained A�ne Registration

An a�ne transformation is performed interactively to control its quality and to get
an appropriate initialization for the non-linear registration. An a�ne transformation
can be de�ned by four landmarks. The di�culty to �nd four repeatable landmarks
to best normalize the geometry of the hearts limited us to use only three landmarks
and add constraints on the a�ne transformation. The three interactively located
landmarks used to determine the constrained a�ne transformation S are: the left
ventricular apex (ALV) and the two right ventriculo-septal junctions (corner points
C1 and C2) in the valve plane orthogonal to the long axis of the heart (see Figure 3.5).
The long axis of the hearts are considered aligned due to the acquisition process of
ex vivo data. In a more general case, an additional step aligning the long axis of
the hearts should be performed.

We use these landmarks to de�ne a composition of transformations S = Sz ◦
Sxy ◦Rθz ◦ Tr (see Figure 3.5), which aligns the hearts and normalizes their heights
and radius:

• the translation Tr to match the centroids G and G′ of the two pairs of corner
points,

• the rotation Rθz around the direction of the long axis of the heart to match
the directions given by the two pairs of corner points (C1, C2) and (C ′

1, C
′
2),

• the scaling Sxy to match the length of the line segments de�ned by the two
pairs of corner points (C1, C2) and (C ′

1, C
′
2),

• the scaling Sz along the axis of the heart to match the heights h and h′ from
the plane containing the LV endocardial apex to the valve plane.

3.2.2.2 Interactive Non-Linear Registration

For non-linear registration, we used an hybrid intensity and landmark-based reg-
istration algorithm [Azar 2006] that is well suited for fast interactive corrections.
The interactive guidance by a selection of pairs of landmarks is useful to control
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Figure 3.5: The pairwise registration is initialized with a constrained a�ne transformation
S based on the matching of three interactively located landmarks: the left ventricular
apex (ALV ) and the two corners of the right ventricle in the valve plane (C1 and C2).
This transformation is de�ned as a composition of a translation Tr, a rotation Rθz , a radial
scaling Sxy and a long axis scaling Sz. The atria are not shown here for a better visualization
of the landmarks.

the registration, to avoid matching di�erent structures and to improve the conver-
gence. The advantage of this hybrid algorithm is to easily combine any intensity
and landmark-based registration algorithms. This hybrid registration problem is
formulated with the energy functional proposed in [Cachier 2001]:

E(Q1, Q2, T ) = Esim(I, J,Q1) + σ‖Q1 − T‖2 + σγ‖Q2 − T‖2 + σνEreg(T ) (3.4)

where
- Q1 is the dense intensity-based deformation,
- Q2 is the dense landmark-based deformation,
- T is the �nal dense intensity and landmark-based deformation,
- σ is a parameter that bounds the spatial uncertainty on the correspondences

transformation Q1 and Q2,
- ν is a parameter that quanti�es the amount of the regularization,
- γ is a trade-o� coe�cient between intensity matching and landmark matching.
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An iterative dual energy minimization of equation 3.4 is performed by deter-
mining alternately the transformation Q1 matching the intensities between images
and the displacement �eld Q2 matching corresponding landmarks and by combining
these two displacement �elds to provide the �nal displacement �eld T as follows:

1. Minimize with respect to Q1:

E(Q1) = Esim(I, J,Q1) + σ‖Q1 − TN‖2

2. Minimize with respect to Q2 via iterative closest point (ICP) algorithm which
gives new matches between set of landmarks SI and SJ that most closely �ts
TN:

Efeature(SI, SJ, Q2, TN)

3. Minimize with respect to TN+1 to �nd an optimal and smooth transformation
that �ts Q1 and Q2:

E(TN+1) = σ‖Q1 − TN+1‖2 + σγ‖Q2 − TN+1‖2 + σνEreg(TN+1)

This approach similar to the one proposed in [Cachier 2001] has been shown to
yield to the following displacement �eld T that is a weighted-average of the two
regularized displacement �elds Q1 and Q2:

T(x) = (1− λ(x)) K1 ?Q1(x) + λ(x) K2 ?Q2(x)

where
- x is the voxel position in the reference space,
- T is the displacement �eld of the transformation T with T = Id +T,
- K1 and K2 are regularization kernels for each displacement �eld Q1 and Q2,
- λ(x) ∈ [0, 1] is a con�dence map across the image de�ning the trust in

the displacement �eld Q1 versus Q2. This con�dence map is a mixture of 3D
normalized Gaussian centered on each landmark in the reference space and whose
variance depends on its distance to the corresponding landmark.

Thin-plate splines [Bookstein 1989] are used to extrapolate the sparse matching
of landmarks to a dense displacement �eld Q2. The intensity-based displacement
�eld Q1 determined at step 1 of the minimization using a di�eomorphic registration
algorithm [Hermosillo 2002] based on the mutual information. The weighted-average
of a thin-plate spline transformation Q1 and a di�eomorphic transformation Q2

is not guaranteed to be di�eomorphic. The invertibility of the transformations is
necessary for the groupwise registration scheme proposed in the following. But since
displacement �elds are previously regularized and weighted with the con�dence map
λ, as long as interactive corrections are not too large the resulting transformation
T should be invertible.

The hybrid intensity and landmark-based registration is mainly used to correct
errors of purely intensity-based registration. When large deformations occur, which
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means large distance between corresponding landmarks, the con�dence map λ of
the landmark matching is too large and might in�uence areas where landmark cor-
respondences are not signi�cant. Thus, in practice, it is preferable to �rst minimize
the distance between corresponding landmarks by performing a purely intensity-
based non-linear registration of cardiac anatomies including atria and ventricles.
Then when using the hybrid registration, about ten landmarks were used to cor-
rect the registration. These landmarks were mostly located where the initial purely
intensity-based non-linear registration is not perfect: in the area of the atria where
structures are more complex and where the constrained a�ne registration is not
su�cient for matching of corresponding structures.

Finally, the pairwise registration results in a transformation T that is the com-
position of a constrained a�ne transformation S with a non-linear transformation.

3.2.3 Groupwise Registration
As mentioned previously, groupwise registration is not trivial since the average tem-
plate image and its mapping with the subject images are interrelated. We choose
the method of Guimond et al. [Guimond 2000] to which the interactive pairwise reg-
istration method presented previously can be easily included. We alternately build
an average template image and register the subjects images to it. We �rst register
the set of images {Ii}i=1,...N to the current reference image In

mean at the step n using
the pairwise registration described previously (the initial reference image I0

mean is
chosen within the dataset). The resulting transformations Tn

i registering the initial
images Ii to the current reference image In

mean are averaged with an arithmetic mean.
In our case, the average transformations have been shown to be smooth enough and
small enough to be computationally invertible. A least squares approximation of the
inverse of the average transformation Tn

mean is computed [Cachier 2002] and applied
to the current reference image In

mean which then gets closer to a barycentric geome-
try of the dataset (see Figure 3.6). The intensities are averaged in this new average
geometry. Therefore, through the transformations Tn

i , the original geometry and
intensities of each heart are taken into account in the new average heart In+1

mean.
One iteration can be summarized with the equation as follows:

In+1
mean(x) =

1
N

N∑

i=1

Ii ◦ Tn
i ◦ [Tn

mean]
−1(x)

where
- x is the voxel position,
- Ii is the anatomical MRI of the image i,
- In

mean is the current average anatomical MRI at the step n,
- Tn

i is the transformation matching the current average geometry In
mean to Ii,

- Tn
mean = 1

N

N∑

i=1

Tn
i is the average transformation at the step n.
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Figure 3.6: The groupwise registration of the anatomical MRI {Ii}i=1,...9 is adapted from
the algorithm proposed by Guimond et al. [Guimond 2000]. This algorithm is based on an
alternate registration process using the resulting average geometry In+1

mean as a reference for
the next step. The transformations {Tn

i }i=1,...9 at the step n are a composition of a con-
strained a�ne transformation and a non-linear transformation as described in Section 3.2.2.

These steps are repeated using the new average heart In+1
mean as the reference

geometry until it converges. In practice, a couple of iterations (three in our case)
are su�cient to get a stable geometry. The atlas building strategy is summarized
in the following Table 3.1.

Finally, the outputs of this process are an average geometry of cardiac anatomical
MRI and a dense deformation �eld for each heart of the dataset. Then, these
deformation �elds can be used to transform the DT-MRI.

3.3 Transformation of Cardiac Di�usion Tensors
Since we use the unweighted image of the DT-MRI acquisition as the anatomi-
cal MRI, the DT-MRI and the anatomical MRI have the same reference frame.
Furthermore image distortion induced by magnetic �eld eddy-current are already
corrected for DT-MRI estimation. Thus, we can directly apply to the DT-MRI the
deformation �elds computed with anatomical MRI as detailed previously. The trans-
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Table 3.1: Atlas Building Algorithm. (from [Guimond 2000])

(A) Choose randomly an image Ik in the dataset as the initial atlas image
I0
mean

(B) Iterate until convergence n← n + 1:

(1) A�ne registration of each image Ii to the current atlas image
In
mean providing a�ne transformation An

i

(2) Non-Linear Registration of each image Ii to the current atlas
image In

mean initialized with An
i providing transformation Tn

i

(3) Average transformations providing Tn
mean = 1

N

N∑

i=1

Tn
i

(4) Invert the average transformation Tn
mean

(5) Update the atlas image In+1
mean =

1
N

(
N∑

i=1

Ii ◦ Tn
i ◦ [Tn

mean]
−1

)

formation of DT-MRI is more complex than anatomical MRI. A di�usion tensor is
a covariance matrix (symmetric de�nite positive matrix) modeling the directional
distribution of di�usion rates of water molecules. This directional information is
linked to the local reference frame that is modi�ed during the transformation. To
describe this distribution in the new local reference frame, a transformation of the
di�usion tensor is necessary.

We �rst consider a linear transformation A applied to the di�usion tensor �eld
D to be transformed into the di�usion tensor �eld D′. A basic way to transform
di�usion tensors would be to directly use the inverse of the a�ne transformation A

to correct the directional distribution of a di�usion tensor at the voxel position x:

D′(x) = A−1 D (A(x)) A−1 >

Note that the transformation used to modify the di�usion tensors is the inverse of
the transformation used to resample the di�usion tensor �eld.

This basic strategy directly transforms the symmetric de�nite positive matrix
modeling the directional distribution of di�usion rates without considering the un-
derlying microstructure from which results di�usion properties. The eigenvalues and
eigenvectors of the di�usion tensor can be modi�ed inconsistently with the under-
lying microstructure. The order of the eigenvalues and corresponding eigenvectors
can be swapped such that we loose the link between the order of eigenvalues and the
underlying microstructure. For instance, this would occur with non-uniform scaling.

To avoid this e�ect, we �rst make the assumption that the di�usion rates (eigen-
values) in each speci�c directions (eigenvectors) of the �bre structure only depend
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on material properties of the underlying microstructure. In other words, we can
consider that these material properties are intensive properties at our scale of obser-
vation. Warping the space does not modify the eigenvalues of the di�usion tensor
and consequently their order. Thus, the original di�usion tensor and the trans-
formed di�usion tensor have the same eigenvalues. Given two di�usion tensors with
the same eigenvalues, a rotation matching the orthonormal basis of eigenvectors is
su�cient to transform a di�usion tensor into the other one. In this way, the trans-
formation of di�usion tensors can be decomposed into two steps: the resampling
and the reorientation. The transformation of a di�usion tensor D into the di�usion
tensor D′ can be formulated as follows:

D′(x) = A ? D (A(x)) = R D (A(x)) R>

where
- A is the a�ne transformation used to resample the di�usion tensor �eld,
- the operator ? is the reorientation action of a linear transformation on a dif-

fusion tensor (note that the reorientation is driven by the inverse of the resampling
transformation),

- R is the rotation matrix used to reorient the di�usion tensor.
This formulation can easily be extended to any non-linear transformations T

with the local linear approximation of the �rst derivative of its inverse ∇T−1 used
as the linear transformation A for reorientation [Alexander 2001b].

The remaining di�culty is to de�ne the rotation R used to reorient the dif-
fusion tensor. Di�erent methods have been proposed to reorient di�usion ten-
sors. Thorough experiments are di�cult to set up to validate the choice of the
reorientation strategy. In our opinion, the experiments proposed in the litera-
ture [Alexander 2001b, Van Hecke 2007] are not satisfying and do not really take
into account the nature of the transformation between two subjects. Thus, we pro-
pose here to compare the reorientation strategies to understand their fundamental
di�erences and to justify their use given the registration context.

First, we describe the two commonly used reorientation strategies: the Finite
Strain (FS) and the Preservation of the Principal Direction (PPD) proposed by
Alexander et al. [Alexander 2001b]. Second, we point out their fundamental dif-
ferences on a typical case of synthetic di�usion tensor �eld transformed by a�ne
transformations.

3.3.1 Finite Strain (FS)
The FS consists in using the rotation component of the linear transformation to
reorient the di�usion tensor. The polar decomposition of an a�ne transformation
A can be written as follows: A = RU where R is the rotation component and U

a deformation component. Actually, the rotation component is the least squares
approximation of the a�ne transformation by a rotation and has a closed-form
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solution [Malvern 1969]:
R = (AA>)−

1
2 A

In the case of the FS, the reorientation action of an a�ne transformation on a
di�usion tensor D (whose operator is ?) is de�ned as follows:

A ? D = RFS(A) D R>
FS(A)

where RFS(A) is the rotation component of the a�ne transformation A.
Since the reorientation of a di�usion tensor with the FS only depends on the

a�ne transformation A, we can infer interesting properties. For instance, we propose
to compare the action of the transformation on the di�usion tensor �eld (whose
operator is ?) and the action of the transformation on the gradient of di�usion
tensors (whose operator is •) in the case of a global a�ne transformation.

Let us consider x the voxel coordinates in the original space and D the original
di�usion tensor �eld. Respectively x′ = Ax and D′ are their transformed values. We
use here the minimal representation vec(D) of a di�usion tensor D = (Dij)i,j=1,2,3

to take into account the multiplicity of its o�-diagonal elements [Pennec 2006]:

vec(D) =
(
D11

√
2D12 D22

√
2D31

√
2D32 D33

)> (3.5)

Thus, the standard Euclidean norm of this vector representation is equal to the
standard Euclidean norm of the di�usion tensor.

The gradient ∇x′ in the reference frame of transformed image can be formulated
as follows:

∇x′vec
(
D′

FS(x′)
)

= ∇x′vec
(
A ? D(A−1x′)

)

∇x′vec
(
D′

FS(x′)
)

= ∇x′vec
(
RFS(A) D(A−1x′) R>

FS(A)
)

As RFS only depends on A that is constant over the space, we can use:

∇x′ = ∇Ax = A−1 • ∇x

to derive:

∇x′vec
(
D′

FS(x′)
)

= A−1 • ∇xvec
(
RFS(A) D(x) R>

FS(A)
)

And �nally:
A • ∇x′vec

(
D′

FS(x′)
)

= ∇xvec (A ? D(x))

The gradient of a transformed di�usion tensor �eld is equal to the transformed
gradient of the original di�usion tensor �eld. Since the action of the transformation
is consistent with the gradient on di�usion tensors, we expect to preserve geometric
features. And more precisely we expect to preserve angular di�erences between
neighboring eigenvectors. Thus, we can characterize the a�ne transformation of a
di�usion tensor �eld with FS as a �conformal transformation� of di�usion tensor
�elds.
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3.3.2 Preservation of the Principal Direction (PPD)
The basic idea of the PPD reorientation strategy is to come back to the underly-
ing microstructure described by the di�usion tensor. In the case of cardiac di�u-
sion tensors, it has been shown [Scollan 1998, Hsu 1998, Tseng 2003, Helm 2005c,
Helm 2005b] that the eigenvectors are linked to the �bre and laminar sheet orienta-
tions. The primary eigenvector v1 is aligned with the �bre direction as is the tertiary
eigenvector v3 with the normal direction to the laminar sheet (see Figure 3.2). Once
we have a model of the underlying microstructure, we transform it through the lo-
cal a�ne transformation. Then, from this transformed microstructure we build the
transformed di�usion tensor according to the relationship between the eigenvectors
and the underlying microstructure [Alexander 2001b]. Since the correlation between
eigenvectors and underlying microstructure might be subject to acquisition noise,
Xu et al. [Xu 2003] proposed an extension of the PPD where the �ber structure is
statistically estimated from the voxel neighborhood.

An a�ne transformation can be described by a composition of basic transforma-
tions: translation, rotation, scaling and shearing. Translations and uniform scalings
do not modify the orientation of the �bre structure, and the transformation of the
�bre structure through rotations is obvious. Non-uniform scalings and shearings are
the most problematic basic transformations to apply to the �bre structure since the
amount of deformation depends on the original structure. An illustration of this de-
pendency is shown in Figure 3.7 with the action of pure shearing on an elementary
structure of cardiac �bres. The direct transformation of the original eigenvectors vi

leads to the vectors Avi and the �nal transformation deduced from the deformation
of the �bre structure leads to the vector v′i.

Locally, �bres are considered as a line and the a�ne transformation of a line
is a line. Thus, the new primary eigenvector v′1 pointing in the direction of the
deformed �bres is the normalized direct transformation of the primary eigenvector
v1 pointing in the direction of the original �bres:

v′1 =
Av1

||Av1||
Laminar sheets are considered locally plane and the image of a plane through an
a�ne transformation is a plane. It means that these laminar sheets are locally stable
approximating locally the non-linear transformation with an a�ne transformation.
Thus, the laminar sheet is spanned by v1 and v2 and its image by Av1 and Av2.
The secondary eigenvector v′2 lies in the laminar sheet plane and is orthogonal to
the �bre direction by de�nition:

v′2 =
Av2 −

(
(Av2)>v′1

)
v′1

||Av2 −
(
(Av2)>v′1

)
v′1||

The tertiary eigenvector v3 is aligned locally with the normal vector of the laminar
sheet plane. The normal vector of the image of a plane through an a�ne transfor-
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(a) Elementary cardiac �bre structure
with corresponding eigenvectors vi of
di�usion tensor.

(b) Elementary cardiac �bre structure
and eigenvectors vi mechanically de-
formed with shearing transformation A.

Figure 3.7: Mechanical deformation of an elementary cardiac �bre structure (�bres and
laminar sheet planes). Column (a) shows the original cardiac �bre structure and corre-
sponding eigenvectors vi. Column (b) shows the deformed cardiac �bre structure and
corresponding eigenvectors v′i (dashed arrows). The v′i correspond to the reorientation of
the vi with PPD. Avi are the eigenvectors directly deformed with the transformation A.

mation is given by the following expression (more details in the Appendix A):

v′3 =
(A−1)>v3

||(A−1)>v3||

One can easily show that this last formulation of v′3 leads to the same result as the
one proposed in [Alexander 2001b] where they build v′3 from v′1 and v′2 to obtain
an orthonormal frame: v′3 = v′1 × v′2. This new formulation has the advantage to
be independent of the computation of the other eigenvectors and to point out the
contravariant in�uence of the a�ne transformation on the tertiary eigenvector.

The three transformed eigenvectors form an orthonormal frame. Thus, the dif-
fusion tensor is reoriented as follows:

A ? D = RPPD(A,D) D R>
PPD(A,D)
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Figure 3.8: Synthetic di�usion tensor �eld with a sinusoidal variation of the orientation θ

of the primary eigenvector v along the direction of the x coordinates. The di�usion tensors
are colored in red when the primary eigenvector is oriented along the direction of the x

coordinates and in green along the direction of the y coordinates. As an illustration of the
di�erences between the action of the FS and PPD reorientation strategies, a basic non-
uniform scaling A (in this �gure a compression α < 1 along the x coordinates) is applied
to the di�usion tensor �eld.

where RPPD(A,D) = V ′>V is the rotation mapping the original eigenvectors
{vi}i=1,2,3 on the transformed eigenvectors {v′i}i=1,2,3 respectively described by the
matrices V = [v1,v2,v3] and V ′ = [v′1,v′2,v′3].

Since the PPD relies on the mechanical deformation of the underlying mi-
crostructure, it is by de�nition a mechanical transformation of cardiac �bre ar-
chitecture that for instance occurs when the heart is deformed during the cardiac
cycle.

3.3.3 Comparison of the Reorientation Strategies
Setting up a thorough experiment to validate the choice of a reorientation strategy
is not trivial. Some proposed to deform a synthetic di�usion tensor �eld with a
known deformation �eld [Alexander 2001b, Van Hecke 2007]. The problem in their
experiment is that they rely on the deformation of the underlying structure to obtain
their ground truth deformed di�usion tensor �elds. Thus, they implicitly choose the
case where the transformation is really a mechanical deformation. And the better
results they obtain using the PPD is obvious. They also extended their experiment
to real data comparing the quality of the transformation of brain DT-MRI using
either the FS or the PPD. In [Alexander 2001b], results with PPD and FS were
similar. But since their local a�ne transformations are close to a rotation, it is
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normal to obtain similar results that cannot really help to conclude. Furthermore,
registration is an ill-posed problem and the solution of the problem might not be
unique. There might exist a di�erent deformation �eld, which is a valid solution
of the registration problem, that is better suited for each reorientation strategy.
In [Van Hecke 2007], they investigate the registration of di�usion tensor �elds with
di�erent reorientation strategy. In this way, the resulting deformation �elds are
optimized for each reorientation strategy. But the problem we have here is slightly
di�erent. We do not want to use di�usion tensor information in the registration
process to avoid introducing a bias. So given a transformation known to register
cardiac anatomies, we want to determine which reorientation strategy would be the
most appropriate.

Since we believe that there is not a unique best reorientation strategy in ev-
ery situation, we propose here an experimental comparison of the two reorientation
strategies to better understand their fundamental di�erences. Without proper ex-
periments on non-linear transformations of two di�erent subjects, we illustrate these
di�erences with a global a�ne transformation applied on synthetic data.

3.3.3.1 A�ne Transformation of Synthetic Data

We have shown that the rotation computed with PPD depends on the original
orientation of di�usion tensors whereas the rotation computed with the FS does
not. The di�erence between the rotations of the two strategies exist when the
local a�ne transformation has shearing and non-uniform scaling components. To
better understand the e�ect of these di�erences, we compare the transformation
of a simple synthetic di�usion tensor �eld transformed with a non uniform-scaling
(similar results can be obtained with shearing) when using the FS and the PPD (see
Figure 3.8). To simplify the calculations and to clarify the example, we only consider
the primary eigenvector of the di�usion tensors in 2D. One can easily extend this
study in 3D on all the eigenvectors. Let us consider the following pro�le of the
primary eigenvector orientations that only depends on the coordinate x ∈ [0, 2π]:

v(x) =
(

cos(x)
sin(x)

)

We apply the following non-uniform scaling to the vector �eld:

A =
(

α 0
0 1

)

Let v′FS(x′) = RFS(A)v(x) be the transformed vector by the FS and let
v′PPD(x′) = RPPD(A,v)v(x) be the transformed vector by the PPD with x′ =
αx ∈ [0, 2πα]:

v′FS(x′) = v(x′
α )
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Figure 3.9: Illustration of the di�erence between the action of the FS and PPD reori-
entation strategies: sine of the orientation angles θPPD and θFS of the vector �eld after
a non-uniform scaling transformation. The orientation angle θ is the angle between the
primary eigenvector and the direction of the x coordinates as described in Figure 3.8. The
original orientation is described by the red curve.

v′PPD(x′) =
Av(x′

α )

||Av(x′
α )|| =




α cos(x′
α

)q
α2 cos2(x′

α
)+sin2(x′

α
)

sin(x′
α

)q
α2 cos2(x′

α
)+sin2(x′

α
)




Since the polar decomposition of a non-uniform scaling does not contain any
rotation component, the orientation of the vectors is not modi�ed using the FS
reorientation strategy: RFS = Id. Thus, only a resampling of the di�usion tensor
�eld is performed.

Results are shown in Figure 3.9. We observe that the pro�le of vector orientation
along the direction of the x coordinates is modi�ed in the case of the PPD strategy
whereas this pro�le is only resampled in the case of the FS strategy. The di�erence
between these two strategies is enhanced with the importance of the compression
(α < 1) and stretching (α > 1). This example illustrates the mechanical e�ect with
the PPD and the preservation of the gradient with the FS.

3.3.3.2 Choice of the Reorientation Strategy

Both reorientation strategies seem valid but each one in a di�erent context. If we
consider that there is a mechanical transformation due to the registration process
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(for instance, the registration of the same heart at a di�erent time of its cycle), we
would prefer the PPD. On the other hand, if we want to preserve geometric features
of the di�usion tensor �eld (for instance, in the case of a resampling of the heart),
we would prefer the FS. We propose to rely on the three following arguments to
decide which reorientation strategy is better suited for our inter-subject statistical
study.

First, the FS preserves the geometric features of the di�usion tensor �elds. Thus,
using the FS, we can directly compare these features, especially the transmural
variation of the �bre orientation which is known to be a common feature between
hearts.

Second, the FS does not depend on the extraction of the eigenvectors whereas
the PPD relies on a strong correlation between the eigenvectors and the underlying
�bre structure. An error in the extraction of this structure (for instance, due to
noise in the DT-MRI acquisition) could be propagated to the transformation of
di�usion tensors and thus to the computed statistics. Thus, the interpretation
of these statistics should take into account these errors on the transformation of
di�usion tensors.

Third, the FS is consistent with the Log-Euclidean metric used to compute
statistics that should not depend on the reference geometry. Indeed, if the reference
geometry is modi�ed, all registered di�usion tensors in a voxel of this reference ge-
ometry are transformed with respect to the same rotation. Since the Log-Euclidean
metric is rotation invariant, the statistics computed in two di�erent reference ge-
ometries are equivalent. On the contrary, since the PPD reorientation depends on
the original di�usion tensor, each of the registered di�usion tensors in a given voxel
are transformed with respect to a di�erent rotation. Thus, one can easily show that
statistics computed with the Log-Euclidean metric would not be equivalent in two
di�erent reference geometries.

Consequently, we think that one should prefer the FS reorientation strategy
in the context of inter-subject cardiac DT-MRI registration for statistical analysis
to preserve geometric features. On the other hand, since the PPD reorientation
strategy is based on a mechanical deformation of the underlying microstructure, it
is probably better suited to the mechanical deformations occurring when the heart
is in motion.

In our study, we transform di�usion tensor �elds into the same geometry to
compare their statistical variability among a population. Thus, it is important to
understand the meaning of the di�usion tensor �elds transformation to be able
to give a proper interpretation of the resulting statistics. We decided to rely on
theoretical assumptions to choose the reorientation strategy. In practice, it might
happen that a reorientation strategy better explains the inter-subject variability.
A reorientation strategy might better model the inter-subject variability and thus
might help to understand the origin of this variability. In the following chapter,
we will use real data to compare the two reorientation strategies and check if a
reorientation strategy provides better insights on the inter-subject variability. In
other words, does a reorientation strategy better explain how the cardiac �bres are
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remodeled when anatomy changes?

3.4 Statistical Analysis of Cardiac Di�usion Tensors
Once the DT-MRI are transformed into the same coordinate system, a statistical
analysis of a population of di�usion tensors can be performed at each voxel. We pro-
pose to compute the �rst- and second-order statistics on di�usion tensors from which
can be extracted relevant information about the average cardiac �bre architecture
and its variability.

First, we introduce some concepts about di�usion tensor processing and espe-
cially the necessity to de�ne a proper metric on the di�usion tensor space. The
Log-Euclidean framework has been chosen to compute our statistics thanks to its
fast and simple computation [Arsigny 2006].

Second, we present novel tools to extract eigenvectors and eigenvalues variability
from the covariance matrix of di�usion tensors. Indeed the geometric and physical
interpretation of the 6× 6 covariance matrix is not straightforward. We show that
the projection of this covariance matrix onto proper directions can give eigenvalues
and eigenvectors variability. These tools extend previous work [Basser 2000] that
computes statistics on eigenvectors after extracting them from each di�usion tensor.

3.4.1 Introduction to DT-MRI Processing
The space of di�usion tensors, also known as the space of symmetric positive de�-
nite matrices Sym+∗

3 , is not a vector space for the common algebraic operators. For
instance, this space is not stable with the scalar multiplication. The multiplication
of a di�usion tensor by a negative scalar value is no more a di�usion tensor. Unfor-
tunately, for some image processing algorithms, such as solving Partial Di�erential
Equations (PDE) or computing statistics, this vector space structure is necessary to
avoid going out of the di�usion tensor space. Thus the extension of image processing
for scalar images to di�usion tensor images is not straightforward.

To overcome this absence of vector space structure, Rieman-
nian frameworks have been developed for di�usion tensor process-
ing [Moakher 2005, Batchelor 2005, Lenglet 2006, Pennec 2006, Arsigny 2006,
Fletcher 2007, Kindlmann 2007b, Verma 2007]. Basically, the di�usion tensor space
has been replaced by a regular and complete manifold endowed with a Riemannian
metric. The Riemannian metric provides a theoretically grounded framework for
generalizing standard image processing tools [Pennec 2006] to the di�usion tensors
manifold, and more speci�cally for generalizing statistics [Pennec 1999] in which
we are interested in this section.

3.4.1.1 Distance between Di�usion Tensors

We present here the most common distances used for di�usion tensor processing
with their advantages and limitations. Figure 3.10 illustrates the di�erences in
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Figure 3.10: Linear interpolation of two di�usion tensors A and B using di�erent frame-
works (from [Kindlmann 2007b]). Plots show the determinant (det), the trace (K1), eigen-
value standard deviation (K2), and the mode (K3).

interpolation results with some of these distances.

Euclidean Distance The standard Euclidean distance between two di�usion ten-
sors D1 and D2 is de�ned as follows:

dist(D1, D2) = ‖D1 −D2‖ =
√

Tr
(
(D1 −D2) (D1 −D2)

>
)

As mentioned previously, the Euclidean framework for di�usion tensor process-
ing has limitations when linear combination of di�usion tensors is necessary
(solving PDE or compute statistics).

Cholesky Decomposition The Cholesky decomposition states that any symmet-
ric positive-de�nite matrix can be written as a product of matrices D = LL>

where L is a lower triangular matrix. In this framework [Wang 2004], di�usion
tensors are processed through their corresponding lower triangular matrices
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that form a vector space. However, this framework does not overcome all lim-
itations of the Euclidean calculus where di�usion tensors with null eigenvalues
are still at a �nite distance to any di�usion tensors.

J-Divergence The dissimilarity between two di�usion tensors can be de�ned with
the J-divergence of the corresponding Gaussian distributions [Wang 2005]:

dist(D1, D2) =
1
2

√
Tr

(
D−1

1 D2 + D−1
2 D1

)− 6

It is a symmetrized version of the Kullback-Leibler divergence between dis-
tributions. The J-divergence gives an a�ne-invariant dissimilarity measure
between tensors whose Fréchet mean has a closed form solution. But since
the triangular inequality might not be veri�ed, it cannot de�ne a distance
and thus it cannot provide a complete framework to perform di�usion tensor
processing such as interpolation or gradient descent.

A�ne-Invariant Riemannian Distance A geodesic distance has been de�ned
with a Riemannian metric that has the property to be invariant to
a�ne transformation of symmetric positive de�nite matrices [Moakher 2005,
Batchelor 2005, Lenglet 2006, Pennec 2006, Fletcher 2007]. This property can
be formulated such that dist(D1, D2) = dist (A ? D1, A ? D2) where A ? D =
ADA> and leads to the de�nition of the a�ne-invariant distance:

dist(D1, D2) = ‖log(D
− 1

2
1 D2 D

− 1
2

1 )‖ =

√√√√Tr
(

log
(

D
− 1

2
1 D2 D

− 1
2

1

)2
)

This Riemannian metric provides a valid framework for the di�usion tensor
processing, and especially for computing statistics [Pennec 2006]. The com-
pleteness of the di�usion tensor manifold endowed with the Riemannian metric
ensures its boundaries to be at an in�nite distance of any di�usion tensor. But
the Fréchet mean does not have a closed form solution and thus relies on a
minimization process.
The a�ne-invariant property of this metric is derived from the action of an
a�ne transformation de�ned as A ? D = ADA>. This action of an a�ne
transformation on di�usion tensors has been shown in Section 3.3 not to take
into account the transformation of the underlying microstructure that de�nes
the di�usion properties. Thus, this invariance property might not be the most
suited one for di�usion tensors.

Log-Euclidean Distance The Log-Euclidean framework [Arsigny 2006] relies on
the fact that the matrix exponential and logarithm are two di�eomorphisms
between the space of symmetric positive de�nite matrices and the space of
symmetric matrices. The logarithms of di�usion tensors are processed in the
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vector space of symmetric matrices and mapped back to the space of symmetric
positive de�nite matrices with the exponential. From this framework can be
derived the Log-Euclidean metric that is the classic Euclidean metric on the
logarithm of di�usion tensors:

dist(D1, D2) = ‖log (D1)− log (D2)‖

The Log-Euclidean framework gives a vector space structure to di�usion ten-
sors with new algebraic operators where boundaries of di�usion tensor mani-
fold are always at an in�nite distance to any di�usion tensor. This framework
also provides a closed form solution to the Fréchet mean and the property to
be similarity-invariant. Moreover, results have been shown to be very similar
to a�ne-invariant metric with simpler and faster computation.

Geodesic-Loxodromes In [Kindlmann 2007b] has been proposed a new class of
interpolation paths for tensors, which explicitly preserve clinically important
tensor attributes (such as mean di�usivity or fractional anisotropy) while using
basic di�erential geometry to interpolate tensor orientation. Path integrals of
tangents of geodesic-loxodromes generate a distance measure between di�usion
tensors. But it is uncertain whether geodesic-loxodromes are geodesics on some
six-dimensional Riemannian manifold embedded in Sym3.

Isomaps A manifold learning technique, called Isomap, is used to capture the un-
derlying manifold topology of the data [Verma 2007]. A geodesic distance
between di�usion tensors can be de�ned speci�cally to the manifold topology
of the data.

3.4.1.2 Statistics on Di�usion Tensors
Di�erent approaches were proposed to compute statistics on di�usion tensors.
Statistics can be computed on features extracted from the di�usion tensors (for
instance eigenvalues or eigenvectors) or directly on the di�usion tensor itself taken
as a whole. Computing statistics on scalar values extracted from a di�usion tensor
(eigenvalues, fractional anisotropy, or others detailed in [Basser 1996]) has the
advantage to rely on standard statistical tools.

Using features of higher dimension such as eigenvectors might be more convenient
for the interpretation of results. The sign ambiguity of the eigenvectors is a problem
when computing statistics in the linear Euclidean space of vectors. To raise this
ambiguity, Basser and Pajevic [Basser 2000] proposed to compute statistics on the
second-order dyadic tensor viv>i of the primary eigenvector vi. The scatter matrix
S is de�ned as the average dyadic tensor of a population of N eigenvectors vk:

S =
1
N

N∑

k=1

vkvk> (3.6)
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The eigenvalues s1, s2, and s3 of the scatter matrix S describe the distribution
of vectors in spherical coordinates. The eigenvectors s1, s2, and s3 describe the
orientations of this distribution. The principal eigenvector s1 of the scatter matrix
corresponds to the average eigenvector v and the associated principal eigenvalue s1

quanti�es the coherence around this average orientation. This eigenvalue s1 can
be related to the variance σ2 = 1 − s1 that is the squared radius of the cone of
uncertainty around a vector having a unit length. From this eigenvalue, Basser

and Pajevic [Basser 2000] de�ned the dispersion measure
√

1− s1

2s1
. This dispersion

measure has also been used to de�ne the dyadic coherence κ [Jones 2002]:

κ = 1−
√

1− s1

2s1

This statistical analysis of dyadic tensors is well-suited in brain DT-MRI appli-
cations where mainly the primary eigenvector has meaningful information. For
instance, the scatter matrix has been used to study background noise of di�usion
tensor �eld [Basser 2000], to study the �bre orientation dispersion in a population
of brain [Jones 2002], to evaluate directional �bre organization and the interhemi-
spheric symmetry of the brain [Wu 2004], and to perform a statistical test to know
whether two groups of subjects have the same mean direction [Schwartzman 2005].

Statistics can also be computed directly on the whole di�usion tensor without
extracting any feature. For instance, a brain DT-MRI atlas was built in [Jones 2002]
by computing the mean, median and mode of di�usion tensors. The normalized scat-
ter measure S2 describing a global dispersion of di�usion tensors is also computed:

S2
2 =

1
N − 1

N∑

i=1

‖Di −D‖2

‖D‖2

where
- Di are the di�usion tensors of the population,

- D = 1
N

N∑

i=1

Di is the Euclidean average di�usion tensor.

But statistics are computed with a Euclidean metric that does not take into
account the structure of the di�usion tensor manifold. Furthermore, the dispersion
of �bre orientation is computed from the average of the dyadic tensors whereas
the atlas is built from the average di�usion tensor. The statistical analysis of �bre
orientation and the statistical analysis of di�usion tensors are not consistent. First
and second-order statistics that compute an average di�usion tensor and a covariance
matrix of di�usion tensors with a proper metric would provide a more valid and
consistent framework. But still second-order statistics are limited to a scalar value
describing the global dispersion of di�usion tensors or a scalar value describing the
global dispersion of the �rst eigenvector orientation. More detailed description of
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the high dimensional di�usion tensor dispersion would be particularly well-suited
for cardiac DT-MRI whose all eigenvectors are necessary to study the cardiac �bre
architecture. The methodology presented with the dyadic tensors could have been
used to quantify each eigenvector variability independently as performed with the
primary eigenvector in brain DT-MRI. But this would not take into account the
fact that eigenvectors are linked by forming an orthonormal basis. We propose in
the following to re�ne this description of dispersion based on the analysis of the
covariance matrix of di�usion tensors.

3.4.2 Log-Euclidean Mean and Covariance
Owing to its simplicity and its low computational time, we chose the Log-Euclidean
framework [Arsigny 2006] to compute statistics on the di�usion tensor manifold.
For clarity of the notations in the remainder, we call Di the di�usion tensor �elds
transformed to the average atlas geometry and interpolated with the Log-Euclidean
metric. The mean Dlog of the transformed di�usion tensor �elds Di and its cor-
responding unbiased covariance matrix �eld Σ [Pennec 2006] in the Log-Euclidean
space are computed at each voxel x of the average geometry:

Dlog(x) = exp

(
1
N

N∑

i=1

log (Di(x))

)

Σ(x) = 1
N − 1

N∑

i=1

vec (∆Di(x)) vec (∆Di(x))>

where
- N is the size of the dataset,
- vec(∆Di) is the minimal representation of ∆Di = log(Di) − log(Dlog) as

previously de�ned by Equation 3.5 in Section 3.3.

Thus, the standard Euclidean norm of this vector representation is equal to the
standard Euclidean norm of the di�usion tensor.

3.4.3 A New Analysis of the Di�usion Tensor Covariance Matrix
We de�ne the norm of the covariance matrix Σ as

√
Tr(Σ) which is actually the

square root of the unbiased mean square distance of the samples to the mean di�u-
sion tensor:

Tr(Σ) =
1

N − 1

N∑

i=1

‖∆Di‖2 =
1

N − 1

N∑

i=1

vec(∆Di)>vec(∆Di)

Since the covariance matrix is formulated in the Log-Euclidean space, its norm is
homogeneous to a ratio quantifying the relative variability of the whole di�usion
tensor. This can be related to the normalized scatter measure S2 computed in the
Euclidean space:
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S2
2 =

1
N − 1

N∑

i=1

‖Di −D‖2

‖D‖2

We are interested in further details about the origin of the variability of the
whole di�usion tensor within the population. We propose here new e�cient tools to
extract the variability of the eigenvalues and eigenvectors around their mean from
the covariance matrix of di�usion tensors. The basic idea is to project the covariance
matrix onto the directions given by an appropriate orthonormal basis {Wi}i=1,...6 of
the tangent space of the di�usion tensors manifold at the mean di�usion tensor (see
Appendix B for more details):

W1 = v1v>1 W4 = 1√
2
(v3v>2 + v2v>3 )

W2 = v2v>2 W5 = 1√
2
(v1v>3 + v3v>1 )

W3 = v3v>3 W6 = 1√
2
(v2v>1 + v1v>2 )

where the vi are the sorted eigenvectors of the mean di�usion tensor.
This orthonormal basis, used here for the statistical analysis of a population of

di�usion tensors, has also been used for the decomposition of the spatial gradient of a
di�usion tensor �eld [Kindlmann 2007a]. They also proposed other decompositions
to extract the gradient of other di�usion tensor features based on eigenvalues (such
as the trace, the determinant or the fractional anisotropy). These decompositions
could also be applied to the covariance matrix of di�usion tensors in order to get
the population variability of these features. Since mainly eigenvectors variability is
important to study cardiac �bre architecture, we will not develop it here.

3.4.3.1 Eigenvalues Variability

Let us consider di the eigenvalues of Dlog and λi = log(di) the eigenvalues of Dlog

in the log-space. We call δλi the deviation of the eigenvalues λi about their mean
in the log-space. Their variances E(δλi

2) can be formulated as the projection of the
covariance matrix onto the directions of the {Wi}i=1,2,3 (see Appendix B):

E(δλi
2) = vec(Wi)> Σ vec(Wi)

Since δdi = di δλi at the �rst order, these variances can easily be linked to the
relative variability of eigenvalues in the Euclidean space:

E(δλi
2) = E(δdi

2)
d2

i

The absolute variance of the eigenvalues in the Euclidean space can also be directly
derived from the covariance matrix Σ:

E(δdi
2) = di

2 E(δλi
2) = di

2 vec(Wi)> Σ vec(Wi)
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Figure 3.11: [Left ] Increment δv1 of the primary eigenvector about its average v1. [Right ]
Orientation variability of the eigenvectors described by an ellipsoidal cone of uncertainty.

3.4.3.2 Eigenvectors Variability

Let us consider εij the coordinates of the deviation δvi of the eigenvectors vi in
the frame of the mean eigenvectors. These coordinates correspond to the tangent
tan(θij) of the angle between the mean eigenvector vi and the deviated eigenvector
in the direction of vj (see Figure 3.11). Furthermore, it can be shown that εij =
−εji. The projections of the covariance matrix Σ onto the {Wi}i=4,5,6 are the
rotation variability of the coupled orthonormal vectors (v2,v3), (v3,v1) and (v1,v2)
respectively around v1, v2 and v3 (see Appendix B for more details):

E(ε23
2) = 1

2(λ2 − λ3)2
vec(W4)> Σ vec(W4)

E(ε13
2) = 1

2(λ1 − λ3)2
vec(W5)> Σ vec(W5)

E(ε12
2) = 1

2(λ1 − λ2)2
vec(W6)> Σ vec(W6)

The advantage of this formulation compared to previous works [Basser 2000,
Jones 2002, Wu 2004, Schwartzman 2005] where they study independently each
eigenvector vi through their corresponding dyadic tensor viv>i , is to get the eigen-
vectors variability knowing that they are coupled to form an orthonormal frame. It
means that when an eigenvector is changing, the others are following this change
such that they still form an orthonormal basis.

These orientation variances are dependent on the distance between the eigen-
values. When two eigenvalues are close to each other, the associated eigenvectors
are not well de�ned. Thus, high variances on eigenvectors may correspond to two
di�erent situations: either a high variability of well de�ned eigenvectors, or a situa-
tion where eigenvectors are not well de�ned. On the contrary, low variances have a
unique interpretation: the eigenvectors are well de�ned and their variability is low.
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This dependence on the de�nition of the eigenvectors is not speci�c to our method-
ology since the one developed by [Basser 2000] needs also to extract the eigenvectors
to build their corresponding dyadic tensors. The main di�erence between the two
approaches lies in the order of the computation of statistics. The dyadic tensor ap-
proach �rst extract the eigenvectors before computing their statistics whereas in our
method the tensor statistics are �rst computed before extracting the eigenvectors.
Thus, in our framework, we can preserve the coupling between eigenvectors when
computing statistics.

From those three variances E(εij
2), we can describe the variability of each eigen-

vector with an ellipsoidal cone of uncertainty around that eigenvector (see Fig-
ure 3.11). This is in contrast to the dyadic coherence κ used in brain population
analysis [Jones 2002] to assess the orientation dispersion around an average eigen-
vector vi with a circular cone of uncertainty. A complete analysis of the scatter
matrix could also lead to a more complex cone of uncertainty but would still not
take into account the orthonormality between eigenvectors.

3.5 Conclusion
In this chapter, we presented a framework for the construction and analysis of dif-
fusion tensors atlas. First, we presented how to perform a groupwise registration
of cardiac anatomies with interactive guidance. Second, we gave insights on the
fundamental di�erences between Finite Strain (FS) and Preservation of the Princi-
pal Direction (PPD) reorientation strategies. The FS is more suited for preserving
geometric features of di�usion tensor �elds, whereas the PPD is more suited when
the deformation �eld correspond to a mechanical deformation. Third, we proposed
novel complete and consistent tools for the statistical analysis of a population of
di�usion tensors. These tools are consistent by using Riemannian metric on the
di�usion tensors manifold and complete by computing the covariance matrix of the
whole di�usion tensors that can be decomposed into eigenvalues and eigenvectors
variability. In this way, we proposed a new description of the eigenvectors variability.
Instead of measuring the variability of each eigenvector independently, we measure
the variability of pairs of eigenvectors which takes into account the orthonormality
between eigenvectors. We obtain an anisotropic description of their variability that
is particularly well-suited for the statistical analysis of cardiac �bre architecture.
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4.1 Introduction
As presented in Chapter 2, the cardiac �bre architecture, a complex ar-
rangement of myo�bres [Streeter 1979] bounded to each other to form laminar
sheets [LeGrice 1995a], plays an essential role in de�ning the electrical and me-
chanical behavior of the heart [Rijcken 1999, Costa 1999, Costa 2001, Arts 2001,
Hooks 2007]. Mathematical modeling of the cardiac �bre architecture and its
variability is important to better understand physiological principles and to con-
struct computational models of the heart [LeGrice 2001, Nash 2001, Hunter 2003,
Ayache 2004, Sachse 2004, Smith 2004, Sermesant 2006a]. However, the in vivo
imaging of the cardiac �bre architecture at high resolution is still considered to be in-
feasible in the near term because of heart motion and limitations in current imaging
techniques [Reese 1995, Tseng 1999, Dou 2002, Dou 2003, Gamper 2007]. But still
some studies have shown the interest of low resolution acquisitions for clinical appli-
cations [Wu 2006, Wu 2009]. Therefore, modeling of the cardiac �bre architecture
and its variability on ex vivo data is particularly important. For instance, the �bre
architecture model can be used to simulate the electrical and mechanical functions of
the heart for planning patient-speci�c therapies [Sermesant 2006b, Sermesant 2008,
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Moireau 2008, Reumann 2007, Plank 2008, Romero 2008, Reumann 2008] as op-
posed to experiments on electrical parameter estimation with ex vivo hearts where
acquisition of DT-MRI is available [Pop 2008, Relan 2009].

Until recently, the modeling of the cardiac �bre architecture mostly came from
studies of gross dissections and histological slices [Streeter 1979, Nielsen 1991]. They
revealed the common features between species such as the transmural variation of
the �bre and laminar sheet orientations parametrized by the inclination angle (also
known as elevation angle) and the intersection angle [LeGrice 1995a]. However,
the de�nition of these angles was limited by the 2D nature of histological slices,
whose accurate reconstruction in 3D is not straightforward [Pitiot 2006]. Measure-
ments of �bre architecture have been eased by the use of di�usion tensor magnetic
resonance imaging (DT-MRI) [Basser 1994, Hsu 2001]. Indeed, a correlation be-
tween the cardiac �bre structure and di�usion tensors has been demonstrated: the
primary eigenvector of the di�usion tensor is locally aligned with the �bre direc-
tion [Scollan 1998, Hsu 1998, Holmes 2000] as is the tertiary eigenvector with the
laminar sheet normal [Tseng 2003, Helm 2005c]. Thus, DT-MRI provides directly a
3D description of the �bre architecture in a shorter time but at a lower resolution
compared to histological studies. In the past years several authors have performed
studies on the variability of �bre [Geerts 2002, Helm 2005a, Sundar 2006] and lam-
inar sheet [Helm 2005c, Helm 2005b, Geerts 2002, Helm 2005a, Gilbert 2007] orien-
tations using DT-MRI. They have been so far limited to features extracted from
di�usion tensors such as scalar values (for instance, inclination and intersection
angles [Helm 2005c, Helm 2005b, Gilbert 2007]) or vector values (primary eigenvec-
tor [Sundar 2006, Garcia-Barnes 2009] only describing the �bre orientation). From
these studies, di�erent models of the cardiac �bre architecture were proposed and
used for electromechanical simulations: a synthetic model based on general obser-
vations of the common features in mammalian hearts [LeGrice 1997], a model based
on the 3D reconstruction of the �bre orientation of a canine heart from histolog-
ical studies [Nielsen 1991], and a single DT-MRI acquisition of an ex vivo canine
heart [McCulloch 1998]. These models are either too generic and simpli�ed or too
speci�c to accurately describe the detailed anatomy and its inter-subject variability.
To improve these models, a framework to build very high resolution 3D models of the
cardiac �bre architecture from histological studies has been proposed [Plank 2009].

We propose here a new approach that di�ers from previous studies on two points:
a population of cardiac DT-MRI is used to compute a statistical model and statis-
tics are directly computed on di�usion tensors that contain the whole �bre structure
information. The following preliminary studies try to bridge the gap between sta-
tistical models, synthetic models and patient-speci�c models. First, we use the
framework described in Chapter 3 to build a statistical atlas of cardiac �bre ar-
chitecture from a small database of nine canine ex vivo DT-MRI acquisitions. An
average cardiac DT-MRI1 and its corresponding covariance matrix are computed
to provide an average cardiac �bre architecture and its variability within a popu-

1http://www-sop.inria.fr/asclepios/data/heart



4.2. Canine DT-MRI Atlas and Intra-Species Variability 67

lation. They show the good inter-species stability of �bre orientation as opposed
to the variability of laminar sheet orientation. Second, we proceed to an inter-
species comparison between the canine hearts and a human heart whose ex vivo
DT-MRI acquisition at high resolution is rare. Moreover, since in vivo acquisition
of high resolution cardiac DT-MRI is made di�cult by heart motion, it provides
a preliminary evaluation of the relevance to use a canine heart model for clinical
applications. Finally, we compare this atlas with a synthetic model of mammalian
hearts [LeGrice 2001, Sermesant 2006a] to evaluate the relevance of the simpli�ca-
tions made when building an analytical description of the �bre orientation.

4.2 Canine DT-MRI Atlas and Intra-Species Variability
4.2.1 Data Acquisition
We used a DT-MRI dataset of ex vivo �xed normal hearts (9 canine from beagle
dogs and 1 human) acquired by the Center of Cardiovascular Bioinformatics and
Modeling (CCBM) at the Johns Hopkins University [Helm 2005a] and available on
the internet2. Each heart was placed in an acrylic container �lled with Fomblin,
a per�uoropolyether (Ausimon, Thorofare, NJ). Fomblin has a low dielectric e�ect
and minimal MR signal thereby increasing contrast and eliminating unwanted sus-
ceptibility artifacts near the boundaries of the heart. The long axis of the hearts
were aligned with the z-axis of the scanner. A 3D fast spin echo (FSE) MRI sequence
is used to acquire di�usion weighted images (DWI) in the short-axis plane with a
3D fast spin echo (FSE) MRI sequence with a 4-element knee phased array coil on a
1.5 T GE CV/i MRI Scanner (GE, Medical System, Wausheka, WI) using a gradi-
ent system (from 14 to 28 gradients) with 40 mT/m maximum gradient amplitude
and a 150 T/m/s slew rate. The acquisition resolution of the images are around
0.3 × 0.3 × 0.9 mm3 per voxel. The temperature during acquisition was di�erent
from one heart to another in a range from 18 to 25◦C. The sequence description
and acquisition process are more detailed in [Helm 2005a].

4.2.2 Pre-Processing Data
We �rst extract the heart from background noise by thresholding the Log-Euclidean
norm of the di�usion tensors. The histogram of the trace of the di�usion tensors
shows that there is an important dispersion which is not necessarily due to an
intrinsic variability between hearts (see Figure 4.1). For instance, the temperature
of acquisition can be di�erent. We perform a global normalization of the mean
value of the di�usion tensors norm to minimize the in�uence of this dispersion.
Thus, the inter-subject statistical analysis of the eigenvalues will mostly provide an
information about the dispersion of the di�usion rates variability over the space.
But to obtain realistic averaged di�usion rates in the atlas, we scale the average of

2http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets/
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Figure 4.1: Histograms of the trace of the di�usion tensors in each heart acquired at di�er-
ent temperatures. The DT-MRI are normalized to better capture the intrinsic variability
between hearts.

normalized DT-MRI with the Log-Euclidean mean (which is the geometric mean in
a one dimension space) of all the normalization factors.

4.2.3 Statistical Analysis
We applied the framework presented in Chapter 3 to the dataset of nine canine
hearts presented previously. We obtain an average geometry (see Figure 4.2) and
a cardiac DT-MRI atlas Dlog whose smoothness is suited for �bre tracking (see
Figure 4.3). The covariance matrix of di�usion tensors Σ is computed at each voxel
of the DT-MRI atlas. In Figure 4.4, we can observe its norm

√
Tr (Σ) that measures

the population variability of the whole di�usion tensor with a single scalar value.
It shows a global stability of the compact myocardium and several variable regions,
such as the RV and LV endocardial apices where the �ber structure is probably less
organized. Some other variabilities at the surface of the heart are also probably due
to acquisition artifacts (partial volume e�ect) and registration errors. The histogram
of the norm of the covariance matrix (see Figure 4.5) shows an average variability
of the whole di�usion tensor of around 10%.

In order to have a better interpretation of this covariance matrix and to un-
derstand the origin of the variabilities, we project it onto the orthonormal basis
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Figure 4.2: [Upper Left ] Average geometry from the anatomical MRI. [Others] Top (Upper
Right), side (Lower Right) and bottom (Lower Left) views of �ber tracking computed
on the average DT-MRI. The colors describe the orientation of the primary eigenvector
according to the color sphere (visualization and tensor processing were performed with
MedINRIA available at http://www-sop.inria.fr/asclepios/software/MedINRIA/). Atlas
data are available on the internet at http://www-sop.inria.fr/asclepios/data/heart.
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(a) Smooth DT-MRI Atlas

(b) Fibre tracking showing transmural variation of �bre orientation.

Figure 4.3: Short-axis views of atlas.
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Figure 4.4: Global variability
√

Tr(Σ) (homogeneous to a ratio and expressed as a per-
centage) of the whole tensor in three di�erent orthogonal views: a short axis view and 2
long axis views.

{Wi}i=1,...6 of the tangent space at the mean di�usion tensor. In Figure 4.6, we can
observe the spatial distribution of the variability of the eigenvalues. The percentages
of variability of the 1st, 2nd and 3rd eigenvalues are mostly lower than 10% in the
compact myocardium (see Figure 4.5). The variabilities of the di�usion rates are
homogeneous over the heart and stable over the population.

Extracting the variability of the eigenvectors orientation is important to eval-
uate the variability of the myocardial �ber architecture. As shown in Figures 4.5
and 4.7, the mode of the standard deviations are 7.9 and 7.7 degrees for the two
rotations around the secondary and tertiary eigenvectors in the planes containing
the primary eigenvector. These two values are to be related to the dispersion of the
�ber orientation that appears to be consistent within the population.

The orientation of the laminar sheets described by the rotation of the plane
Span(v2,v3) around v1 shows a much higher mode of the standard deviation with
22.7 degrees. Mostly located in the sub-epicardium and sub-endocardium of the
left ventricle, these high variabilities of the laminar sheet orientations could be
due to the presence of two populations of symmetric laminar sheets in the same
heart [Helm 2005a]. The existence of these two populations was explained as the
optimal con�gurations of the �bers to maximize the systolic shear [Arts 2001]. Sec-
ond, since the secondary and tertiary eigenvalues are closer one to each other than
to the primary eigenvalue, we can expect to have a low con�dence in their de�ni-
tion. But a low con�dence in their de�nition reveals either the absence of laminar
sheet structure or the presence of crossing laminar sheets in the voxel. Beside these
high variabilities in the sub-epicardium and sub-endocardium, the laminar sheet
orientations are still globally less consistent within the population than the �ber
orientation.
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Figure 4.5: [First Row ] Histograms of the global variability
√

Tr(Σ) of the whole di�usion
tensor (homogeneous to a ratio and expressed as a percentage) and the variability of the
primary, secondary and tertiary eigenvalues in the Log-Euclidean space {

√
E(δλi

2)}i=1,2,3

which are also the relative variability of the eigenvalues in the Euclidean space. [Second
Row ] Histograms of the standard deviations of the (V1, V2) frame orientation around V3,
the (V3, V1) frame orientation around V2 and the (V2, V3) frame orientation around V1

eigenvectors (angles in degrees).
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Figure 4.6: Relative variabilities of the primary, secondary and tertiary eigenvalues
{
√

E(δλi
2)}i=1,2,3 about their respective mean. These variabilities are shown in three

di�erent orthogonal views: a short axis view and 2 long axis views.
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Figure 4.7: Standard deviation of the (V1, V2) frame orientation around V3, the (V3, V1)
frame orientation around V2 and the (V2, V3) frame orientation around V1 eigenvectors
(angles in degrees). These variabilities are shown in three di�erent orthogonal views: a
short axis view and 2 long axis views.



4.2. Canine DT-MRI Atlas and Intra-Species Variability 75

4.2.4 Reorientation Strategies and Inter-Subject Variability
Since no convincing experimental studies with non-linear transformation of real
data has been proposed so far in the literature to compare reorientation strate-
gies [Alexander 2001b, Van Hecke 2007], we propose to compare the e�ects of reori-
entation strategies on inter-subject variability with real data and limit the conclusion
of this study to which one better models and explains the inter-subject �remodel-
ing� of a given population (as opposed to intra-subject remodeling that occurs when
organization of cardiac �bres changes to optimize the cardiac function after infarcts
or interventions for instance).

As explained previously, we chose the Finite Strain (FS) reorientation strategy
over the Preservation of the Principal Direction (PPD) to transform the DT-MRI
essentially to be sure to compare their geometric features at the same mechanical
state. Actually, we can also use the di�erences between reorientation strategies to
try to explain the inter-subject variability. A reorientation strategy might be the
right one to transform di�usion tensors. But another one might minimize the inter-
subject variability and thus explain the inter-subject �remodeling� due to geometry
change.

Let's model the di�erence between the transformed di�usion tensor D of the
target image and the corresponding di�usion tensor D′ of the reference image:

D′ = R D R> + εvar

where
- D′ is the di�usion tensor of the reference image,
- D is the di�usion tensor of the target image,
- R D R> is the transformed di�usion tensor of target image,
- εvar is the measured inter-subject variability.

If a given reorientation strategy minimizes the measured variability εvar, it means
that the reorientation strategy better models the inter-subject variability. The na-
ture of the reorientation strategy (mechanical transformation or transformation pre-
serving geometric features) can thus explain �bre architecture reorientation when
geometry changes, which can be called inter-subject �remodeling�. The basic exper-
iment proceeds as follows. First, we register the whole cardiac dataset to a given
heart. This reference heart is not transformed to minimize the in�uence of the re-
orientation strategy in the following comparisons. After registering a heart to the
geometry of the reference heart, we compare the eigenvectors of the transformed
DT-MRI with those of the reference image. Since both reorientation strategies pre-
serve the eigenvalues, the di�erence between them only relies on the orientation of
the transformed eigenvectors. The inter-subject variability εvar is measured with the
basic angular di�erences between the eigenvectors of the reference di�usion tensor
and the transformed ones obtained from both of the reorientation strategies. Gath-
ering the comparisons of 16 registrations using 2 reference hearts, 7.2% of all the
registered voxels are better registered with the FS than with the PPD. The average
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Figure 4.8: Mahalanobis distance of di�usion tensors between the canine atlas and a human
heart.

angular di�erence of the eigenvectors is 0.3 degrees over all the voxels. These di�er-
ences on real data are not signi�cant enough to rely on the reorientation strategy
to explain all the inter-subject variabilities. Probably, the inter-subject variability
of cardiac �bre architecture is not only due to cardiac geometry but probably also
to other physiological parameters.

4.3 Atlas Comparison with Other Models
4.3.1 Inter-Species Comparison with Human Data
In vivo acquisition of cardiac DT-MRI has been recently made possible for research
purpose [Reese 1995, Tseng 1999, Dou 2002, Dou 2003] and preliminary clinical ap-
plications [Wu 2006, Wu 2009], but only at low resolution. Furthermore, normal
hearts are usually preferred to be transplanted rather than used for research pur-
pose. Thus, ex vivo acquisitions of cardiac DT-MRI are rare but nevertheless recent
work on cardiac di�usion tensor regularization was performed on ex vivo human
hearts [Frindel 2009b, Bao 2009].

Since studies of cardiac �ber architecture are mainly based on dissections and
ex vivo DT-MRI acquisitions of other mammalians, comparing the statistical canine
atlas with human data gives the opportunity to provide preliminary results on the
relevance of using prior knowledge from canine data in clinical applications. Only
one human heart is available in the JHU database 3, and even if it is a high quality
acquisition, the quality of the heart itself is not as good as the canine ones due to its
planned use for clinical applications. It limits the conclusion of this study but since
it is rare to have access to human data at high resolution, it is a �rst step towards
a more exhaustive inter-species comparison of the cardiac �ber architecture.

We register the human data on the statistical atlas with the same steps as
described in Sections 3.2 and 3.3 to be consistent with the atlas building framework.

3http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets/
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Figure 4.9: Normalized histograms of the absolute angular di�erence (degrees) of the
primary, secondary and tertiary eigenvectors between the atlas and respectively the canine
hearts, the human heart and the synthetic model (only describing �bre orientation).
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Figure 4.10: Mahalanobis distance of the angular di�erence (times the standard deviation)
of the primary, secondary and tertiary eigenvectors between the atlas and respectively the
canine hearts, the human heart and the synthetic model (only describing �bre orientation).
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Figure 4.11: Angular di�erence of the primary, secondary and tertiary eigenvectors between
the canine atlas and a human heart.
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Eigenvector/Heart Canine Hearts Human Heart Synthetic Model
Primary 6.9◦ - 0.58 10.1◦ - 0.81 19.6◦ - 0.95
Secondary 11.6◦ - 0.57 36.2◦ - 1.15 -
Tertiary 11.4◦ - 0.46 29.1◦ - 1.09 -

Table 4.1: Distribution modes of the angular di�erences between the eigenvectors (degrees)
and of their corresponding Mahalanobis distances (times the standard deviation).

Then, we perform a statistical comparison at each voxel. First, we compute the
normalized Mahalanobis distance µ between di�usion tensors [Pennec 2006]:

µ2
(Dlog,Dhuman)

=
1
6
vec(∆D)> Σ−1 vec(∆D)

where
- ∆D = log(Dhuman)− log(Dlog).

The mode of the normalized Mahalanobis distance is 1.49 whereas it is lower than
1 for canine hearts of the dataset. To have a better understanding of the origin of
this di�erence, we compare the human heart and the synthetic model with the canine
hearts using directly the orientation of the eigenvectors (see Figures 4.9 and 4.10)
and not pairs of eigenvectors that are not available for the synthetic model. The
mode of the angular di�erences of the primary, secondary and tertiary eigenvectors
are respectively 10.1, 36.2 and 29.1 degrees. To compare these di�erences with the
variability of the canine population, we compute the Mahalanobis distance of these
orientation parameters that are respectively 0.81, 1.15 and 1.09 times the standard
deviation (see Table 4.1). These results con�rm that the �ber orientations between
human and canine hearts are more consistent than the laminar sheet orientations.

4.3.2 Comparison with Synthetic Models
Synthetic models of the cardiac �ber architecture, formulated by analytical laws, are
usually built from common features observed on mammalian hearts [Streeter 1979,
LeGrice 1995a] and formulated by analytical laws [Nielsen 1991, LeGrice 1997]
where the transmural variation of the helix angle from endocardium to epicardium is
linear. The synthetic model proposed in [Sermesant 2006a] describes the �ber orien-
tations in a bi-ellipsoidal template geometry of the ventricles where the helix angle
is going from −90◦ to +90◦ (see Figure 4.13). The registration of the bi-ellipsoidal
geometry to the atlas geometry is necessary to compare the �bre orientations. This
model can also be directly constructed in a given cardiac geometry to obtain the car-
diac �bre orientation based on the same analytical laws [Nielsen 1991, LeGrice 1997].
In this case, a distance map between endocardium and epicardium is computed di-
rectly in the atlas geometry (see Figure 4.13). The distance map is computed from
the distance maps dEPI to epicardium, dLV to left ventricular endocardium, and dRV
to right ventricular endocardium.
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Figure 4.12: Prolate coordinate system in the heart: helix or elevation angle α and trans-
verse angle φ.

d =
din

din + dout
where depending on the localization in the left ventricle, right ventricle, or sep-

tum
- din is either dLV or dRV,
- dout is either dRV or dEPI.
This distance map is �rst used to de�ne a prolate coordinate system with radial

r, circumferential c, and longitudinal l vectors (see Figure 4.12). The radial vector
r follows the gradient direction of the distance map. l is computed as the normal
vector orthogonal to r in the plane spanned by r and the long axis direction of the
left ventricle. The circumferential vector c is then de�ned such that r, c, and l form
an orthonormal basis. Second, the helix angle α is obtained with the distance value
d as follows:

α(d) = (1− d) αendo + d αepi

where
- αendo is the helix angle at the endocardium,
- αepi is the helix angle at the epicardium.

Synthetic models of �bre orientations are built with both strategies and com-
pared to the �bre orientation of the DT-MRI atlas. First, we non-linearly register
the bi-ellipsoidal synthetic geometry to the atlas geometry using the same method
as presented in Section 3.2 [Peyrat 2007b]. Since this synthetic description is sim-
ply a vector �eld of the �ber orientation, we only use the primary eigenvector of
the statistical atlas. We compare the histograms of the angular di�erence and its
Mahalanobis distance between the �ber orientations of the synthetic model and the
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(a) Synthetic 3D bi-ellipsoidal shape and �re orientation parameterized with its helix angle.

(b) Bi-ventricular shape of the atlas and distance map used to de�ne the helix angle from epicardium
to endocardium.

Figure 4.13: Synthetic models of cardiac �bre orientations.

atlas. In Table 4.1 and Figures 4.9 and 4.10, we observe that the distribution modes
of the synthetic model (19.6 degrees and 0.95 times the standard deviation) are
higher than the distribution modes of the canine hearts (6.9 degrees and 0.58 times
the standard deviation). The synthetic model is farther to the population of canine
hearts than the human heart. The ellipsoidal geometry and the �ber orientations of
the synthetic model are probably not accurate enough to catch all their subtle vari-
ations. For instance, in the short axis view the discontinuity at the crossing of the
two ventricular walls is not realistic. Moreover, the synthetic description reaches
its limits at the right ventricular and left ventricular apices where the modeling
probably needs di�erent analytical laws from the compact myocardium.

We also compare the atlas to synthetic models directly built in the atlas geom-
etry with di�erent asolute values of helix angles at endocardium and epicardium
from 0◦ to 90◦. Figure 4.14(b) shows that the best �t to the atlas corresponds to
the endocardial helix value of +45◦ and the epicardial helix value of −60◦. More
local comparisons in each American Heart Association (AHA) zones are detailed in
Appendix C. Same conclusions than with the bi-ellipsoidal model can be done based
on the spatial distribution of the di�erences where the ventriculo-septal junctions
and the apices are following di�erent analytical laws.

We can also compare the atlas to synthetic models extracting the helix and
transverse angles of the atlas �bre orientation. Results in Figure 4.15 show the
distribution of angles with respect to the transmural distance from endocardium
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(a) Angular di�erence between the canine atlas and the bi-ellipsoidal synthetic model.

(b) Comparison of �bre direction between atlas and synthetic models con-
structed in atlas geometry and parametrized with di�erent helix angles at
epicardium and endocardium. The color represents the average angular dif-
ference. The best �t of atlas �bre direction is obtained with helix angle from
+45◦ at endocardium to −60◦ at epicardium.

(c) Angular di�erence between the canine atlas and the synthetic model directly computed
in the atlas geometry with helix angle from +45◦ at endocardium to −60◦ at epicardium.

Figure 4.14: Angular di�erence between the canine atlas and the synthetic models.
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to epicardium. Linear and cubic regressions of these distributions in Figure 4.16
show that the linear model of transmural variation of helix angle is su�cient and
consistent with extreme values of helix angles obtained from Figure 4.14(b). But as
shown in Appendix C, the linear model of transmural variation of helix angle might
not be valid in several AHA zones. Actually, in some regions such as the apex, no
model of transmural variation of �bre orientation is really apparent. More generally,
the distribution of �bre orientation is more consistent in the left ventricle than in
the right ventricle, and at the base than at the apex.

4.4 Conclusion
We believe that this statistical atlas4 will lead to a better understanding of the
cardiac �bre architecture. For instance, the application of this framework to nine
canine hearts con�rms the already established stronger intra-species stability of
�ber orientations than laminar sheet orientations [Helm 2005a, Gilbert 2007]. As
preliminary results of an inter-species comparison between a human heart and the
statistical atlas of canine hearts, we observe the good inter-species stability of the
�ber orientations. Of course, the access to a larger database will provide more
reliable inter- and intra-species statistics. A better understanding of the inter-species
di�erences would help for instance to extend experimental results from one species
to another. Building and comparing statistical atlases of normal and pathological
hearts could also help in a better quanti�cation of the pathology, for instance in the
remodeling process.

Moreover, such a statistical atlas o�ers a valuable prior knowledge in the context
of electromechanical modeling of the heart. The information about the laminar
sheets is particularly relevant since it has been shown to in�uence signi�cantly the
cardiac motion [Arts 2001, Usyk 2000], in particular the wall thickening and the
apico-basal torsion [Costa 2001]. As initiated in [Geerts 2003], a precise study of
the impact of the cardiac �bre architecture on the electromechanical simulations
would make it possible to design the best �bre model for simulation-based clinical
applications.

4http://www-sop.inria.fr/asclepios/data/heart
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(a) Joinh histogram of helix angle and normalized transmural distance
from epicardium to endocardium in atlas (color represents the number of
voxels)

(b) Joint histogram of transverse angle and normalized transmural dis-
tance from epicardium to endocardium in atlas (color represents the num-
ber of voxels)

Figure 4.15: Joint histogram of helix (a) or transverse (b) angles with the relative trans-
mural distance from epicardium to endocardium in the atlas.
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(a) Helix Angle

(b) Transverse Angle

Figure 4.16: Average helix (a) and transverse (b) angles (in continuous black lines) at
given relative transmural distance from epicardium to endocardium in the whole heart
obtained from joint histograms in Figure 4.15 and its corresponding envelop at a distance
of one standard deviation (dashed black lines). Linear and cubic regression are also shown
(respectively in dashed blue and red lines).
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5.1 Introduction
During the last decade, the improvement of medical imaging technologies extended
3D image acquisitions to 4D sequence acquisitions such as cine MRI, tagged
MRI, 4D CT or 4D ultrasound. They give access to additional information
important for studying the motion of organs (such as heart and lung) or for
real-time control during image-guided surgical procedures. Since the temporal
dimension cannot be considered as an additional spatial dimension, the extension
of 3D image processing tools to 4D spatio-temporal data is not straightforward.
Thus, the development of speci�c algorithms for spatio-temporal data is necessary
such as temporal interpolation [Ehrhardt 2006], segmentation [Angelini 2001,
Bosch 2002, Lorenzo-Valdés 2004, Montagnat 2005, Fritscher 2005, Lelieveldt 2006,
Uzumcu 2006, Kohlberger 2006, Cousty 2007, Casero 2008], statistical analysis
of cardiac shape and dynamics [Perperidis 2005a, Hoogendoorn 2009], motion
tracking [Prince 1992, Park 1996, Declerck 1998, Osman 1999, Huang 1999,
McEachen 2000, Chandrashekara 2004, Ledesma-Carbayo 2005, Clarysse 2005,
Delhay 2006, Sundar 2009, Bistoquet 2007, Sarrut 2007, De Craene 2009],
image-to-sequence registration [Roche 2001, Pennec 2005], temporal
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alignment [Singh 2007, Perperidis 2005b], and spatio-temporal registra-
tion [Caspi 2002, Huang 2005, Zhang 2007, Perperidis 2005b, Lopez 2008a,
Lopez 2008b, Schreibmann 2008]. Most of the spatio-temporal registration al-
gorithms deal with the registration of sequences of the same patient acquired
with di�erent imaging modalities. Recently, research has addressed the more
complex inter-subject spatio-temporal registration of sequences. Some 3D image
registration applications were extended to 4D sequences, such as registration-based
segmentation [Lopez 2008a, Lopez 2008b] or atlas construction [Perperidis 2005a].
Furthermore, it opens doors to applications speci�c to spatio-temporal data, for
instance by comparing the temporal evolution of local parameters of homologous
anatomical points (such as strain or depolarization/repolarization times) or by
analyzing the temporal change of inter-sequence transformations over a cardiac
cycle to better understand the link between anatomical and functional di�erences.

Caspi and Irani [Caspi 2002] were among the �rst to propose a framework for
sequence-to-sequence alignment using spatio-temporal transformations. Since their
algorithm was designed for the registration of di�erent camera views of the same
dynamic scene, they constrained the spatio-temporal transformation to a 1D tempo-
ral linear transformation to cope with the di�erent acquisition rates of the cameras
and to a 3D a�ne transformation constant over time to cope with the di�erent
camera views. They showed that folding spatial and temporal information into a
single alignment framework outperforms a purely image-to-image alignment of cor-
responding frames.

Sundar et al. [Sundar 2009] proposed to embed cardiac motion tracking into a
4D registration framework. The original sequence is registered to a static sequence
built from the image at a reference time-point. All 3D transformations from a given
time-point to the reference time-point are determined simultaneously with spatio-
temporal smoothness constraints. Compared to the independent 3D registration of
each time-point to the reference time-point, this method showed more robust results.
But since this framework was limited to motion estimation in a single sequence,
issues speci�c to the comparison of di�erent sequences, like temporal misalignment
and large inter-sequence deformations, were not addressed.

Perperidis et al. [Perperidis 2005b] proposed to register two cardiac MR se-
quences of di�erent patients with spatio-temporal free-form deformation models
based on B-Splines. The registration algorithm optimizes either the spatial and
temporal transformation models simultaneously or optimizes the temporal transfor-
mation before optimizing the spatial transformation. The temporal transformation
is a 1D B-Spline transformation that corrects temporal misalignment caused by
length di�erences of the cardiac cycles and by kinetic di�erences of cardiac phases.
The spatial transformation is a single 3D B-Spline transformation that corrects
spatial misalignment at all corresponding time-points caused by global anatomical
di�erences. Since the same inter-subject spatial transformation is used over time,
residual anatomical di�erences occur between corresponding time-points. These dif-
ferences are used to build a probabilistic MR cardiac atlas representing the anatomy
and function of a healthy heart.
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To catch those residual di�erences and to fully map corresponding images at each
time-point, a time-dependent spatial transformation is necessary. When registering
4D lung CT sequences of the same patient for image-guided radiotherapy, Schreib-
mann et al. [Schreibmann 2008] determined a spatial 3D B-Spline transformation
independently at selected time-points. For inter-subject registration of cardiac cine
MRIs where the anatomies and motion patterns can have high discrepancies between
patients, Lopez et al. [Lopez 2008a, Lopez 2008b] extended this solution by includ-
ing image information from neighboring time-points (called bridging points). They
computed a 3D B-Spline transformation at each time-point with an energy func-
tional matching simultaneously the normalized mutual information of three pairs
of images: the pair of images at the current time-point and two pairs of images at
the neighboring time-points transformed to the geometry of the current time-point
with intrasubject motion transformations. Their results show an improvement of
the registration accuracy by comparing endocardial and atrial segmentations. But
in both methods, the 3D B-Spline transformations are computed independently at
each time-point. Thus they are not necessarily consistent with motion occurring in
each sequence by matching the same physical points at di�erent time-points. This
constraint is important when comparing the temporal evolution of local parameters
of homologous anatomical points.

In this chapter, we present a general framework in which the resulting inter-
sequence spatial transformations verify the constraints to map the same physical
points over time, called the trajectory constraints. In this framework, the 4D spatio-
temporal registration is decoupled into a 4D temporal registration, de�ned as map-
ping physiological states, and a 4D spatial registration, de�ned as mapping trajec-
tories of physical points. A temporal registration is performed using global cardiac
physiological state parameters. After this global temporal alignment, the 4D spa-
tial registration is performed. Our contribution focuses more speci�cally on the
improvement of this 4D spatial registration step by including the trajectory con-
straints. A motion tracking is performed with the Di�eomorphic Demons (DD)
algorithm [Vercauteren 2009] to determine the dense trajectories of points in both
sequences. Then, these dense trajectories are used to constrain temporally the inter-
sequence spatial transformations. By including the trajectory constraints, we show
that the 4D spatial registration can be formulated as a multichannel registration of
3D images at a reference time point combined with inversions and compositions of
transformations. The multichannel registration problem is solved by using the Mul-
tichannel Di�eomorphic Demons (MDD), a novel extension of the DD algorithm to
vector-valued data that is presented at the end of this chapter.

5.2 General Setting
We describe here the general setting for the spatio-temporal registration of 4D se-
quences that estimates two di�erent types of transformations: a temporal transfor-
mation and a spatial transformation. First, we introduce the temporal transforma-
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tion as a physiological state mapping. Second, we present the 4D spatial registration
as a trajectory mapping from which we derive a discrete formulation of the trajectory
constraints that should be veri�ed.

Let's consider the reference sequence I and the target sequence I ′ whose acqui-
sition space-time are respectively Ω × τ ⊂ R3 × R and Ω′ × τ ′ ⊂ R3 × R:

I : Ω × τ −→ R I ′ : Ω′ × τ ′ −→ R
(x, t) 7−→ I(x, t) = i (x′, t′) 7−→ I ′(x′, t′) = i′

When registering the target sequence I ′ to the reference sequence I, the spatio-
temporal transformation S that maps a spatio-temporal position (x, t) of I to the
corresponding spatio-temporal position (x′, t′) of I ′ must be found:

S : Ω × τ −→ Ω′ × τ ′

(x, t) 7−→ S(x, t) = (x′, t′)

The spatio-temporal transformation S can be formulated as the combination of
a spatial transformation Sspace and a temporal transformation Stime as follows:

S(x, t) = (Sspace(x, t), Stime(x, t))

In the following, we give more details about the two types of transformations.
First, we present the temporal transformation as a mapping of corresponding phys-
iological states. Second, we present the spatial transformation as a mapping of
corresponding trajectories of physical points.

5.2.1 Temporal Transformation as Physiological States Mapping
The temporal transformation Stime is de�ned as follows:

Stime : Ω × τ −→ τ ′

(x, t) 7−→ Stime(x, t) = t′

The idea behind the temporal transformation is to match an event occurring
at the time-point t and the spatial position x in the reference sequence to a sim-
ilar event occurring at the corresponding time-point t′ in the target sequence. In
medical imaging, corresponding time-points can be de�ned as time-points at which
physiological states are the same, for instance the end of diastole/systole for a
given cardiac ventricle or the beginning of a respiration cycle for a lung. Thus
the temporal transformation is highly dependent on which physiological parameters
we want to compare. In previous works, the temporal transformation Stime was
determined by matching a parameter describing a global physiological state of the
heart such as a speci�c event of the ECG (e.g. P, Q, R, S, and T peaks), vol-
ume extrema of the left ventricle, the average cross-correlation coe�cient between
frame intensities [Larson 2004, Perperidis 2005b] or the path of a speci�c anatomical
point [Singh 2007]. Since these global parameters are the same for every position



5.2. General Setting 93

Figure 5.1: Wiggers Diagram [Richardson 1998] - This diagram shows di�er-
ent physiological parameters with the same timeline of a cardiac cycle: pressure
and volume curves, ECG, and phonocardiogram (�gure adapted from Wikipedia -
http://en.wikipedia.org/wiki/Cardiac_cycle). These physiological parameters can be used
to detect di�erent physiological events occurring in a cardiac cycle such as diastole, systole,
or valves opening and closing.

at a given time-point, the resulting temporal transformation is independent of the
spatial position x and thus a function of time only. Actually the temporal trans-
formation can be space dependent when two structures have di�erent physiological
patterns. For instance the periods of the cardiac and respiration cycles are di�erent
and the temporal transformation of a sequence imaging heart and lungs should be
di�erent for each organ. It could also happen with di�erent areas of a single organ.
For instance we might want to temporally register independently the left and right
cardiac ventricles in pathological cases such as a left bundle branch block (LBBB)
where the activation of the left ventricle is delayed, which results in the left ventricle
contracting later than the right ventricle. We could also imagine to temporally regis-
ter events that are locally de�ned such as depolarization/repolarization or maximum
contraction that are spatially dependent. Obviously the temporal transformation
can become very complex when comparing local physiological events. The complex-
ity of the temporal transformation and the choice of the features used for temporal
registration should be governed by the desired application.

As mentioned previously, the temporal transformation is determined by the regis-
tration of some signals or quantities that may not be intensity-based (see Figure 5.1)
whereas the spatial registration is intensity-based. Thus, when using di�erent data,
the temporal transformation Stime can be determined independently from the spatial
transformation Sspace. The temporal transformation can even be applied after the
spatial transformation as long as structures are not appearing and/or disappearing
during the sequences and as long as images at each time-point in the reference se-
quence has an image at the same time point in the target sequence to be compared
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to. This happens when the same structures are present during the whole sequence
and when the acquisition time intervals τ and τ ′ exactly overlap, which is the case
after global linear temporal registration. This linear transformation is often implic-
itly performed in the acquisition process such as in 4D cardiac CT sequences that
are gated from the end of diastole (ED) of a cardiac cycle to the ED of the next
cycle.

For instance, in the following experiments of Chapter 6 where 4D cardiac CT
sequences are registered, we �rst de�ne the global physiological state with the ECG
(as a percentage of R-R interval) temporally aligned with a linear transformation.
In practice, this linear transformation is implicitly performed in the ECG-gated ac-
quisition process of 4D cardiac CT where each frame correspond to a percentage
of the R-R interval. Then, a non-linear temporal transformation re�nes the lin-
ear transformation by matching global mechanical state de�ned with blood volume
curves. In this way, the following inter-sequence spatial registration between corre-
sponding frames are performed at corresponding mechanical states and thus with
similar geometries.

When the temporal transformation is known, sequences can be temporally re-
sampled. Due to the nature of the temporal dimension, one should note that the
temporal interpolation cannot be performed only as an intensity-based linear in-
terpolation of images without coping with the motion occurring in the sequence.
Temporal interpolation should rely on a motion-based interpolation of images as
proposed by Ehrhardt et al. [Ehrhardt 2006]. Thus motion tracking, computed as
described in the following Section ??, is necessary for the temporal resampling of
sequences.

5.2.2 Spatial Transformation as Trajectory Mapping
The spatial transformation Sspace is de�ned as follows:

Sspace : Ω × τ −→ Ω′

(x, t) 7−→ Sspace(x, t) = x′

To be physically meaningful when determining the time-dependent spatial trans-
formation Sspace, the same physical points should be mapped at di�erent time points
in both sequences. In other words, if we de�ne the position of a physical point X

over time as the trajectory φX :

φX : τ −→ Ω

t 7−→ φX(t) = x

we can formulate the problem as �nding the transformation Sspace such that the
trajectory φX of a physical point X in the reference sequence maps the trajectory
φX′ of its corresponding physical point X ′ in the target sequence:

Sspace
(
φX(·), ·) = φX′(·) (5.1)
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(a) (b)

Figure 5.2: (a) Discretization of the 4D spatial registration with the spatial transforma-
tions Sj between the sequences and the motion transformations Mj,k and M ′

j,k between
frames at times tj and tk (note that the arrows show the direction of the resampling de-
formation �elds used to transform the target image to the reference image) - (b) Under
the trajectory constraints, the 4D registration can be parametrized by a single reference
spatial transformation S4D

j and thus formulated as a multichannel 3D registration problem.
Frames Ik and I ′k of the two sequences are transformed through the motion transformations
Mj,k and M ′

j,k to the reference geometry of images Ij and I ′j . The transformations S4D
k are

then reconstructed from S4D
j to satisfy the trajectory constraint: S4D

k = M ′
j,k ◦S4D

j ◦M−1
j,k .

With this formulation we can easily understand why matching corresponding
trajectories is independent from matching corresponding time-points as mentioned
in the previous section. Indeed a temporal transformation does not modify the
nature of a trajectory but does solely modify the speed of a physical point along
its trajectory. It simply means that a temporal transformation does not modify the
anatomical position of a physical point but does only modify its physiological state
over time. Our goal here is to perform a robust intensity-based image matching of
corresponding anatomical points independently of occurring physiological events.

The temporal discretization of the 4D spatial registration is illustrated in Fig-
ure 5.2 (note that we call transformations the resampling transformations used to
deform the target image to the reference image, the arrows show the direction of
the resampling deformation �elds used to �nd the corresponding point of the ref-
erence image in the target image). The inter-sequence transformations Sj map the
reference volume Ij to the target volume I ′j at time tj knowing the trajectories of
points given by the intrasequence motion transformations Mj,j+1 and M ′

j,j+1 be-
tween the times tj and tj+1 respectively in the reference and target sequences. In
the discrete world, Equation 5.1 is equivalent to stating that if a point position x in
image Ij maps a point position x′ in I ′j by the inter-sequence transformation Sj then
the remaining inter-sequence transformations Sj+1 should map the displaced point
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position Mj,j+1(x) to the displaced point position M ′
j,j+1(x

′). This translates into
a set of constraints, called the trajectory constraints, that link the inter-sequence
transformations Sj and Sk with the motion transformations Mj,k (from Ij to Ik)
and M ′

j,k (from I ′j to I ′k) :
Sk ◦Mj,k = M ′

j,k ◦ Sj (5.2)
In the sequel, we formulate the 4D spatial registration as the minimization of a

functional including those trajectory constraints and considering the motion tracking
as a known parameter previously computed independently in each sequence.

5.3 From 4D Registration to Multichannel 3D Registra-
tion

When determining the inter-sequence transformation Sj , the standard approach is
to minimize the image similarity measure between the pair of images (Ij , I

′
j) :

S3D
j = argmin

S

(∫

ω∈Ωj

Sim( Ij(ω), I ′j ◦ S(ω) ) dω

)
(5.3)

We call this inter-sequence transformation S3D
j the solution to the 3D registration

problem that only involves one pair of images (Ij , I
′
j).

When determining the set of inter-sequence transformations (S4D
j )j=1,...,N for

the 4D spatial registration, we want to simultaneously minimize the image similarity
measure between all pairs of images (Ij , I

′
j) :

(S4D
1 , ..., S4D

N ) = argmin
(S1,...,SN )

(
N∑

k=1

∫

ω∈Ωk

Sim( Ik(ω), I ′k ◦ Sk(ω) ) dω

)
(5.4)

If each transformation S4D
j is considered independent from the others, the solution

is similar to �nding each transformation S3D
j . Actually to ensure that the trans-

formations (S4D
j )j=1,...,N map the same physical point over time, the trajectory

constraints of Equation 5.2 should be veri�ed. Thus a strong link exists between
all inter-sequence transformations that cannot be considered independent anymore.
The trajectory constraints can be reformulated as S4D

k = M ′
j,k ◦S4D

j ◦M−1
j,k that may

be interpreted as follows: to satisfy the trajectory constraints, the transformation
M ′

j,k ◦ S4D
j ◦M−1

j,k should map image Ik into image I ′k.
Motion tracking is performed with an updated Lagrangian scheme with Gaussian

regularization. Basically, the intrasequence motion transformations Mj,k and M ′
j,k

are iteratively computed by initializing the registration of frame tk to reference frame
tj in each sequence with the motion transformations Mj,k−1 and M ′

j,k−1 obtained
at the previous step. Since motion tracking is necessary to temporally resample
the sequences when using motion-based interpolation, motion tracking is actually
performed with the original sequences before temporal resampling. Then motion
tracking is also temporally resampled according to the temporal transformation in
order to be consistent with the temporally resampled sequence.
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In the remainder, we consider the motion transformations Mj,k and M ′
j,k as �xed

when determining the inter-sequence transformation S4D
j . Indeed, motion tracking

is intrinsically independent from any inter-sequence registration. Motion transfor-
mations are estimated independently and then used to improve the estimation of the
inter-sequence transformations. This assumption makes sense when considering that
the motion transformations are much easier to estimate than inter-sequence trans-
formations. Indeed, inter-sequence transformations have larger deformations than
motion transformations (especially in sequences with high temporal resolution). Fur-
thermore, they are less constrained than cardiac motion, since cardiac motion follows
the law of biomechanics that can be included as an a priori knowledge, for instance
elasticity or nearincompressibility of cardiac tissue [Bistoquet 2007, Mansi 2009]. In
this way, physically meaningful constraints on the estimation of the intrasequence
motion transformations would be indirectly included to the estimation of inter-
sequence anatomical transformations through the trajectory constraints.

Applying the trajectory constraints to the set of variables (Sj)j=1,...,N in the
minimization process, any transformation Sk can be parametrized with a single
transformation Sj at a reference time-point tj and the motion transformations M ′

j,k

and Mj,k. The number of unknown variables is highly decreased by determining
only the chosen reference transformation S4D

j that minimizes the following modi�ed
functional of Equation 5.4 :

S4D
j = argmin

S




∫

ω∈Ωj

Sim( Ij(ω), I ′j ◦ S(ω) ) dω +

∑

k 6=j

∫

ω∈Ωk

Sim( Ik(ω), I ′k ◦M ′
j,k ◦ S ◦M−1

j,k (ω) ) dω




Applying the appropriate change of variable ω = Mj,k(ν) for each term of the
functional, the 4D spatial registration can be formulated as the minimization of
similarity criterion between several pairs of images (see Figure 5.2):

S4D
j = argmin

S




∫

ω∈Ωj

Sim( Ij(ω), I ′j ◦ S(ω) ) dω +

∑

k 6=j

∫

ν∈Γj

Sim( Jj,k(ν), J ′j,k ◦ S(ν) )|Jac(Mj,k)(ν)| dν




where Jj,k = Ij ◦Mj,k and J ′j,k = I ′j ◦M ′
j,k are respectively the images at frame k

transformed into the geometry of the image at frame j in the reference and target
sequences, Γj ∈ Ωj is part of image Ij , and Jac(Mj,k) is the Jacobian of transfor-
mation Mj,k.

In other words, the inter-sequence transformation S4D
j must optimize the sum

of similarity criteria between the pair of images (Ij , I
′
j) and all pairs of images

(Jj,k, J
′
j,k). Note also that the terms Jac(Mj,k) deriving from the change of variables

take into account volume change of voxels when transforming Ik into Jj,k. This term
acts as a voxel-wise weight map in each similarity criterion to ensure the equivalence
of the energy functional formulated in the original and warped spaces. Once S4D

j
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is estimated, the other transformations S4D
k can be computed from S4D

j with the
trajectory constraints: S4D

k = M ′
j,k ◦ S4D

j ◦M−1
j,k .

Finally, we have shown that including the trajectory constraints in the estima-
tion of the inter-sequence transformation S4D

j translates the 4D spatial registration
problem into a single 3D multichannel registration problem associated with pairs of
images (Ik, I

′
k) transformed respectively in the reference space of the images Ij and

I ′j .
The 4D spatio-temporal registration framework can be summarized as follows:

4D Spatio-Temporal Registration Algorithm

(1) Temporal alignment w.r.t. global physiological parameters.

(2) Compute motion tracking Mj,k and M ′
j,k registering each frame tk to

the reference frame tj .

(3) Resample motion tracking M ′
j,k and target sequence I ′ with motion-

based interpolation.

(4) Transform each frame of I and I' to the reference frame with the motion
tracking Mj,k and M ′

j,k.

(5) Compute S4D
j in the reference frame using 3D multichannel registration

algorithm (cf. 5.4.2).

(6) Compute S4D
k in other frames using the trajectory constraints : S4D

k =
M ′

j,k ◦ S4D
j ◦M−1

j,k .

5.4 Spatial 4D Registration with Di�eomorphic Demons
In this section, we present a novel extension of the Di�eomorphic Demons
(DD) [Vercauteren 2009] to multichannel data (or vector-valued data), called the
Multichannel Di�eomorphic Demons (MDD). We have chosen to extend the DD
algorithm but this choice is not exclusive. Other registration algorithms could also
be extended to multichannel data. Due to the trajectory constraints, the space of
resulting transformations should be stable by composition and inversion which is
the case with the DD. Mainly the speed of DD algorithm is a signi�cant advantage
when considering to process large 4D datasets in a reasonable amount of time. Re-
cently, it has been shown in a thorough comparison of registration algorithms for
brain applications [Klein 2009] that DD was one of the fastest di�eomorphic reg-
istration algorithm [Hermosillo 2002, Beg 2005, Ashburner 2007, Hernandez 2007,
Marsland 2007, Avants 2008].

We begin with the presentation of the di�eomorphic exten-
sion [Vercauteren 2009] of Thirion's Demons registration algorithm [Thirion 1998]
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for 3D images that is used to determine the motion transformations Mj,k and
M ′

j,k. Then we present a novel extension of Demons algorithm to vector-valued
images that is used to determine the reference shape transformation S4D

j of the 4D
registration framework.

5.4.1 Standard 3D Di�eomorphic Demons
The original Demons registration algorithm [Thirion 1998] is based on optical �ow.
But it has been shown that introducing a hidden variable, called the correspon-
dences, the Demons can be formulated as a well-posed energy minimization with an
alternate optimization scheme [Cachier 2003]. When registering the target 3D image
I ′ to the reference 3D image I, the update transformation u of the current transfor-
mation S is �rst determined by minimizing the correspondences energy Ecorr (see
Equation 5.5) to obtain the correspondences transformation c = S ◦ u. Second, the
correspondences transformation c is regularized to obtain the new transformation
S. The correspondences energy Ecorr is formulated as follows:

Ecorr(u) =
1

2|Ω|
∫

ω∈Ω

∥∥∥∥
[
I(ω)− I ′ ◦ S(ω)

0

]
+

[ GT (ω)
σ(ω)/σc Id

]
u(ω)

∥∥∥∥
2

dω (5.5)

where Ω is the overlap between I and I ′ ◦ S, ω is the voxel position, G(ω) =
1
2(∇I(ω) + ∇I ′ ◦ S(ω)) is the spatial gradient of intensity whose formulation
comes from a linearization of the ESM scheme detailed in [Vercauteren 2009],
σ(ω) = |I(ω) − I ′ ◦ S(ω)| is the local estimation of the image noise, and σc is a
�xed parameter that bounds the spatial uncertainty on the correspondences trans-
formation. Note that the transformation u, which outputs a position, and its corre-
sponding deformation �eld u are di�erentiated by bold characters. The link between
them can be formulated as follows: u = Id + u where Id is the identity transforma-
tion.

A closed form solution of the minimization of the correspondences energy is given
by the update vector �eld u :

u = − I − I ′ ◦ S

GTG+ σ2/σ2
c

G (5.6)

To constrain the update transformation to be di�eomorphic, the minimization
of the functional is performed directly in the one-parameter subgroup of di�eomor-
phisms with stationary speed vector �elds. Vercauteren et al. [Vercauteren 2009]
showed that at a �rst order approximation this is equivalent to using the standard
Demons algorithm and taking the exponential of the update transformation u. In
this way, the update vector �eld u is the speed vector �eld parametrizing the update
di�eomorphic transformation v = exp(u).

The algorithm can be summarized as follows :
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3D Di�eomorphic Demons Registration Algorithm
(from [Vercauteren 2009])

(A) Choose an initial spatial transformation S.

(B) Iterate until convergence:

(1) Given S, compute the update vector �eld u with Equation 5.6.
(2) If a �uid-like regularization is used (typically a Gaussian kernel),

let u← K�uid ? u.
(3) Fast computation of the exponential exp(u):

(a) Choose n such that ‖2−nu‖ is close enough to 0, e.g.
max‖2−nu(p)‖ ≤ 0.5 voxel.

(b) Perform an explicit �rst order integration: v(p)← 2−nu(p)
for all pixels p.

(c) Do n (not 2n!) recursive squarings of v = Id+v : v ← v ◦ v.
(4) Let S ← S ◦ v.
(5) If a di�usion-like regularization is used (typically a Gaussian ker-

nel), let S← Kdi� ? S.

5.4.2 Multichannel 3D Di�eomorphic Demons

Multichannel non-linear registration algorithms were mostly developed for the
registration of DT-MRI [Ruiz-Alzola 2002, Rohde 2003, Park 2003, Zhang 2006,
Cao 2006, Van Hecke 2007, Chiang 2008, Yeo 2009]. They were recently applied
to the simultaneous fusion of multiple modalities [Avants 2007] and to the construc-
tion of multichannel atlas with di�erent modalities [Rohl�ng 2008]. Among those
registration algorithms, an extension of the Demons algorithm to multichannel data
has been proposed for DT-MRI registration based on transformation invariant ten-
sor characteristics [Park 2003]. Basically, the authors average the update vector
�eld computed independently for each channel. But in this approach, the real cou-
pling between the channels is lost and approximated by averaging the update vector
�elds. Yeo et al. [Yeo 2009] preserved this coupling by extending the Demons algo-
rithm to vector-valued images and also including the �nite-strain di�erential to take
into account the reorientation of di�usion tensors [Alexander 2001b]. In our case,
we deal with data that do not need any reorientation, but we include a voxel-wise
con�dence map to each channel. Thus, we can formulate the multichannel Demons
correspondences energy as follows :

Ecorr(u) =
N∑

j=1

(
1

2|Ωj |
∫

ω∈Ωj

∥∥∥∥
[
Ij(ω)− I ′j ◦ S(ω)

0

]
+

[ GT
j (ω)

σj(ω)/σc Id

]
u(ω)

∥∥∥∥
2

αj(ω) dω

)
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where N is the number of channels, Ωj is the overlap between Ij and I ′j , Gj =
1
2(∇Ij(ω)+∇I ′j ◦S(ω)) is the spatial gradient of intensity in channel j whose formu-
lation comes from a linearization of the ESM scheme detailed in [Vercauteren 2009],
σj is the local noise estimation in channel j, and αj > 0 the voxel-wise weight map
for the channel j.

Its minimization gives the following equation to solve at each voxel :

N∑

j=1

αj(GjGT
j + σ2

j /σ2
c Id) u = −

N∑

j=1

αj(Ij − I ′j ◦ S) Gj

Considering the eigen decomposition
∑3

i=1 λ2
i eieT

i of the 3 × 3 symmetric positive
matrix D =

∑N
j=1 αjGjGT

j , the update vector �eld becomes :

u =
3∑

i=1

Pi

λ2
i + σ2/σ2

c

ei (5.7)

where Pi = −
(∑N

j=1 αj(Ij − I ′j ◦ S) GT
j

)
ei and σ2 =

∑N
j=1 αjσ

2
j , and σc is a pa-

rameter that constrains the maximum step length such that the update vector �eld
veri�es ‖u‖ ≤ σc

√
d/2 (d the number of spatial dimensions in the image). The

coupling between channels relies on the eigen decomposition of the sum D of the
dyadic tensors αjGjGT

j . This formulation should improve the speed and accuracy
of the convergence compared to previous multichannel approach with Demons algo-
rithm [Park 2003], especially in the case of non-aligned gradient vectors.

The Multichannel Di�eomorphic Demons (MDD) algorithm is similar to the
Di�eomorphic Demons (DD) algorithm except that at step (B)(1) the update vector
�eld should be computed with Equation 5.7 instead of Equation 5.6.

5.5 Conclusion
In this chapter, we introduced a general setting of spatio-temporal registration of
4D time-series of images. In this setting, the registration can be decomposed into
temporal and spatial transformations. The temporal transformation corrects the
misalignment of physiological events de�ned by physiological state parameters cho-
sen depending on the desired application. The spatial transformation aims to map
the same corresponding physical points over time, or in other words to map corre-
sponding trajectories of points. This can be translated into constraints on the inter-
sequence spatial transformations and the intrasequence motion transformations pre-
viously determined independently in each sequence. We called these constraints the
trajectory constraints.

We showed that under these constraints the 4D spatial registration of two se-
quences can be formulated as a multichannel 3D registration at a reference time
point. In this way, the problem is highly simpli�ed by determining a single spatial
transformation mapping two sequences and by using the trajectory constraints to
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reconstruct the other transformations with the help of the intrasequence motion
transformations.

We also proposed a rigorous extension of the 3D Di�eomorphic Demons to
vector-valued images, called Multichannel Di�eomorphic Demons. This extension
has been used to perform the multichannel 3D registration, a simpli�ed version of
4D spatial registration taking into account the trajectory constraints.
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6.1 Introduction

The framework presented in Chapter 5 is applied to the inter-subject registration of
4D cardiac CT sequences for evaluation. We compare it to other standard methods
with real patient data and synthetic data simulated from a physiologically realistic
electromechanical cardiac model [Sermesant 2006a]. Then a prospective example
of application is presented with the spatio-temporal registration of 4D cardiac CT
sequences of the same patient before and after radiofrequency ablation (RFA) in case
of atrial �brillation (AF). The inter-sequence spatial transformations over a cardiac
cycle allow to analyze and quantify the regression of left ventricular hypertrophy
and its impact on the cardiac function.
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6.2 An Evaluation Study on Intersubject Registration
In order to evaluate the advantages of the proposed registration method based on
the multichannel 3D registration with trajectory constraints, we compare it to other
methods based on the 3D registration of scalar-valued images with or without the
trajectory constraints. When trajectory constraints are considered, the reference
frame is set as the ED frame that is the �rst frame of the 4D cardiac CT sequences.
To use these trajectory constraints as mentioned in section 5.2.2, motion tracking is
previously performed in each sequence with an updated Lagrangian scheme where
the registration of the current frame k to the reference frame 1 is initialized with the
registration result of the previous frame k−1 to the reference frame 1. We used the
DD algorithm [Vercauteren 2009] described in Section 5.4.1 for pairwise registration
with the following parameters in both synthetic and real data experiments: di�usion-
like regularization σdi� = 1, maximum update �eld length bounded with σc = 1,
and 30 iterations (stopped if the similarity measure increases) at each of the 3 levels
of multiscaling (size of each dimension divided by 2 at each level). The resulting
motion transformations M1,k and M ′

1,k are considered as �xed during the estimation
of the inter-sequence transformations Sk. The inversion of motion transformations
is also necessary when using trajectory constraints. This inversion is performed by
minimizing a functional as described in [Cachier 2002].

The di�erent methods we use to register sequences are the following:

• 3D direct : each inter-sequence transformation Sk is computed independently
from the others.

• 3D sequential : the computation of the inter-sequence transformation Sk is
initialized with the transformation M ′

k,k−1◦Sk−1◦M−1
k,k−1 using the previously

computed transformation corrected with the motion tracking to satisfy the
trajectory constraints.

• 3D + TC : solely the inter-sequence transformation S1 in the ED frame is
computed independently from the others that are then reconstructed from S1

and the motion tracking in both sequences to satisfy the trajectory constraints
(TC).

• 3D average + TC : solely the inter-sequence transformation S1 is computed
using the average grey-level image of all the frames registered to the reference
ED frame with the motion tracking. The inter-sequence transformations Sk

at other time-points are then reconstructed from S1 and the motion tracking
to satisfy the trajectory constraints (TC).

• 3D MC + TC : solely the inter-sequence transformation S1 is computed using
the multichannel (MC) registration of vector-valued image whose components
are all the frames registered to the reference ED frame. The inter-sequence
transformations Sk at other time-points are then reconstructed from S1 and
the motion tracking to satisfy the trajectory constraints (TC). This method
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corresponds to the 4D spatial registration algorithm presented in Section 5.2.2
in which the multichannel registration is performed with the MDD detailed in
Section 5.4.2.

These methods can be divided into three groups. First, the group of registration
methods that perform a 3D scalar-valued image registration at each time point. We
call this group the �3D� methods (3D direct and 3D sequential). Second, the group
of registration methods that perform a 3D scalar-valued image registration at a
reference time-point and that reconstruct the other inter-sequence transformations
using the trajectory constraints. We call this group the �3D + TC� methods (3D
+ TC and 3D average + TC ). And the last group uses the 3D multichannel regis-
tration method at a reference time-point and reconstructs the other inter-sequence
transformations using the trajectory constraints. We call this group the �3D MC +
TC� method (3D MC + TC ). The comparison between the �3D� methods and the
two other groups of methods, �3D + TC� and �3D MC + TC� methods, will show
the advantage of registering a single reference time-point and using the trajectory
constraints to reconstruct the other inter-sequence transformations. And the com-
parison between the �3D + TC� methods group and the �3D MC + TC� methods
will show the advantage of using a multichannel registration when registering the
reference time-point.

When estimating the inter-sequence transformation Sk with either scalar-valued
(DD) or vector-valued (MDD) registration algorithms, the following parameters are
used in both synthetic and real data experiments: �uid-like regularization σ�uid =
0.5, di�usion-like regularization σdi� = 0.5, maximum update �eld length bounded
with σc = 1, and 100 iterations (stopped if the similarity measure increases) at each
of the 3 levels of multiscaling (size of each dimension divided by 2 at each level).

Since registration is an ill-posed problem, solely checking the intensity match-
ing between the reference image and the transformed target image to compare the
di�erent methods is not su�cient. Di�erent mappings can lead to the same simi-
larity measure. Thus we might perfectly match the intensities without recovering
the expected deformation �eld. The best accuracy measurement of a registration
algorithm would be to compare the estimated deformation �eld to the expected de-
formation �eld (e.g., gold standard). Generally these ground truth transformations
are not available [Mäkelä 2002] which makes di�cult the validation of registration al-
gorithms, especially in the case of inter-subject registration. Thus validation of reg-
istration algorithms is often limited to partial ground truth information such as seg-
mentations. To overcome the lack of full ground truth information in patient data,
we compare the registration methods with synthetic cardiac sequences simulated
from a physiologically realistic electromechanical cardiac model [Sermesant 2006a]
in which the ground truth inter-sequence and intrasequence transformations are
known. With real 4D cardiac CT sequences, we compare the registration methods
using semi-automatic segmentations of the LV/RV endocardium and epicardium
since the underlying ground truth transformations are unknown. We start with a
computation time comparison between the Di�eomorphic Demons (DD) and the
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(a) Single pairwise image registration
with 3D Di�eomorphic Demons (DD)
and 3D Multichannel Di�eomorphic
Demons (MDD).

(b) Pairwise registration of two sequences
with di�erent methods� 3D direct, 3D se-
quential, 3D + TC, 3D average + TC
(same curve as 3D + TC ), and 3D MC
+ TC.

Figure 6.1: Computation time of di�erent registration algorithms with respect to the
number of channels (a) or frames (b), and the size of the images (same size in every di-
mension X, Y, and Z). The same number of iterations has been performed for each method
(30 iterations at each of the 3 levels of multiscaling). The experiments are performed on a
PC with Intel Core 2 Duo @ 2.26GHz processor. - (a) A general comparison between the
pairwise registration of scalar-valued images and the pairwise registration of vector-valued
images is shown. By de�nition, the scalar-valued image registration does not depend on the
number of channels. The vector-valued image registration is more time consuming when
the number of channels and the size of the image increase signi�cantly. - (b) Comparison
between the di�erent methods used to register sequences: 3D direct, 3D sequential, 3D
+ TC (whose curve is similar as 3D average + TC ), and 3D MC + TC. The di�erences
between methods increases signi�cantly when the number of frames in the sequence and
the size of the images increase.

Multichannel Di�eomorphic Demons (MDD) to register images, and between the
methods previously presented to register sequences.

6.2.1 A General Computation Time Study
Computation time is an important issue when dealing with large data as 4D cardiac
CT sequences. First, we compare the computation time of the core scalar-valued DD
and the vector-valued MDD registration algorithms. Figure 6.1 shows that MDD
is more time consuming than DD especially when the number of channels and the
image size increase signi�cantly. Note that when only one channel is considered, the
computation times between the two algorithms are di�erent. Indeed, the MDD is
coded with a vectorial data structure that is more complex to handle.

Second, we compare the computation time when registering two sequences with
the di�erent methods. In these computation times are included the time to compute
the motion tracking in the target sequence used for temporal transformation with



6.2. An Evaluation Study on Intersubject Registration 107

motion-based interpolation (all methods), the time to compute the motion tracking
in the reference sequence, compose and invert deformation �elds when using trajec-
tory constraints (methods with TC and 3D sequential), the time to compute the
inter-sequence transformations (all methods). Since 3D + TC and 3D average +
TC have very similar computation times, we only show in Figure 6.1 the computa-
tion time of 3D + TC. The results clearly show when estimating the inter-sequence
transformation at every frame takes longer, even if using only 3D scalar-valued reg-
istrations that is faster than 3D vector-valued registrations. More registrations are
necessary when using the trajectory constraints (additional motion tracking com-
puted in the reference sequence). But since the motion tracking converges faster
than inter-subject registration (smaller and smoother deformations), the use of tra-
jectory constraints keeps having lower computation times. The 3D sequential is
the most time consuming since trajectory constraints are used and inter-sequence
transformations are estimated at each frame. The 3D MC + TC method is not
the fastest one but has reasonable computation times compared to the fastest 3D
+ TC method. The counterpart of the reasonable computation time of the 3D MC
+ TC method that solves globally the 4D registration is the memory requirements.
Compared to other registration methods that are scalar-valued, the 3D MC + TC
method has memory requirements multiplied by about the number of channels. For
instance, in experiments with real data (174× 134× 174 voxels and 20 frames) de-
tailed in the following, a vector-valued registration requires up to about 11 Gb RAM
(which can be handled on regular 64 bits PC), whereas a scalar-valued registration
requires only up to about 500 Mb RAM.

6.2.2 Registration of Electromechanically Simulated Sequences

6.2.2.1 Construction of Electromechanically Simulated Sequences

Previous works [Segars 2008, Haddad 2007] already proposed methods to build syn-
thetic 4D cardiac sequences. But these methods do not provide a framework directly
applicable to the evaluation of 4D registration in which we need the joint construc-
tion of two sequences where both intrasequence and inter-sequence transformations
are fully known. Thus to simulate physiologically realistic and fully controlled time-
series of cardiac images, we built two cardiac sequences using an electromechanical
model of the heart [Sermesant 2006a] from a single 4D CT frame as described in
Figure 6.2.

We start from an initial frame at ED of a real cardiac CT sequence with
190 × 150 × 190 voxels at a resolution of 1.0 × 1.0 × 1.0 mm3. A segmentation
of the myocardium is used as an input for electromechanical simulations of a full
cardiac cycle lasting 0.8 seconds. The output of the simulation is a deformation �eld
in the myocardium extrapolated outside the myocardium with an iterative di�usion
process. Basically, we perform successive Gaussian smoothing of the deformation
�eld (σ = 1, 50 iterations) where at each iteration the deformation �eld in the
myocardium is reset to the simulated one and the deformation �eld farther than
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15 mm of the myocardium is reset to be null. Thus, the initial grey-level image
at ED can be physiologically deformed to create a sequence over a whole cardiac
cycle with a temporal sampling of 20 frames. In the resulting sequence, the ground
truth intrasequence motion transformations are known. In order to build a sec-
ond sequence whose inter-sequence transformations with the �rst one are known,
we register the initial frame of the �rst sequence to the anatomy of another real
patient. Then, the resulting deformation �eld is used to transform the initial frame
of the �rst patient and create another cardiac anatomy. Based on this new cardiac
anatomy, we simulate another sequence using di�erent parameters chosen such that
both sequences have the same cardiac cycle length with corresponding ED and ES
physiological time-points. Thus, the two sequences are by construction temporally
aligned according to the global physiological events de�ned for temporal alignment
in Section 5.2.1. In this way, we can directly focus on the 4D spatial registration we
want to evaluate. Finally, we obtain two electromechanically simulated sequences of
20 frames whose inter-sequence anatomical and intrasequence motion transforma-
tions are fully known. We also created a noisy version of these simulated sequences
adding Gaussian noise with di�erent signal-to-noise ratio (SNR ranging from 18 to
54) at each frame.

6.2.2.2 Results

As mentioned previously, since the solution of the registration is not unique (aper-
ture problem), we decided not to use the similarity measure (SSD) as a registration
accuracy measure. For the same intensity matching, di�erent transformations are
possible. In our experiments, we even noticed that a better matching of the inten-
sities did not necessarily imply a better estimation of the expected ground truth
transformation (up to a certain extent). We used two measures to compare the
registration algorithms: the distance to the ground truth transformations and the
deviation from the trajectory constraints. Both measures are computed solely in a
region of interest which is the myocardium.

The distance to the ground truth transformations, which measures the accuracy
of the registration at each time-point, is presented in Figures 6.3 and 6.4. The
comparison of average motion tracking errors (0.48 mm for a standard deviation
of 0.47 mm) and average inter-sequence registration errors when using trajectory
constraints (from 1.79 mm to 2.80 mm with a standard deviation of 0.97 mm at the
lowest) con�rms the assumption that motion tracking is more accurately estimated
than inter-sequence transformations and thus can help for the improvement of inter-
sequence registration. The basic 3D direct registration is not a good strategy with
the lowest and most variable registration accuracy over time. The 3D sequential
registration is an improved version of the 3D direct registration where the inter-
sequence transformations are linked to their temporal neighbors by using the result
of the previous time-point registration with motion correction to initialize the reg-
istration. The 3D sequential registration performs the best in terms of registration
accuracy after a transient period where 3D MC + TC registration performs better.
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Figure 6.2: Construction of simulated sequences using a physiologically realistic elec-
tromechanical model of the heart [Sermesant 2006a]. The ED frame (Image 1) from the 4D
cardiac CT sequence of a given patient is segmented (Segmentation 1) to obtain a mesh of
the myocardium (Computational Mesh 1). This mesh is used for electromechanical simula-
tions and for creation of a synthetic but physiologically realistic motion of the heart where
the deformation �elds between each frame are known. Based on these deformation �elds,
the reference image (Image 1) is deformed to create a sequence of images (Simulated Se-
quence 1). Next the reference ED frame is transformed into the ED frame of another patient
(Image 2) with a known deformation �eld that was computed to best match the anatomy
of the two patients. From this image of another anatomy at ED (Image 2), we can apply
the same process as previously with Image 1 to build another sequence of images (Sim-
ulated Sequence 2). In the end, we obtain two electromechanically simulated sequences
whose intrasequence physiological motion transformations and inter-sequence anatomical
transformations are known. These ground truth transformations can be used to assess the
accuracy of di�erent registration methods.

Actually, 3D MC + TC registration is more accurate than other methods perform-
ing a single registration at a reference time-point (in our case the ED frame) and
reconstructing the spatial transformations at other time-points using the trajectory
constraints (3D + TC and 3D average + TC ). It shows the advantage of using
information from the whole sequence and the advantage of combining this infor-
mation in a multichannel framework. For instance, the lower registration accuracy
of the 3D average + TC registration shows that the multichannel registration is a
good strategy to combine the information from the whole sequence. Averaging the
images instead of keeping the original multichannel values yields a blurring of the
original information and a loss of structural information. On the other hand the
multichannel registration preserves the original intensity values of each frame in a
vector. Only the update vector �eld as formulated in Equation 5.7 is combining the
information from all channels without modifying the original information used for
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(a) 3D direct

(b) 3D sequential

(c) 3D + TC

(d) 3D average + TC

(e) 3D MC + TC

Figure 6.3: Registration Accuracy with Electromechanically Simulated Sequences - Spatial
distribution of di�erences between the estimated inter-sequence anatomical transformation
Sj and the ground truth transformations in the myocardium of simulated sequences at
di�erent time-points (frames 1, 7, 13 and 19).
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Figure 6.4: Registration Accuracy with Electromechanically Simulated Sequences - Di�er-
ence between the computed inter-sequence anatomical transformations Sj and the ground
truth transformations over time in the myocardium.

the registration. Furthermore, the registration methods using the trajectory con-
straints (�3D + TC� and �3D MC + TC� groups) have more consistent registration
accuracy over time than methods of the �3D� group. Trajectory constraints act as
a temporal regularization of inter-sequence transformations. The good results of
the 3D MC + TC registration show that taking into account the information from
the whole sequences even in a single 3D registration at a given time-point helps to
improve the registration accuracy.

The deviation to the trajectory constraints measures the consistency between
the inter-sequence anatomical transformations and the intrasequence motion trans-
formations. This measure of consistency is computed as described in Figure 6.5.
We perform a pairwise comparison of all the transformations Tj = M ′−1

1,j ◦ Sj ◦
M1,j matching the initial reference frames of the two sequences and obtained
through di�erent pathways. This measure is complementary to the registra-
tion accuracy and di�erent from the registration consistency in loops presented
in [Roche 2001, Pennec 2005]. A better estimation of the inter-sequence transfor-
mations does not necessarily mean that the deviations to the trajectory constraints
get lower, since these deviations are computed with an estimation of the apparent
motion, and not the ground truth motion we are not supposed to have access to.
In Figure 6.6, results show that trajectory constraints are not properly satis�ed
when computing independently the inter-sequence transformations at each time-
point (�3D� group). In the �3D + TC� and �3D MC + TC� groups, the deviation to
trajectory constraints is very low. It was expected since by construction these meth-
ods satisfy the trajectory constraints. Actually these errors we observe correspond
to residual errors due to composition and inversion of transformations in the recon-
struction process. It is important to see that these errors are very low compared
to the deviations observed in the �3D� group. It shows that these higher devia-
tions are not due to computational errors when determining the transformations
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Figure 6.5: Deviation from Trajectory Constraints - The deviation from trajectory
constraints is measured by computing the distance between the transformations Tj =
M ′−1

1,j ◦ Sj ◦M1,j that should be the same if they satisfy the trajectory constraints. For
electromechanically simulated data, we compute it in the whole myocardium. For real data
since the accuracy of the registration is restricted to the LV/RV endocardial and epicar-
dial surfaces, we also limit the measure of the deviation to trajectory constraints on these
surfaces.

Figure 6.6: Trajectory Constraints with Electromechanically Simulated Sequences - The
deviation from the trajectory constraints in the myocardium is computed by measuring
the distance between the transformations Tj corresponding to a given pathway using the
inter-sequence transformation Sj as described in Figure 6.5. A log-scale is used for a better
visualization of the methods that by construction satisfy the trajectory constraints (3D
+ TC, 3D average + TC, and 3D MC + TC ). The other methods are signi�cantly less
consistent with the motion tracking.

Tj but are mostly due to low consistency between inter-sequence and intrasequence
transformations.

We also measure the smoothness of the inter-sequence transformation with the
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Figure 6.7: Harmonic Energy with Electromechanically Simulated Sequences - The har-
monic energy quanti�es the amount deformation in the transformation. The 3D MC + TC
registration gives a much smoother deformation �eld at the initial reference frame where
the multichannel registration is computed.

Method µ Di�. σ Di�. Dev. TC HE
3D direct 3.08 mm 1.90 mm 1.27 mm 1.48

3D sequential 1.78 mm 1.33 mm 1.76 mm 7.49
3D + TC 2.65 mm 1.93 mm 0.06 mm 1.58

3D average + TC 2.80 mm 1.92 mm 0.07 mm 1.68
3D MC + TC 1.79 mm 0.97 mm 0.04 mm 1.25

Figure 6.8: Results summary of the registration of electromechanically simulated se-
quences with mean di�erence to ground truth transformation (µ Di�.), standard deviation
of di�erence to ground truth transformation (σ Di�.), deviation from trajectory constraints
(Dev. TC), and harmonic energy (HE).

harmonic energy of their corresponding deformation �elds (the average norm of the
Jacobian). As shown in Figure 6.7, the harmonic energy are almost the same for
every method except the 3D sequential whose smoothness decreases when registra-
tion accuracy increases. Thus the 3D MC + TC seems to be a good compromise
between registration accuracy and smoothness of the resulting deformation �eld.

Figure 6.8 summarizes the performances of each registration method in terms of
registration accuracy, deviation to trajectory constraints, and harmonic energy. Sim-
ilar results were obtained with noisy simulated sequences except that the registration
with every method was not as accurate as with noise-free simulated sequences. All
these results support the thesis that the 3D MC + TC registration is the best
compromise between accuracy, spatial smoothness, and temporal consistency with
motion tracking. But even if these results are obtained with physiologically realistic
simulated sequences, the di�erent registration methods still need to be evaluated on
experiments with real patient data as in the following.
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6.2.3 Intersubject Registration of Real Sequences
6.2.3.1 Data and Processing
In the following experiments, we used 4D cardiac CT sequences acquired with
contrast agent at a spatial resolution of about 0.825 × 0.825 × 1.00 mm3 with
256 × 256 × 231 voxels on 5 di�erent patients with pulmonary stenosis. We are
grateful of Dr Harold Litt from the Hospital of University of Pennsylvania for provi-
sion of 4D CT datasets. Since the �eld of view (FOV) of each acquisition is di�erent,
the sequences were cropped to get similar structures in the surrounding area of the
heart. The images are then resampled at a spatial resolution of 1.00×1.00×1.00 mm3

with 174× 134× 174 voxels. The temporal acquisition is synchronized to the ECG
from ED over a cardiac cycle with 20 frames. At this temporal resolution, each
frame correspond to an acquisition after 5% of R-R time interval (interval between
two consecutive R peaks of the ECG).

Since sequences were acquired with contrast agent, we can easily di�erentiate
the blood pool that has higher intensity values than the myocardium. Unfortunately
the SSD similarity criterion for registration is meaningless in the blood pool where
the intensity values are highly variable in space and time. Since these artifacts can
mislead the registration, we �rst decrease the range of intensity values of the blood
pool by linearly transforming the part of the image histogram (basically the intensi-
ties higher than a given threshold). Furthermore there might also be inter-sequence
di�erences in the intensity histogram (for instance a sequence of our dataset had
obviously higher intensity values for the myocardium). To avoid a mismatch of
corresponding structures using the SSD similarity criterion, we perform a matching
of the intensity histogram (HistogramMatchingImageFilter from ITK Software Li-
brary [Ibanez 2003]) between each corresponding frames of the reference and target
sequences. The histogram matching is only performed for inter-sequence registration
and not when performing the motion tracking between frames of the same sequence
whose intensity histogram are stable over time.

Given the standardized acquisition process of 4D cardiac CT sequences, the
global linear temporal registration between di�erent sequences to match the R-R
interval is intrinsically performed. The nonlinear part of the temporal transforma-
tion is based on blood volume curves (basically obtained with an intensity threshold
followed by a main connected component extraction and a closing) that de�nes a
global mechanical state of the heart. Figure 6.9 shows the normalized volume curves
of each sequence before and after alignment. The temporal transformation is ob-
tained with a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) matching
speci�c points of the curves: the �rst and last frames that corresponds to the linear
matching of the R-R interval, the null �rst derivative of the curve that corresponds
to ES, and two null second derivatives of the curves. The resulting transformations
have been compared to transformations obtained from ground truth segmentations
used in the following to measure the accuracy of 4D registration. Results showed
that the error on the temporal transformation was signi�cantly below the temporal
resolution of 1 frame: an average of 0.26 frame, a standard deviation of 0.19 frame,
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(a) Before Temporal Registra-
tion

(b) After Temporal Registra-
tion

(c) Temporal Transformations

Figure 6.9: Normalized blood volume curves (a) before and (b) after temporal registration
in each sequence. The dashed black curve is the reference sequence. The continuous curves
are the target sequences. The temporal transformations are shown in �gure (c).

and a maximum error of 0.59 frame. It shows that the basic segmentation we pro-
posed is su�cient for the estimation of the temporal transformation. The result
of the temporal alignment is shown in Figure 6.9. Once the temporal transforma-
tion is known, the target sequence is temporally resampled using a motion-based
interpolation [Ehrhardt 2006], as well as its corresponding intrasequence motion
transformations.

For 4D spatial registration, we �rst choose the reference frame as the ED frame
(�rst initial frame in each sequence that correspond to the acquisition at the R
peak of the ECG). This reference frame is used to perform motion tracking with
an updated Lagrangian scheme that provides a temporal causality : estimation of
the motion transformations M1,k registering a given frame at a time-point tk to
the reference frame at the reference time-point t1 with an initial transformation set
as the motion transformation M1,k−1. Then a reference sequence is chosen among
the dataset on which the other ones are registered using the methods presented
at the beginning of this Chapter 6. The inter-sequence registrations are initialized
with an a�ne transformation determined by matching the blood volumes previously
determined for temporal alignment.

6.2.3.2 Results
Since we do not have access to the ground truth transformations, we rely on a
partial ground truth information, the segmentations of the myocardium with a semi-
automatic delineation of the LV/RV endocardium and epicardium. Thanks to the
image quality and the high contrast of intensities between the myocardium and the
blood pool, the endocardium is easily identi�ed in the sequences. We performed a
supervised segmentation of the endocardium in the reference frame (ED) using a
single connected-component surface isovalue that has been interactively restricted to
be below the valve plane and visually checked. On the other hand, the epicardium is
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Figure 6.10: Registration Accuracy with Real Sequences - We illustrate the accuracy of the
registration by showing the transformed LV/RV endocardial and epicardial surfaces with
the transformation �elds computed with di�erent methods. We only show one method for
each group for a better visualization of the di�erences. The color codes are: 3D direct in red,
3D + TC in yellow, 3D MC + TC in blue, and the ground truth in green. The di�erences
are not apparent everywhere but the 3D MC + TC provides an overall better registration.
Lower registration accuracy appears in areas where structures have high curvature for the
endocardium and in areas where there is a low intensity gradient between the heart and
neighboring organs for epicardium.

di�cult to de�ne solely in terms of intensity features due to the low intensity gradient
between the heart and neighboring organs in some areas. The segmentation of the
epicardium is performed interactively by manually adding landmarks that lie on
the epicardial surface interpolated with radial basis functions. These segmentations
in the reference frame are then propagated over the whole sequence with motion
transformations.

To measure the accuracy of the registration, we �rst compute in each frame
a symmetric distance between the reference surface transformed with Sj and the
target surface. The symmetric distance between two surfaces Σ and Σ′ is de�ned as
follows:

d(Σ, Σ′) =
1
|Σ|

∫

v∈Σ
min
v′∈Σ′

d(v, v′) dp

where v and v′ are vertices respectively on surfaces Σ and Σ′.
Results show that the 3D MC + TC registration performs better than others

(see Figures 6.10, 6.11, and 6.16) with an improvement of about 11% compared to
the second best method and about 17% compared to the 3D direct method. For
every methods, registration accuracy is locally lower in areas where structures are
more complex and where there is low intensity gradient between neighboring or-
gans for the epicardium. For instance, the RV apex is a narrow region where the
complex structures of trabeculæ that are highly variable between patients make the
registration more di�cult. The 3D sequential registration does not perform as well
with real data as with electromechanically simulated data but still improves the
3D direct method. It probably shows some limitations of simulated data which are
not as complex as real data. For instance, both simulated sequences were built
from the same reference intensity image making the registration task easier. For
real data, we observe that the group of �3D� methods are clearly not as good as
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(a) Endocardium (b) Epicardium (c) Endocardium and Epi-
cardium

Figure 6.11: Registration Accuracy with Real Sequences - We measure the accuracy of
the registration by computing a symmetric distance between the reference and transformed
LV/RV endocardial and epicardial surface meshes. These values are an average value over
all the patients. The 3D sequential method improves the 3D direct method but it does not
perform as well as observed in electromechanically simulated sequences. Using the motion
tracking with the trajectory constraints clearly improves the accuracy of the registration
compared to inter-sequence transformations computed at each frame. The 3D MC + TC
method shows better results than other methods. It illustrates the advantage of using
a multichannel registration in the reference frame over a single channel registration with
original images or averaged images.

(a) Ventricles (b) Myocardium

Figure 6.12: Registration Accuracy with Real Sequences - We measure the accuracy of the
registration by computing the volume overlap of the ventricles and myocardium between
the reference sequence and the transformed target sequence. These values are an average
value over all the patients. The improvement of the volume overlap of the ventricles is low
by using 3D TC + MC method. And the volume overlap of the myocardium is signi�cantly
improved.

the others. It shows the limitations of the 3D pairwise registration of scalar-valued
images for large inter-subject deformations, especially when getting closer to the ES
frame. When using the information from the motion tracking, which is easier to
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obtain with more accuracy than inter-subject anatomical registration, the registra-
tion is more consistent over time. The use of the trajectory constraints acts as a
temporal regularization of the inter-sequence transformations with a stronger and
more realistic a priori regularization between inter-sequence transformations than a
basic smoothing that could not handle high motion speed and acceleration between
frames. We also computed the volume overlap of the ventricles and the myocardium
between the reference and transformed target sequences [Perperidis 2005b] to eval-
uate the registration accuracy as shown in Figure 6.12. The myocardium volume
overlap is improved when using motion tracking information and even more when
multichannel registration is used. Considering the better registration of the endo-
cardium and the volume occupied by the ventricles compared to the myocardium, it
is normal to obtain much higher volume overlap of the ventricles than myocardium.

As described in Figure 6.5, the deviation to trajectory constraints is measured
comparing the reference endocardial surface deformed with the transformations
Tj = M ′−1

1,j ◦ Sj ◦M1,j . The transformation Tj corresponds to the pathway from
ED of the reference sequence to ED of the target sequence using the inter-sequence
transformation Sj . When trajectory constraints are satis�ed, all transformations
Tj should be the same and thus all transformed endocardial surfaces should match.
The deviation to trajectory constraints quanti�es the consistency between motion
and inter-sequence transformations. The use of trajectory constraints in the reg-
istration process clearly shows the improvement compared to methods computing
independently the inter-sequence transformations at each frame (see Figures 6.13
and 6.14). In this way, the trajectory constraints act as a temporal regularization
of the inter-sequence transformations. This advantage is particularly signi�cant
in areas of high curvature of the structures (e.g. the right ventricular apex). As
mentioned previously, this high curvature can explain the locally lower registration
accuracy but mostly the temporal change of this curvature due to cardiac motion
can explain the discrepancies of registration accuracy over time.

To measure the quality of the registration, we also compared the spatial smooth-
ness of the resulting deformation �elds. To quantify the smoothness of the resulting
deformation �eld, we compute at each time-point their harmonic energy. The low-
est is the harmonic energy, the smoothest is the deformation �eld and the more
likely it is to be a realistic solution. As shown in Figure 6.15, the 3D MC + TC
method provides the smoothest transformations. Combining the information com-
ing from di�erent time-points directly on the update vector �eld as formulated in
Equation 5.7 provides intrinsically a smoother deformation �eld. On the contrary,
when using trajectory constraints with 3D scalar-valued registration (�3D +TC�
group), the resulting deformation �elds are sharper than �3D� group of methods.

In terms of computation times, di�erent methods have pretty similar compu-
tation times except for the 3D sequential method that is slower than others (see
Figure 6.16). In addition to temporal alignment (mostly motion tracking in tar-
get sequence) and spatial registration (scalar-valued or vector-valued), computation
times also take into account the time for motion tracking in reference sequence,
inversion and reconstruction of inter-sequence transformations with trajectory con-
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(a) Without trajectory constraints (3D direct)

(b) With trajectory constraints (3D MC + TC )

Figure 6.13: Trajectory Constraints with Real Sequences - We illustrate the deviation from
the trajectory constraints with the transformation of the LV/RV endocardial and epicardial
surfaces through di�erent pathways in case of 3D direct registration (�rst row in red) and
in case of 3D MC + TC registration (second row in blue). The ground truth segmentations
are shown in green. When trajectory constraints are satis�ed all the transformed contours
should perfectly overlay to form a single contour. When the trajectory constraints are not
used in the registration process (�rst row), it is obvious that the transformed contours
have high discrepancies showing that the inter-sequence transformations are not consistent
with the motion tracking. On the other hand, when trajectory constraints are used in
the registration process (second row), we barely see the di�erences between transformed
contours. The trajectory constraints are satis�ed by construction as expected in theory.
But it also shows that in practice numerical errors from composition and inversions of
transformations are not signi�cant. Showing the ground truth contour in green, we can
visualize at the same time the quality of the registration. When trajectory constraints are
not used, high discrepancies in quality of registration show that the quality of registration
is not consistent over time.

straints when necessary. The advantage of using the trajectory constraints is that
motion tracking is already available for the reference sequence if willing to compare
motion between the two sequences.

Finally, results with real data also support the thesis that the 3D MC + TC
method is a good compromise between registration accuracy, temporal consistency
with motion tracking, spatial smoothness, and computation time.
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(a) Endocardium (b) Epicardium (c) Endocardium and Epi-
cardium

Figure 6.14: Trajectory Constraints with Real Sequences - The deviation from the trajec-
tory constraints is computed with a distance between transformed segmentations through
di�erent pathways as shown in Figure 6.5. We compare all the transformed segmentations
to each other. We plot this deviation with respect to the distance in frames between the
two inter-sequence transformations used by a given pathway. A log-scale is used for a better
visualization of the methods that by construction satisfy the trajectory constraints (3D +
TC, 3D average + TC, and 3D MC + TC ). The other methods are less consistent with the
motion tracking as also shown in Figure 6.13 with the transformed segmentations.

Figure 6.15: Harmonic Energy with Real Sequences - The harmonic energy quanti�es
the amount of deformation in the transformation. A method that gives similar accuracy
results with a smoother transformation are more likely to be realistic. The 3D MC + TC
registration provides the smoothest transformation. Whereas the 3D + TC and 3D average
+ TC do not improve and even increase the harmonic energy compared to 3D direct or 3D
sequential methods.

6.3 Application to the Analysis of Ventricular Remodel-
ing after Therapy

In this section, we present an example of potential clinical application where 4D
spatio-temporal registration could help in analyzing the remodeling process of the
heart after therapy. Pre- and post-operative sequences are compared in case of atrial
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Method µ Dist. σ Dist. VO Dev. TC HE Time
3D direct 2.99 mm 2.07 mm 60.6 % 3.82 mm 9.4 56 min

3D sequential 2.80 mm 1.87 mm 65.9 % 4.07 mm 7.7 86 min
3D + TC 2.80 mm 1.91 mm 63.1 % 0.12 mm 10.0 47 min

3D average + TC 2.83 mm 1.94 mm 59.9 % 0.12 mm 11.4 49 min
3D MC + TC 2.49 mm 1.69 mm 71.3 % 0.05 mm 6.6 59 min

(a) Endocardium + Epicardium

Method µ Dist. σ Dist. Dev. TC
3D direct 2.45 mm 1.79 mm 4.03 mm

3D sequential 2.31 mm 1.57 mm 4.12 mm
3D + TC 2.20 mm 1.55 mm 0.13 mm

3D average + TC 2.20 mm 1.56 mm 0.12 mm
3D MC + TC 1.88 mm 1.33 mm 0.06 mm

(b) Endocardium

Method µ Dist. σ Dist. Dev. TC
3D direct 3.52 mm 2.36 mm 3.60 mm

3D sequential 3.30 mm 2.16 mm 4.02 mm
3D + TC 3.41 mm 2.27 mm 0.11 mm

3D average + TC 3.46 mm 2.34 mm 0.12 mm
3D MC + TC 3.10 mm 2.08 mm 0.04 mm

(c) Epicardium

Figure 6.16: Results summary of the registration of real sequences where µ Dist. is
the mean distance to reference segmentation, σ Dist. is the standard deviation of the
distance to reference segmentation, VO is the volume overlap of the myocardium, Dev. TC
is the deviation from trajectory constraints, and HE is the harmonic energy. Computation
times were performed with a PC with an AMD Opteron 246 @ 2GHz processor with 12Gb
RAM. In these computation times are taken into account the time to perform the inter-
sequence registration, to compute motion tracking, to align temporally the sequences, and
to reconstruct of transformations with trajectory constraints when necessary.

�brillation (AF) before radiofrequency ablation (RFA) and 3 months after. AF is the
most common sustained cardiac arrhythmia where electrical impulses from sinoatrial
nodes are overwhelmed by disorganized electrical impulses coming from the atria and
pulmonary veins. The conduction of irregular impulses to the ventricles a�ects the
rhythm of ventricular contraction and thus the cardiac mechanical function. It leads
to hypertension, left atrial enlargement, and left ventricular hypertrophy. In case
of hypertrophy, the contraction is faster and more powerful to cope with increase of
pressure but it has a limited range of motion with a di�culty to relax properly. RFA
is a common intervention for AF where the correction of the electrical activity in the
left atrium is related to the regression of left ventricular hypertrophy [Mattioli 2005].

We �rst perform a strain analysis in both sequences before and after therapy
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to compare cardiac function. Unfortunately, this comparison of cardiac function
is not su�cient to explain the whole remodeling process and more speci�cally the
anatomical remodeling process. Thus, we propose to use the 4D spatio-temporal
registration framework to analyze the regression of left ventricular hypertrophy after
therapy and its impact on cardiac function.

6.3.1 Data
We used two 4D cardiac CT sequences acquired with contrast agent at di�erent
spatial and temporal resolutions. The pre-operative sequence is acquired at a spatial
resolution of 0.51 × 0.51 × 1.00 mm3 with 512 × 512 × 249 voxels and a temporal
resolution of 10 frames for a cardiac cycle. The post-operative sequence is acquired
at a spatial resolution of 0.88× 0.88× 1.00 mm3 with 256× 256× 182 voxels and a
temporal resolution of 20 frames for a cardiac cycle. Both sequences are resampled
at a spatial resolution of 1.00× 1.00× 1.00 mm3 with 226× 226× 182 voxels and a
temporal resolution of 10 frames for a cardiac cycle. We are grateful of Dr Harold
Litt from the Hospital of University of Pennsylvania for provision of these datasets.

6.3.2 Strain Analysis from Motion Tracking
The alteration of cardiac function is not always apparent with common global car-
diac function indices, such as left ventricular ejection fraction (LVEF). For instance,
LVEF of pre- and post-operative sequences are similar: 59.7% before and 61.1%
after therapy. A more detailed analysis of cardiac function is necessary. Cardiac
function can also be measured more locally with the strain derived from motion
tracking in the myocardium.

We performed a motion tracking in each sequence using physically-constrained
di�eomorphic Demons to ensure elasticity and nearincompressibility of myocardial
tissue as described in [Mansi 2009]. These physical constraints have shown to pro-
vide more realistic strain values [Bistoquet 2008, Mansi 2009]. The elasticity is
introduced by extending the Gaussian smoothing of the regularization step of the
Demons algorithm to an elastic smoothing [Cachier 2004]. The myocardium near-
incompressibility is ensured by constraining the deformations to be divergence free.
To achieve it, each iteration of the Demons algorithm ends with an additional step
of divergence free projection [Simard 1988] of the resulting deformation �eld in the
myocardium. The motion tracking is computed in an updated Lagrangian scheme
by determining the motion transformations Mj registering the current frame j to the
reference frame at ED where the motion transformation Mj−1 of previous step is used
as an initialization. Once we know the motion transformations Mj , the Lagrangian
�nite strain tensor E is computed from the motion transformation Mj = Id +Mj :

Ej = 1/2 (∇Mj +∇M>
j +∇M>

j ∇Mj)

The projection of this strain tensor in the prolate coordinate system provides at
each frame the radial, circumferential and longitudinal strains (respectively Erad

j ,



6.3. Application to the Analysis of Ventricular Remodeling after
Therapy 123

(a) Global Radial Strain (b) Global Circumferential
Strain

(c) Global Longitudinal Strain

Figure 6.17: Global (a) radial, (b) circumferential and (c) longitudinal strains over a
cardiac cycle (R-R interval) in LV myocardium of pre- and post-operative sequences (re-
spectively red and blue curves).

Ecirc
j and Elong

j ) that are common clinical parameters used to evaluate cardiac func-
tion [Moore 2000].

Once strain values are computed in each sequence, they can be compared using
di�erent correspondence models from global to local. In absence of point-to-point
correspondences between sequences, the cardiac function can be compared either
globally by averaging strain values in the whole heart or locally by averaging strain
values in each AHA zone (see Appendix C for de�nition of AHA zones).

6.3.2.1 Global Strain Comparison - Whole Heart
In this case, no correspondence are used between the two sequences. Thus, we
average the radial, circumferential and longitudinal strains over the myocardium
at each frame over the whole myocardium. In this way, we have access to global
measures of cardiac function over time in each sequence as shown in Figure 6.17
with strain and in Figure 6.18 with strain rate.

Two major di�erences can be observed. First, the peak amplitudes of radial,
circumferential and longitudinal strains are lower in the pre-operative sequence than
in the post-operative sequences. To measure the relative change of strain between
pre- and post-operative sequences, we compute the percentage of maximum strain
di�erence relatively to the maximum strain value before intervention:

∆E = 100× Epost
max −Epre

max
Epre
max

After intervention, the peak amplitudes are improved by 40.7% for radial strain,
29.7% for circumferential strain and 33.1% for longitudinal strain. Second, these
peaks occur earlier in the pre-operative sequence (∼ 20% of R-R interval) than
in the post-operative sequence (∼ 35% of R-R interval). When comparing the
myocardium strain rate curves, the rates of contraction have similar behavior and
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(a) Global Radial Strain Rate (b) Global Circumferential
Strain Rate

(c) Global Longitudinal Strain
Rate

Figure 6.18: Global (a) radial, (b) circumferential and (c) longitudinal strain rates over
a cardiac cycle (R-R interval) in LV myocardium of pre- and post-operative sequences
(respectively red and blue curves).

maximum amplitude whereas the rate of relaxation have similar behavior but a bit
lower maximum amplitude. It shows that the cardiac tissue mechanical properties do
not really change after intervention. Mostly the times of contraction and relaxation
are di�erent between sequences. After RFA, the contraction lasts longer with similar
strain rate which shows an improvement of the cardiac function.

6.3.2.2 Local Strain Comparison - AHA Zones
The AHA zones de�ned by the American Heart Association (described in Ap-
pendix C) are standardized zones of the myocardium longitudinally separated with
basal, mid and apical zones and circumferentially separated with anterior, septal,
inferior and lateral zones. In this way, quantities averaged in AHA zones can easily
be compared in corresponding zones of di�erent cardiac geometries. Radial, circum-
ferential and longitudinal strains are averaged in each AHA zones and at each frame
of pre- and post-operative sequences as shown with a bull's eye view in Figure 6.19
and as detailed in Figures 6.20, 6.21, 6.22, 6.23, 6.24, 6.25.

To measure the strain modi�cation between pre- and post-operative sequences,
we �rst compute the percentage of maximum strain di�erence relatively to the global
average maximum strain value over the myocardium:

∆E = 100× Epost
max − Epre

max
Epre
mean

and show it with a bull's eye view in Figure 6.19. This local analysis of strain gives
the opportunity to identify areas where strain change is the most signi�cant. For
instance, we observe from the strain comparison in corresponding AHA zones that
the strain improvement mostly occurs in anterior and antero-lateral zones.

Then we measure the assynchrony of maximum strain value in each sequence
with the di�erence between the time of maximum strain in an AHA zone and the
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(a) Maximum Radial Strain (%) in Pre- and Post-Operative Sequences

(b) Maximum Circumferential Strain (%) in Pre- and Post-Operative Sequences

(c) Maximum Longitudinal Strain (%) in Pre- and Post-Operative Sequences

Figure 6.19: Bulls eye view of extremal (a) radial, (b) circumferential and (c) longitudinal
strains in AHA zones of pre- and post-operative sequences.
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Figure 6.20: Radial strain over a cardiac cycle (R-R interval) in AHA zones of pre- and
post-operative sequences (respectively red and blue curves).

Figure 6.21: Radial strain rate over a cardiac cycle (R-R interval) in AHA zones of pre-
and post-operative sequences (respectively red and blue curves).
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Figure 6.22: Circumferential strain over a cardiac cycle (R-R interval) in AHA zones
of pre- and post-operative sequences (respectively red and blue curves).

Figure 6.23: Circumferential strain rate over a cardiac cycle (R-R interval) in AHA
zones of pre- and post-operative sequences (respectively red and blue curves).
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Figure 6.24: Longitudinal strain over a cardiac cycle (R-R interval) in AHA zones of
pre- and post-operative sequences (respectively red and blue curves).

Figure 6.25: Longitudinal strain rate over a cardiac cycle (R-R interval) in AHA zones
of pre- and post-operative sequences (respectively red and blue curves).
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time of maximum global strain in the whole myocardium. We show in Figure 6.26
these time di�erences in a bulls eye view for radial, circumferential and longitudinal
strains. Due to the low and di�erent temporal resolutions between sequences, these
values should be interpreted carefully knowing their limitation. But still we can
observe an improvement of synchrony in areas where maximum strain is improved.

6.3.3 Remodeling Strain Analysis from 4D Registration
As shown in the previous strain analysis from motion tracking, the cardiac function
is improved. But this improvement is di�cult to interpret in terms of anatomical
remodeling. To bridge the gap between anatomical and functional remodeling, we
propose a new comparison of cardiac anatomy and function based on 4D spatio-
temporal registration complementary to standard comparison of strain computed
from motion tracking.

The pre-operative sequence is spatio-temporally registered to the post-operative
sequence under trajectory constraints with MDD as described in Section 6.2. We
obtain an inter-sequence transformation at each frame of the cardiac cycle that
matches cardiac anatomies at corresponding physiological states (de�ned according
to the ECG and the blood volume curves). These inter-sequence transformations
between pre- and post-operative sequences can be used to better analyze the impact
of anatomical remodeling on the LV function that cannot be observed with a direct
comparison of cardiac function measurements.

The post-operative sequence is spatiotemporally registered to the pre-operative
sequence under trajectory constraints with MDD. First of all, the temporal transfor-
mation (computed from the ECG and the blood volume curves) shows a lengthening
of the systolic phase from 20% of R-R interval before therapy to a more standard
value of 35% after therapy (see Figure 6.27). Then we estimate the intersequence
transformation at each frame of the cardiac cycle that matches cardiac anatomies
at corresponding physiological states. As one of the possible measurement of the
impact of anatomical remodeling on the LV function, we propose to analyze these
transformations between pre- and post-operative sequences. We introduce here the
new concept of remodeling strain de�ned as the Lagrangian �nite strain tensor Rk

is computed from the intersequence transformations Sk = Id + Sk at frame k:

Rk = 1/2 (∇Sk +∇S>k +∇S>k∇Sk)

The projection of this strain tensor in the prolate coordinate system provides the
radial, circumferential and longitudinal remodeling strains (respectively Rrad

k , Rcirc
k

and Rlong
k ) at each frame. The radial remodeling strain can be interpreted as in-

tersequence wall thickness change that for instance occurs in case of hypertrophy.
Negative radial remodeling strain means a decrease of wall thickness.

As shown in Figure 6.27, the average radial remodeling strain between pre-
and post-operative sequences is about -12% showing the anatomical remodeling
e�ect of RFA with a global regression of hypertrophy. The temporal variation
of radial remodeling strain over the cardiac cycle shows that intersequence wall
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(a) Time of Maximum Radial Strain (% of R-R Interval) in Pre- and Post-Operative Sequences

(b) Time of Maximum Circumferential Strain (% of R-R Interval) in Pre- and Post-Operative Se-
quences

(c) Time of Maximum Longitudinal Strain (% of R-R Interval) in Pre- and Post-Operative Sequences

Figure 6.26: Bulls eye view of time of extremal (a) radial, (b) circumferential and (c)
longitudinal strains in AHA zones of pre- and post-operative sequences.
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(a) Temporal Transformation (b) Remodeling Strains over a
Cardiac Cycle of Pre-Operative
Sequence

(c) Temporal Average of Ra-
dial Remodeling Strain in AHA
Zones (bull's eye view)

Figure 6.27: (a) Temporal transformation between pre- and post-operative sequences
showing a modi�cation of cardiac dynamic with a lengthening of systolic phase after ther-
apy. - (b) Remodeling strains in radial, circumferential, and longitudinal directions of the
prolate coordinate system over a cardiac cycle with temporal alignment of the sequences.
Negative strain values mean that contraction occurs after therapy (for instance wall thick-
ness decreases after intervention when radial strain is negative). - (c) Temporal average of
radial remodeling strain in AHA zones showing regional wall thickness di�erences due to
hypertrophy of left ventricular myocardium.

thickness change is more important at ED than at ES. This higher radial remodeling
strain at ED (about -20%) can be explained by the combination of two phenomena:
the regression of hypertrophy (anatomical remodeling) and the improvement of the
relaxation stage during diastole (functional remodeling). A bull's eye view of the
average regional radial strain in each AHA zone presented in Figure 6.27 shows a
higher regression of left ventricular hypertrophy in the anterior and lateral zones.

This example shows the potential of 4D spatio-temporal registration to analyze
the impact of therapy on cardiac anatomy and function by giving access to the inter-
sequence transformations over time. Further studies on remodeling strains with
larger databases would help to better understand the anatomical and functional
impact of remodeling processes.

6.4 Conclusion
The spatio-temporal registration of di�erent 4D sequences (or any time-series images
such as longitudinal studies) is a complex registration problem whose solution should
match corresponding time-points and trajectories of physical points. We presented
a �divide and conquer� method that �rst decouples the 4D temporal and spatial reg-
istrations. The temporal transformation is de�ned as matching corresponding phys-
iological states and the spatial transformation is de�ned as matching corresponding
anatomical points at each corresponding time-point preserving the homology be-
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tween points over time. Second, this �divide and conquer� method decomposes the
4D spatial registration problem into a single 3D inter-sequence anatomical regis-
tration and intrasequence motion tracking. First, the newly proposed method has
better accuracy than other standard methods. Our registration algorithm showed to
be a good solution to solve the 3D inter-subject registration by properly combining
information from the whole sequence to obtain a more accurate registration and
smoother spatial regularization at the same time. Second, it satis�es by construc-
tion the trajectory constraints and thus preserves the homology between physical
points over time. The use of the trajectory constraints can be seen as a temporal
regularization consistent with the motion occurring in each sequence as opposed to
standard regularization methods (for instance, B-Spline or Gaussian smoothing).

Since in this framework the temporal transformation is not solely image-driven
(e.g. using electrophysiology like the ECG), we stated that the temporal trans-
formation matching corresponding physiological events could be determined inde-
pendently from the spatial transformations. Purely image-driven joint spatial and
temporal registrations could also have been considered. But as shown in Perperidis
et al. [Perperidis 2005b], this joint registration increases a lot the computation time.
Moreover, the interpretation of the temporal transformation in terms of physiological
events is not apparent. But on the other hand, joint spatial and temporal registra-
tions could still be useful when no physiological event has been clearly identi�ed for
temporal registration.

This framework also relies on the estimation of the motion transformations used
with the trajectory constraints to simplify the registration. Any improvement of
the motion tracking algorithm, for instance by including biomechanical constraints
such as near incompressibility [Bistoquet 2008, Mansi 2009], would improve the es-
timation of the inter-sequence anatomical transformations. Furthermore, we use
trajectory constraints as hard-constraints. One could think of relaxing these hard-
constraints by including uncertainties of motion tracking [Taron 2009].

The 4D registration under trajectory constraints with Multichannel Di�eomor-
phic Demons showed promising results on both real patient data and synthetic data
simulated with a physiologically realistic electromechanical cardiac model. A more
thorough validation is still necessary on a larger database of patients and with a spe-
ci�c clinical application. Nevertheless our study already showed the new possibilities
o�ered by the 4D spatio-temporal registration method to compare two time-series
of cardiac images of di�erent patients (inter-subject comparison of anatomy and
function) or of the same patient at di�erent times (intrasubject comparison such as
before and after therapy, or at rest and during exercise).
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Medical image analysis has shown to have a clinical impact, not only for diag-
nosis and guidance of interventions, but also for therapy planning by helping the
personalization of physiological models to a patient. The research work presented
in this thesis focused on the comparison of cardiac anatomy and function and can
be related to two issues of cardiac therapy using personalized physiological models:
the improvement of cardiac �bre architecture models and the evaluation of impact
of therapy on the cardiac anatomy and function. Both of these contributions rely
on the registration of medical images that gives the opportunity to compare cardiac
microstructure, anatomy and function. The groupwise registration of a population
of DT-MRIs was used to build an atlas of cardiac �bre architecture. The pairwise
registration of 4D cardiac CT sequences, explained as a simultaneous pairwise reg-
istration of a collection of 3D images, was used to compare cardiac anatomy and
function of di�erent patients and of the same patient before and after intervention
to evaluate the e�ect of therapy.

More generally, these contributions yield computational tools and results that
can be used for a better general understanding of cardiac anatomy and function.
We �rst report the contributions and results presented in this manuscript and then
conclude by proposing some possible extensions of this research work.
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7.1 Synthesis of Contributions
7.1.1 A Statistical Atlas of Cardiac Fibre Architecture
Knowledge about cardiac �bre architecture is essential for a better understanding
of electromechanical behavior of the heart either in normal cases or in pathological
cases where remodeling processes occur. Moreover including cardiac �bre architec-
ture in electromechanical models of the heart is essential for a realistic simulation
of cardiac function. When simulating cardiac function for patient-speci�c therapy
planning, the in vivo access to this architecture at a su�cient resolution is still not
possible. Hence, cardiac �bre architecture must rely on prior knowledge. Current
models are mostly synthetic models, in which generic analytical laws rule the �bre
orientation, or realistic single ex vivo DT-MRI acquisition that do not capture the
possible variability between subjects. Our strategy was to provide a statistical atlas
of cardiac �bre architecture from ex vivo canine DT-MRI acquisitions to combine
the advantages of both approaches being as generic and as realistic as possible.
This research work lead to several contributions from methodology to experimental
results.

• Framework to build a statistical atlas of cardiac DT-MRIs : We de-
tailed a general computational framework to build a statistical atlas of cardiac
DT-MRIs. The novelty of this work holds in computing a quantitative aver-
age cardiac �bre architecture by processing directly di�usion tensors instead
of features extracted from them (e.g. orientation angles or vectors).

• Decomposition of covariance matrix of di�usion tensors : We pro-
posed a complete second order statistical analysis of di�usion tensors with a
comprehensive analysis of the covariance matrix of di�usion tensors provid-
ing the variability of eigenvalues and eigenvectors. This statistical analysis of
DT-MRIs provides a novel framework well-suited to study the variability of
cardiac �bre architecture within a population.

• Insight on di�usion tensor reorientation strategies : We proposed a
justi�cation for the choice between the Finite Strain (FS) and the Preservation
of the Principal Direction (PPD) reorientation strategies when registering DT-
MRIs. PPD is explained as a mechanical deformation of the space whereas
FS preserves the spatial gradient of di�usion tensors.

• Canine statistical atlas of cardiac �bre architecture : This framework
was applied to a population of nine ex vivo canine DT-MRI acquisitions. We
obtained a statistical atlas that yields a better description and understanding
of cardiac �bre architecture by capturing common features within a popula-
tion. Results of the intra-species comparison with the analysis of the covari-
ance matrix of di�usion tensors showed that cardiac �bre orientation has low
inter-subject discrepancies whereas the laminar sheet orientation has much
higher discrepancies within the population of canine hearts.
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• Comparison canine atlas vs. synthetic model : This comparison showed
that synthetic models oversimplify the real cardiac �bre orientation. This
was especially true in the apex area where the transmural variation of �bre
orientation follows an analytical law di�erent from the one used to create the
synthetic model.

• Comparison canine atlas vs. human heart : An inter-species comparison
between a single human heart and the statistical atlas of canine hearts showed
a good consistency of �bre orientation and high discrepancies of laminar sheet
orientation. These preliminary results tend to justify the use of a canine atlas
of �bre orientation for patient-speci�c clinical applications.

7.1.2 Registration of 4D Time-Series of Images
The spatio-temporal registration of 4D time-series of images gives the opportunity to
compare simultaneously cardiac anatomy and function of di�erent patients (inter-
subject comparison of anatomy and function) or of the same patient at di�erent
times (intra-subject comparison such as before and after therapy, or at rest and
during exercise). Methodological contributions are proposed with the improvement
of 4D registration algorithms and with the novel analysis of remodeling after therapy
using 4D inter-sequence spatial transformations between pre- and post-operative
sequences.

• Framework for 4D inter-sequence spatio-temporal registration : We
introduced the general setting of 4D inter-sequence spatio-temporal registra-
tion that can be decoupled into temporal and spatial registrations. The tem-
poral registration is de�ned as the mapping of corresponding physiological
events and the spatial registration as the mapping of corresponding trajecto-
ries of physical points.

• Trajectory constraints : To ensure a temporal consistency of transforma-
tions by matching trajectories of points, we de�ned the trajectory constraints
(TC). These constraints showed to simplify the 4D spatial registration problem
to a multichannel 3D registration problem.

• Multichannel di�eomorphic registration : We proposed a rigorous ex-
tension of 3D Di�eomorphic Demons (DD) to vector-valued 3D images, called
Multichannel Di�eomorphic Demons (MDD), that allows to solve the multi-
channel 3D registration problem.

• Evaluation of 4D registration algorithms : We evaluated the spatio-
temporal registration under TC with MDD on electromechanically simulated
and real 4D CT sequences of di�erent patients by comparing it to other stan-
dard registration methods. It showed that using the trajectory constraints
yields a temporal regularization consistent with motion whereas using the



138 Chapter 7. Conclusion and Perspectives

multichannel registration yields a better spatial regularization. The combi-
nation of these two showed to be the best compromise between registration
accuracy, temporal consistency with motion tracking, spatial smoothness, and
computation times.

• Electromechanically simulated 4D cardiac CT sequences : We simu-
lated 4D cardiac CT sequences with realistic electromechanical model of the
heart including the statistical atlas of cardiac �bre architecture. These sim-
ulated sequences have the advantage to be fully controlled and to provide
ground truth transformations between frames and sequences. Thus, they are
useful data to validate registration algorithms.

• Application to the analysis of remodeling after therapy : We also
proposed a new possible application of 4D inter-sequence spatio-temporal reg-
istration to analyze and quantify the remodeling processes of the heart with
atrial �brillation after radiofrequency ablation. By studying the inter-sequence
transformations between a pre-operative and a post-operative sequence over a
cardiac cycle, we are able to quantify the anatomical remodeling due to the re-
gression of hypertrophy and the functional remodeling with the improvement
of the relaxation stage during diastole.

7.2 Discussion and Perspectives
7.2.1 Improvement of the Atlas of Cardiac Fibre Architecture
The construction of the atlas of cardiac �bre architecture is based on the compu-
tation of statistics on di�usion tensors. Basically, we compute a statistical atlas of
cardiac DT-MRIs that is then interpreted as cardiac �bre architecture. Another
strategy would be to �rst interpret the di�usion tensors as cardiac �bre architecture
described for instance with tensor whose eigenvalues would correspond more specif-
ically to a normalized con�dence value in eigenvectors orientation. Still we believe
that the di�erence between the two strategies should not change signi�cantly the
results.

The general framework to compute a statistical atlas of cardiac DT-MRIs has
been applied to small database of nine canine hearts. The �rst improvement of the
atlas would be to use a larger database. This would make the atlas more reliable in
terms of statistics. A second improvement would be to build this atlas from a large
database of human data. This would help to have better inter-species comparison
between canine and human hearts. But more importantly this would help to con�rm
(or in�rm) that the good consistency of �bre orientation observed within a canine
population is also valid for human hearts. Moreover, even if preliminary results
show a good correlation between canine and human �bre orientation, it makes more
sense to use a human atlas if available. One could also think of using this framework
to create atlases of pathological cases to study the remodeling process and include
it to patient-speci�c models.
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Adapting the atlas computed in this research work1 to patient anatomy is a step
forward towards bridging the gap between patient-speci�c information and prior
knowledge necessary when simulating cardiac function for diagnosis and planning
of therapy [Chinchapatnam 2008, Sermesant 2008, Sermesant 2009] or when caring
about the realignment of myocardial �bers orientation in the surgical reconstruction
of the left ventricle after infarction [Cirillo 2008, Cirillo 2009].

When using the atlas of �bre architecture for patient-speci�c electromechanical
simulations, the necessary resolution and details of cardiac �bre architecture should
be evaluated. It might happen that a canine atlas is su�cient for the desired appli-
cation. To evaluate this, studying the in�uence of cardiac �bre architecture on the
electromechanical behavior of the heart is essential.

More recently, Q-ball imaging [Tuch 2004] has been used to observe cardiac �-
bre architecture [Dierckx 2009] with a more detailed directional model of di�usion
than di�usion tensors. Preliminary studies have shown that this imaging technique
could help to visualize the intra-voxel cardiac �bre structure with for instance two
populations of �bres in some area of the hearts. If further studies show a sig-
ni�cant advantage of using Q-ball imaging to describe cardiac �bre architecture,
the statistical atlas could be computed with this di�usion model. But it would
also mean that statistical analysis of Q-ball imaging, already developed for segmen-
tation [Descoteaux 2009] or registration [Chiang 2008], should be extended to be
interpreted as cardiac �bre architecture variability.

7.2.2 Towards in vivo Imaging of Cardiac Fibre architecture
The construction of the atlas relied on the groupwise registration of anatomical
MRIs (T2-weighted images) and not the DT-MRIs to avoid to introduce a bias
in the statistical analysis of cardiac �bre architecture. Comparing the groupwise
registration results and the statistical analysis when registering the anatomical MRIs
or directly the DT-MRIs might also help to give insights about the link between
cardiac shape and �bre architecture by studying inter-subject transformations.

This link between anatomy and �bre architecture is important since up to now
solely the patient cardiac geometry is used to make the atlas patient-speci�c. One
strategy is to create a synthetic model with parametrized analytical laws that will be
directly used in any cardiac geometry. The parameters of the analytical laws (mostly
the extreme values at epicardium and endocardium of the transmural variation
of �bre orientation) can be determined according to the atlas �bre architecture.
Another strategy is to deform the atlas geometry to �t the patient geometry. Then
the deformed atlas �bre architecture is used to describe the patient �bre architecture
in its own geometry. An extension of this strategy would be to couple variability
of cardiac geometry and �bre architecture to obtain modes of variation of �bre
architecture depending on geometry.

But cardiac �bre architecture might not be dependent only on the geometry of
the heart, especially in presence of a pathology. The cardiac �bre architecture and

1http://www-sop.inria.fr/asclepios/data/heart/
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cardiac function are also highly interdependent. When cardiac �bre architecture is
modi�ed, the cardiac function is modi�ed. And when cardiac function is modi�ed, a
remodeling process of cardiac �bre architecture can occur to recover cardiac function.
Hence, measurements of the cardiac function obtained in vivo might be used to
improve the personalization of cardiac �bre architecture. But still some research
work remains to determine the correlation between cardiac function parameters
that can be measured in vivo and �bre architecture.

A more direct way to make another step forward towards bridging the gap
between patient-speci�c information and prior knowledge would be to acquire in
vivo sparse and/or low resolution DT-MRI data [Reese 1995, Tseng 1999, Dou 2002,
Gamper 2007, Frindel 2009a] and �t the atlas of �bre architecture to these data.

7.2.3 Improvement of 4D Registration Framework

The 4D registration framework we proposed highly relies on the determination of
the intra-sequence motion transformations that constrain the inter-sequence shape
transformations. The 4D spatial registration with trajectory constraints would ben-
e�t from any improvement of the motion tracking algorithm for instance by in-
cluding physical constraints such as elasticity and near incompressibility of cardiac
tissue [Mansi 2009] or by making it more robust coupling the registration of all
frames at the same time [Ledesma-Carbayo 2005, De Craene 2009, Sundar 2009].
Moreover, since motion tracking is always prone to errors, evaluating uncertainties
in the registration algorithms [Taron 2009] either for motion tracking or 4D regis-
tration would probably help to soften the hard constraints given by the trajectory
constraints.

Robustness of 4D spatial registration could be improved by considering the inter-
sequence registration of every possible pair of frames, and not only corresponding
frames. But the number of channels would highly increase as well as computation
time.

In our 4D spatio-temporal framework, we stated that spatial and temporal trans-
formations can be decoupled when temporal transformation is determined with phys-
iological parameters that are not image-based (e.g. using electrophysiology like the
ECG). Purely image-driven joint spatial and temporal registrations could also have
been considered. But as shown in Perperidis et al. [Perperidis 2005b], this joint reg-
istration increases a lot the computation time. Moreover, the interpretation of the
temporal transformation in terms of physiological events is di�cult. We preferred
to perform a temporal registration independently from spatial registration to have
a better understanding and control of which physiological states are matched. On
the other hand, joint spatial and temporal registrations could still be useful when
no physiological event has been clearly identi�ed for temporal registration or when
physiological data are not available.
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7.2.4 Towards a Statistical Atlas of Cardiac Anatomy and Function
A direct application of this framework would be the construction of a 4D statistical
atlas of cardiac anatomy and function. A �rst work on this topic [Perperidis 2005b]
computed a 4D probabilistic atlas that is then used to analyze cardiac function with
segmentation and tracking of the endocardium. In our framework, the computa-
tion of a 4D statistical atlas would be transformation-based. The average cardiac
sequence would be computed by averaging spatial (both intra- and inter-sequences)
and temporal transformations.

An atlas of cardiac mechanical function could also be computed by adapting
the framework to build the atlas of di�usion tensors to strain tensors with their
evolution over a cardiac cycle. In this case, the trajectory constraints satis�ed in
the 4D registration framework would be particularly important when comparing
strain over time between two sequences. If we do not ensure to map the same
physical points over time consistently with the motion, we compare the strain of
physical points that are not on the same trajectory over the whole sequence.

Both contributions could also be integrated in a single framework to build a joint
atlas of cardiac di�usion and strain tensors. Such an atlas would be particularly
interesting for studying the link between detailed anatomy with �bre architecture
and mechanical function.
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Appendix A

A�ne Transformation of a Plane
The a�ne transformation of the parameters of a plane is known since a long time.
We present here a simple demonstration provided in [Turkowski 1990].

Let P be a plane and its normal n. The a�ne transformations preserve the
parallelism and therefore the image of a plane is plane. It means that every vector
v in the plane P is transformed through an a�ne transformation A into a vector
v′ = Av in the image plane P ′ (see Figure A.1). By de�nition, every vector v in
the plane P is orthogonal to its normal:

n>v = 0

We can reformulate this expression as follows:

n>(A−1A)v = 0

From this formulation, we can derive the following expression:

((A−1)>n)>Av = 0

Since v′ = Av, we obtain:
((A−1)>n)>v′ = 0

which is the de�nition of a vector orthogonal to the plane P ′. Finally, the normal
n′ of the image plane P ′ is given by:

n′ = (A−1)>n
‖(A−1)>n‖ .

Figure A.1: A�ne transformation of a plane P with normal n into a plane P ′ with normal
n′.





Appendix B

Covariance Matrix Projections
We present here the projection of the covariance matrix of di�usion tensors onto
the orthonormal basis of its tangent space. This decomposition of the covariance
matrix gives directly at a �rst order approximation the variance of eigenvalues and
the variance of pair of eigenvectors orientation.

Let us consider the dyadic tensor decomposition of the average di�usion tensor
in the Log-Euclidean space:

W = log(Dlog) =
3∑

i=1

λiviv>i (B.1)

where λi = log (di) and the {di}i=1,2,3 are the eigenvalues of the di�usion tensor
Dlog.

Considering the deviations δλi and δvi of the eigenvalues λi and the eigenvectors
vi around the mean di�usion tensor, Equation B.1 becomes:

W + δW =
3∑

i=1

(λi + δλi)(vi + δvi)(vi + δvi)> (B.2)

Let us consider the increment εij of each vector δvi in the frame of the mean
eigenvectors {vj}j=1,2,3 (see Figure B.1):

δv1 = ε11v1 + ε12v2 + ε13v3

δv2 = ε21v1 + ε22v2 + ε23v3

δv3 = ε31v1 + ε32v2 + ε33v3

These coordinates εij in the frame of the mean eigenvectors {vj}j=1,2,3 corre-
spond to the tangent of the angle between vi +δvi and vj . Since v1,v2 and v3 build
an orthonormal frame of R3, εij = −εji at the �rst order:

(vi + δvi)>(vj + δvj) = (1 + εii)εji + (1 + εjj)εij = 0

(1 + εii)εji + (1 + εjj)εij + o(εij , εji) = 0

εij + εji = o(εij , εji)

Furthermore, the {vi + δvi}i=1,2,3 are unit vectors which means there is a rela-
tionship between εi1, εi2 and εi3:

(1 + εi1)2 + ε2
i2 + ε2

i3 = 1

Thus, εii = −1
2(ε2

im + ε2
in) + o(ε2

im, ε2
in) which means that at the �rst order we

can consider that εii = 0.
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Figure B.1: [First Column] Increment δv1 of the primary eigenvector about its average
v1. [Second Column] Orientation variability of the eigenvectors described by an ellipsoidal
cone of uncertainty.

Finally, considering only the �rst order terms of Equation B.2, we obtain the
following expression:

δW = δλ1W1 + δλ2W2 + δλ3W3 + ε23

√
2(λ2 − λ3)W4

+ ε13

√
2(λ1 − λ3)W5 + ε12

√
2(λ1 − λ2)W6

where the {Wi}i=1,2,3 form an orthonormal basis of the tangent space at the mean
di�usion tensor:

W1 = v1v>1 W4 = 1√
2
(v3v>2 + v2v>3 )

W2 = v2v>2 W5 = 1√
2
(v1v>3 + v3v>1 )

W3 = v3v>3 W6 = 1√
2
(v2v>1 + v1v>2 )

Thus, we can formulate the variances of ε12, ε13, ε23, δλ1, δλ2 and δλ3 with
respect to the projections of the covariance matrix Σ onto the orthonormal basis
{Wi}i=1,...6 of the tangent space:

E(δλ1
2) = vec(W1)> Σ vec(W1) E(ε2

23) = 1
2(λ2 − λ3)2

vec(W4)> Σ vec(W4)

E(δλ2
2) = vec(W2)> Σ vec(W2) E(ε2

13) = 1
2(λ1 − λ3)2

vec(W5)> Σ vec(W5)

E(δλ3
2) = vec(W3)> Σ vec(W3) E(ε2

12) = 1
2(λ1 − λ2)2

vec(W6)> Σ vec(W6)



Appendix C

Atlas and Synthetic Models in
AHA Zones

Figure C.1: Bull's eye view of the American Heart Association (AHA) zones of the left
ventricle (17 zones) and their extension to the right ventricle (9 more zones) - Adapted
from [Moireau 2008].
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(a) AHA Zone 1

(b) AHA Zone 2

(c) AHA Zone 3

(d) AHA Zone 4

Figure C.2: Average angular di�erence between the canine atlas and synthetic models with
di�erent helix angles at endocardium and epicardium at a given American Heart Association
(AHA) zone (colorscale is in degrees).
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(a) AHA Zone 5

(b) AHA Zone 6

(c) AHA Zone 7

(d) AHA Zone 8

Figure C.3: Average angular di�erence between the canine atlas and synthetic models with
di�erent helix angles at endocardium and epicardium at a given American Heart Association
(AHA) zone (colorscale is in degrees).
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(a) AHA Zone 9

(b) AHA Zone 10

(c) AHA Zone 11

(d) AHA Zone 12

Figure C.4: Average angular di�erence between the canine atlas and synthetic models with
di�erent helix angles at endocardium and epicardium at a given American Heart Association
(AHA) zone (colorscale is in degrees).
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(a) AHA Zone 13

(b) AHA Zone 14

(c) AHA Zone 15

(d) AHA Zone 16

Figure C.5: Average angular di�erence between the canine atlas and synthetic models with
di�erent helix angles at endocardium and epicardium at a given American Heart Association
(AHA) zone (colorscale is in degrees).
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(a) AHA Zone 17

(b) AHA Zone 18

(c) AHA Zone 19

(d) AHA Zone 20

Figure C.6: Average angular di�erence between the canine atlas and synthetic models with
di�erent helix angles at endocardium and epicardium at a given American Heart Association
(AHA) zone (colorscale is in degrees).
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(a) AHA Zone 21

(b) AHA Zone 22

(c) AHA Zone 23

(d) AHA Zone 24

Figure C.7: Average angular di�erence between the canine atlas and synthetic models with
di�erent helix angles at endocardium and epicardium at a given American Heart Association
(AHA) zone (colorscale is in degrees).
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(a) AHA Zone 25

(b) AHA Zone 26

Figure C.8: Average angular di�erence between the canine atlas and synthetic models with
di�erent helix angles at endocardium and epicardium at a given American Heart Association
(AHA) zone (colorscale is in degrees).
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(a) Helix Angle - AHA Zone 1 (b) Transverse Angle - AHA Zone 1

(c) Helix Angle - AHA Zone 2 (d) Transverse Angle - AHA Zone 2

(e) Helix Angle - AHA Zone 3 (f) Transverse Angle - AHA Zone 3

(g) Helix Angle - AHA Zone 4 (h) Transverse Angle - AHA Zone 4

Figure C.9: Histogram of helix and transverse angles with respect to relative transmural
distance from epicardium to endocardium at a given American Heart Association (AHA)
zone.
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(a) Helix Angle - AHA Zone 5 (b) Transverse Angle - AHA Zone 5

(c) Helix Angle - AHA Zone 6 (d) Transverse Angle - AHA Zone 6

(e) Helix Angle - AHA Zone 7 (f) Transverse Angle - AHA Zone 7

(g) Helix Angle - AHA Zone 8 (h) Transverse Angle - AHA Zone 8

Figure C.10: Histogram of helix and transverse angles with respect to relative transmural
distance from epicardium to endocardium at a given American Heart Association (AHA)
zone.
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(a) Helix Angle - AHA Zone 9 (b) Transverse Angle - AHA Zone 9

(c) Helix Angle - AHA Zone 10 (d) Transverse Angle - AHA Zone 10

(e) Helix Angle - AHA Zone 11 (f) Transverse Angle - AHA Zone 11

(g) Helix Angle - AHA Zone 12 (h) Transverse Angle - AHA Zone 12

Figure C.11: Histogram of helix and transverse angles with respect to relative transmural
distance from epicardium to endocardium at a given American Heart Association (AHA)
zone (color represents the number of voxels).
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(a) Helix Angle - AHA Zone 13 (b) Transverse Angle - AHA Zone 13

(c) Helix Angle - AHA Zone 14 (d) Transverse Angle - AHA Zone 14

(e) Helix Angle - AHA Zone 15 (f) Transverse Angle - AHA Zone 15

(g) Helix Angle - AHA Zone 16 (h) Transverse Angle - AHA Zone 16

Figure C.12: Histogram of helix and transverse angles with respect to relative transmural
distance from epicardium to endocardium at a given American Heart Association (AHA)
zone (color represents the number of voxels).
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(a) Helix Angle - AHA Zone 17 (b) Transverse Angle - AHA Zone 17

(c) Helix Angle - AHA Zone 18 (d) Transverse Angle - AHA Zone 18

(e) Helix Angle - AHA Zone 19 (f) Transverse Angle - AHA Zone 19

(g) Helix Angle - AHA Zone 20 (h) Transverse Angle - AHA Zone 20

Figure C.13: Histogram of helix and transverse angles with respect to relative transmural
distance from epicardium to endocardium at a given American Heart Association (AHA)
zone (color represents the number of voxels).



162 Appendix C. Atlas and Synthetic Models in AHA Zones

(a) Helix Angle - AHA Zone 21 (b) Transverse Angle - AHA Zone 21

(c) Helix Angle - AHA Zone 22 (d) Transverse Angle - AHA Zone 22

(e) Helix Angle - AHA Zone 23 (f) Transverse Angle - AHA Zone 23

(g) Helix Angle - AHA Zone 24 (h) Transverse Angle - AHA Zone 24

Figure C.14: Histogram of helix and transverse angles with respect to relative transmural
distance from epicardium to endocardium at a given American Heart Association (AHA)
zone (color represents the number of voxels).
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(a) Helix Angle - AHA Zone 25 (b) Transverse Angle - AHA Zone 25

(c) Helix Angle - AHA Zone 26 (d) Transverse Angle - AHA Zone 26

Figure C.15: Histogram of helix and transverse angles with respect to relative transmural
distance from epicardium to endocardium at a given American Heart Association (AHA)
zone (color represents the number of voxels).





Appendix D

Maximum Step Length
We propose here to determine an upper bound of the norm of the update vector
�eld u. In the general case, we set the number of space dimensions to d (in our case,
we used 3D images so d = 3).

u =
d∑

i=1

Pi

λ2
i + σ2/σ2

c

ei (D.1)

where:

Pi = −
N∑

j=1

αj(Ij − I ′j ◦ S) G>
j ei

λ2
i = e>i

(∑N
j=1 αjGjG>

j

)
ei =

N∑

j=1

αj(G>
j ei)>(G>

j ei)

σ2 =
N∑

j=1

αjσ
2
j

Let's consider the component ui of u in the direction of ei:

ui =
Pi

λ2
i + σ2/σ2

c

Regarding the numerator Pi, since we use σj = |Ij − I ′j ◦ S|, we obtain:

|Pi| ≤
N∑

j=1

αjσj |G>
j ei| (D.2)

The denominator λ2
i + σ2/σ2

c can be reformulated as follows:

λ2
i + σ2/σ2

c =
N∑

j=1

αj

(
(G>

j ei)>(G>
j ei) + σ2

j /σ2
c

)

From the following general inequality for (a, b) ∈ R2,

(a− b)2 = a2 + b2 − 2ab ≥ 0

a2 + b2 ≥ 2ab

we obtain this inequality:

(G>
j ei)>(G>

j ei) + σ2
j /σ2

c ≥ 2
σj

σc
|G>

j ei|
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Thus we can �nd a lower bound of the denominator:

λ2
i + σ2

j /σ2
c ≥ 2

N∑

j=1

αj
σj

σc
|G>

j ei| (D.3)

Combining both inequalities D.2 and D.3, we �nd an upper bound of |u|:

|ui| ≤
∑N

j=1 αj |G>
j ei|σj

2
∑N

j=1 αj |G>
j ei|σj/σc

which simpli�es in:
|ui| ≤ σc

2
(D.4)

The update vector �eld has d independent components ui.

u =
d∑

i=1

uiei

From the upper bound of each component ui (inequality D.4) comes the upper
bound of the norm of update vector �eld u:

‖u‖2 =
d∑

i=1

u2
i ≤

d∑

i=1

σ2
c

4

Finally,

‖u‖ ≤
√

d

2
σc (D.5)
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