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to a Small Database of Canine Hearts.
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Abstract—We propose a unified computational framework to
build a statistical atlas of the cardiac fiber architecture from
diffusion tensor magnetic resonance images (DT-MRIs). We apply
this framework to a small database of nine ex vivo canine
hearts. An average cardiac fiber architecture and a measure of
its variability are computed based on most recent advances in
diffusion tensor statistics. This statistical analysis confirms the
already established good stability of the fiber orientations and a
higher variability of the laminar sheet orientations within a given
species. The statistical comparison between the canine atlas and a
standard human cardiac DT-MRI shows a better stability of the
fiber orientations than their laminar sheet orientations between
the two species. The proposed computational framework can be
applied to larger databases of cardiac DT-MRIs from various
species to better establish intra- and inter-species statistics on
the anatomical structure of cardiac fibers. This information will
be useful to guide the adjustment of average fiber models onto
specific patients from in vivo anatomical imaging modalities.

Index Terms—Atlas, cardiac, diffusion tensor magnetic reso-
nance imaging, DTI, DT-MRI, fiber architecture, heart, laminar
sheets, statistics.

I. I NTRODUCTION

CARDIAC fiber architecture, a complex arrangement
of myofibers bounded to each other to form laminar

sheets [1], plays an essential role in defining the electrical
and mechanical behavior of the heart [2], [3]. Mathematical
modeling of the cardiac fiber architecture and its variability is
important to better understand physiological principles and to
construct computational models of the heart [4], [5]. However,
the in vivo imaging of the cardiac fiber architecture at high
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resolution is still considered to be infeasible in the near term
because of heart motion and limitations in current imaging
techniques [6], [7]. Therefore, modeling of the cardiac fiber
architecture and its variability onex vivodata is particularly
important. For instance, the fiber architecture model can be
used to simulate the electrical and mechanical functions of
the heart for planning patient-specific therapies [8], [9].

Until recently, the modeling of the cardiac fiber architecture
mostly came from studies of histological slices [10], [11].
They revealed the common features between species such as
the transmural variation of the fiber and laminar sheet orien-
tations parameterized by the inclination angle (also known as
elevation angle) and the intersection angle [1]. However, the
definition of these angles was limited by the 2D nature of
histological slices, whose accurate reconstruction in 3D is not
straightforward [12]. Measurements of fiber architecture have
been eased by the use of diffusion tensor magnetic resonance
imaging (DT-MRI) [13], [14]. Indeed, a correlation between
the cardiac fiber structure and diffusion tensors has been
demonstrated: the primary eigenvector of the diffusion tensor
is locally aligned with the fiber direction [15], [16] as is the
tertiary eigenvector with the laminar sheet normal [17]–[19].
Thus, DT-MRI provides directly a 3D description of the fiber
architecture in a shorter time but at a lower resolution com-
pared to histological studies. In the past years several authors
have performed studies on the variability of fiber [20]–[22] and
laminar sheet [18]–[21], [23] orientations using DT-MRI. They
have been so far limited to features extracted from diffusion
tensors such as scalar values (for instance, inclination and
intersection angles [18], [19], [23]) or vector values (primary
eigenvector [22] only describing the fiber orientation). From
these studies, different models of the cardiac fiber architecture
were proposed and used for electromechanical simulations: a
synthetic model based on general observations of the common
features in mammalian hearts [24], a model based on the 3D
reconstruction of the fiber orientation of a canine heart from
histological studies [11], and a single DT-MRI acquisition of
an ex vivo canine heart [25]. These models are either too
generic and simplistic or too specific to accurately describe
the detailed anatomy and its inter-subject variability.

To improve these models, a framework to build very high
resolution 3D models of the cardiac fiber architecture from
histological studies has been proposed without experimental
validation [26]. Here, we propose a unified computational
framework to build an atlas of the cardiac fiber architecture
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Fig. 1. Overall workflow of the proposed framework to build a DT-MRI
atlas that is compared to human and synthetic data.

that is learned statistically from a population of DT-MRIs. Our
approach differs from previous cardiac studies in computing
statistics directly on the diffusion tensors that contains the
whole fiber structure information. However, since diffusion
tensors are symmetric positive definite matrices that do not lie
on a vector space, classical Euclidean multivariate statistics are
not consistent with the positivity constraint on the eigenvalues.
Riemannian geometry, based on either affine-invariant [27]–
[31] or Log-Euclidean [32] metrics, gives a general and
consistent computational framework. Statistics on diffusion
tensors have already been used to build brain atlases. But none
of them defined a complete and consistent framework with the
most recent advances on diffusion tensor processing. Jones
et al. [33] computed first-order statistics with a Euclidean
metric. Their second-order statistics were limited to features
of the diffusion tensor (the dyadic tensor [34] formed from
the primary eigenvector). Second-order statistics on the whole
diffusion tensor were computed for model-based diffusion
tensor tractography [35] in the brain but only with a Euclidean
metric. A population study of brain diffusion tensors used
statistics with the Log-Euclidean metric but was limited to
their averaging [36].

Unlike previous works on statistical analysis of DT-MRIs,
the proposed computational framework is both complete and
consistent in terms of the following three aspects. First, we

use a Riemannian metric to be consistent with the positivity
constraint on the eigenvalues. Second, we compute the average
and covariance matrix of the whole diffusion tensors. Third,
we employ new tools to extract the variabilities of the eigen-
vectors and eigenvalues from the covariance matrix. These
tools are better suited for studying the variability of cardiac
fiber and laminar sheet orientations.

A first preliminary study showed the feasibility of such
a statistical atlas on the ventricles with downsampled im-
ages [37]. Here, we perform an extended study by using more
ex vivocanine hearts at the full image resolution and including
whole heart. The resulting atlas1 provides an average cardiac
fiber architecture and its variability within a population. Then,
we evaluate the advantages of the average cardiac fiber archi-
tecture directly built from real data over a synthetic model
based on a generalization of the observations in different
studies. As mentioned previously, thein vivo acquisition of
high resolution cardiac DT-MRI is made difficult by heart
motion. Furthermore, since healthy hearts are preferred to be
transplanted rather than used for research purposes,ex vivo
DT-MRI acquisition is very rare. The exceptional access to a
singleex vivohuman cardiac DT-MRI allows us to perform a
preliminary inter-species comparison before a larger database
is available.

We present here an overview of the workflow (see Fig. 1):

• Groupwise registration of anatomical MRIs (Section II).
To compare different hearts, we first need to find an
inter-subject mapping for normalizing their geometries.
This mapping is obtained from a groupwise registration
of anatomical MRIs. To ensure the accuracy of the atlas
we build, matching corresponding anatomical structures
is necessary. Thus, we propose to include interactive
guidance of pairwise registrations [38] in a classical
worklow for atlas building [39].

• Transformation of diffusion tensor fields (Section III).
Once a mapping between the hearts is known, an impor-
tant issue is to transform the diffusion tensors properly.
These tensors contain a directional information of diffu-
sion linked to the reference frame of the image. When
transforming an image, this reference frame is modified.
Thus, the diffusion tensors have to be transformed accord-
ing to the modification of the reference frame. Different
transformation strategies have been proposed [40]. We
compare these strategies on synthetic and experimental
data to characterize their impacts on diffusion tensors
and give insights on how to determine the most suited
transformation strategy.

• Complete and consistent statistics on diffusion tensors
(Section IV). This is realized by computing average diffu-
sion tensors and their corresponding covariance matrices
using the Log-Euclidean framework. The difficulty is
to interpret directly the covariance matrix of diffusion
tensors, especially in terms of cardiac fiber architecture.
Thus, we propose new efficient tools to extract from this
covariance matrix the variability of the eigenvectors and
eigenvalues.

1available at http://www-sop.inria.fr/asclepios/data/heart
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• Intra- and inter-species comparisons (Section V). We
apply this framework to perform an intra-species compar-
ison building a statistical atlas of cardiac fiber architecture
from a small database of nine canine hearts. This atlas is
compared to a synthetic model of the fiber orientation [8]
showing that the proposed statistical model of the cardiac
fiber architecture is more complete and accurate. Finally,
we perform a quantitative inter-species comparison be-
tween this atlas of canine hearts and a human heart. The
results confirm a better inter-species coherence of the
fiber orientations than the laminar sheet orientations.

II. REGISTRATION OFANATOMICAL MRIS

Registering the geometries based on the DT-MRIs [41]–[44]
implies a minimization of the differences between diffusion
tensors. In this case, we make the assumption that there are
similarities between cardiac DT-MRIs. Actually, quantifying
these similarities is exactly what we want to evaluate in the
following statistical analysis. To avoid introducing a bias, we
register the unweighted images of the DT-MRI acquisition
that only hold anatomical information. Furthermore, these
anatomical MRIs have the advantage to be acquired in the
same geometry as the DT-MRIs without distortion. Thus, the
deformation fields used to transform the anatomical MRIs can
be directly used to transform the DT-MRIs.

To register the anatomical MRIs to an average geometry, we
propose here a classical workflow for atlas building. First, we
present a pairwise registration algorithm allowing interactive
guidance that ensures the quality of the inter-subject mapping.
Second, we describe an alternate groupwise registration of the
anatomical MRIs relying on pairwise registration steps.

A. Pairwise Registration

The mapping ofex vivohearts is challenging due to large
differences in alignment and scale of the data. Thus, there is a
need for a robust affine registration before using any non-rigid
algorithm.

1) Constrained Affine Registration:We perform an inter-
active affine transformation to control its quality and to get
an appropriate initialization for the non-rigid registration as
follows. An affine transformation can be defined by four
landmarks. The difficulty to find four repeatable landmarks
to best normalize the geometry of the hearts limited us to
use three landmarks. Thus, we constrained the affine trans-
formation S based on three interactively located landmarks:
the left ventricular apex (ALV ) and the two right ventriculo-
septal junctions (corner pointsC1 andC2) in the valve plane
orthogonal to the long axis of the heart (see Fig. 2).

We use these landmarks to define a composition of trans-
formationsS = Sz ◦ Sxy ◦Rθz

◦ T (see Fig. 2) that align the
hearts and normalize their heights and radius:

• the translationT to match the centroidsG andG′ of the
two pairs of corner points,

• the rotationRθz
around the direction of the long axis of

the heart to match the directions given by the two pairs
of corner points,

• the scalingSxy to match the length of the line segments
defined by the two pairs of corner points,

• the scalingSz along the axis of the heart to match the
two pairs of axial planes: the valve plane and the one
containing the LV endocardial apex.

2) Interactive Non-Rigid Registration:Beg et al. [45] pro-
posed a landmark and image intensity-based large deformation
diffeomorphic metric mapping (LDDMM) method for non-
rigid registration of cardiac geometries. We preferred to use
another hybrid intensity- and landmark-based registration al-
gorithm [38] that is well suited for fast interactive corrections.
The interactive guidance by a selection of pairs of landmarks is
useful to control the registration and avoid the matching of dif-
ferent structures. The advantage of this hybrid algorithm is to
combine easily any intensity- and landmark-based registration
algorithms. It relies on an iterative dual energy minimization
that yields to the deformation fieldT , which is a weighted-
average of the fitting of intensityQ1 and landmarksQ2:

T (X) = (1− λ(X))[K1 ∗Q1(X)] + λ(X)[K2 ∗Q2(X)]

with X being the voxel position in the reference space,K1

and K2 being regularization kernels for each deformation
field Q1 and Q2, and λ(X) ∈ [0, 1] being a confidence
map across the image defining the trust in the deformation
fields Q1 versusQ2. This confidence map is a mixture of
3D normalized Gaussian centered on each landmark in the
reference space and whose variance depends on its distance
to the corresponding landmark. We used here a combination
of thin-plate splines [46] and a diffeomorphic registration
algorithm [47] based on the mutual information.

Finally, the pairwise registration is the composition of
the constrained affine transformationS with the non-rigid
deformationT that can be used in the groupwise registration
as follows.

B. Groupwise Registration

The groupwise registration is not trivial since the average
geometry and its mapping with the subject geometries are
interrelated. Guimondet al. [39] proposed an alternate ap-
proach that was adapted by Helmet al. [48] to build an
average cardiac geometry. All the subjects are registered to
the same current reference geometry which is then updated by
the new mapping to converge to an average geometry. Avants
et al. [49] presented a recursive approach where the current
reference geometry is updated each time a subject is mapped.
Joshiet al. [50] find simultaneously an average geometry and
the mapping of the subjects to it by sequentially minimizing
an energy with respect to these mappings. We preferred the
alternate approach to ease the introduction and the control of
the guidance with pairs of landmarks. This method has the
advantage to register all the subjects to the same reference
geometry and thus to ensure that the interactive guidance is
as meaningful as possible for the final average geometry. In
the other methods, the guidance of the registration to the
final average geometry would not be clear since pairs of
landmarks would be set with different reference geometry for
each subject.
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Fig. 2. The pairwise registration is initialized with a constrained affine trans-
formationS based on the matching of three interactively located landmarks:
the left ventricular apex (ALV ) and the two corners of the right ventricle in
the valve plane (C1 andC2). This transformation is defined as a composition
of a translationT , a rotationRθz , a radial scalingSxy and a long axis scaling
Sz . The atria are not shown here for a better visualization of the landmarks.

We alternately build an average geometry and register
the subjects to it. We first register the dataset of images
{Ii}i=1,...N to the current reference imageIn

mean of the stepn
based on the pairwise registration steps described previously
(the initial reference imageI0

mean is chosen within the dataset).
The resulting deformation fieldsTn

i registering the initial
imagesIi to the current reference imageIn

meanare averaged. In
our case the average deformation fields have been shown to be
smooth enough and to have small enough deformations to be
computationally invertible. One could think about improving
this step using most recent advances in statistics on diffeomor-
phisms [51]. A least squares approximation of the inverse of
the average deformation fieldTn

mean is applied to the current
reference imageIn

mean which then gets closer to a barycentric
geometry of the dataset (see Fig. 3). The intensities are
averaged in this new average geometry. Therefore, through the
deformation fieldsTn

i , the original geometry and intensities
of each heart are taken into account in the new average heart
In+1

mean.
One iteration can be summarized in the equation as follows:

In+1
mean(X) =

1
N

N∑
i=1

Ii(Tn
i ◦ [Tn

mean]
−1(X))

whereX is the voxel coordinates,Ii is the anatomical MRI
of the samplei, Tn

i is the deformation field matching the
current average geometryIn

mean to the sampleIi at the step

n, Tn
mean = 1

N

N∑
i=1

Tn
i is the average deformation field at the

stepn. These steps are repeated using the new average heart
In+1

mean as the reference geometry until it converges. In practice,
a few iterations are sufficient to get a stable geometry.

Finally, the outputs of this process are an average geometry
of cardiac anatomical MRIs and a dense deformation field for

Fig. 3. The groupwise registration of the anatomical MRIs{Ii}i=1,...9 is
adapted from the algorithm proposed by Guimondet al. [39]. This algorithm is
based on an alternate registration process using the resulting average geometry
In+1

mean as a reference for the next step. The deformation fields{T n
i }i=1,...9

at the stepn are a composition of a constrained affine transformation and a
non-rigid deformation as described in Section II-A.

each heart of the dataset. Then, these deformation fields can
be used to transform the DT-MRIs.

III. T RANSFORMATION OF THEDT-MRIS

Since we use the unweighted image of the DT-MRI acquisi-
tion as the anatomical MRI, the DT-MRIs and the anatomical
MRIs are in the same geometry without distortion. Thus, we
can directly apply to the DT-MRIs the deformation fields com-
puted in the previous section. The transformation of DT-MRIs
is more complex than anatomical MRIs. A diffusion tensor
is a covariance matrix (symmetric definite positive matrix)
modeling the directional distribution of diffusion rates of water
molecules. This directional information is linked to the local
reference frame that is modified during the transformation. To
describe this distribution in the new local reference frame, a
transformation of the diffusion tensor is necessary. Each of the
eigenvalues describes a diffusion process in a specific direction
of the fiber structure given by its corresponding eigenvector
(see first column in Fig. 4). We assume that the basic structure
of fibers, organized in laminar sheets, is locally preserved. It
means that the transformed eigenvectors are still an orthonor-
mal basis in the new local reference frame. This assumption is
important to preserve the correlation between the transformed
diffusion tensor and the underlying fiber structure. Moreover,
the diffusion process in each specific directions of the fiber
structure only depends on material properties of the underlying
microstructure. At our scale of observation, we can consider
that these material properties are intensive properties. Thus, the
eigenvalues are preserved when warping the space. Finally, the
transformation of the diffusion tensors can be simply described
by a rotation of the eigenvectors. Different methods have
been proposed to reorient diffusion tensors in the literature.
We propose here to compare the reorientation strategies to



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 10, OCTOBER 2007 5

understand their fundamental differences and to justify their
use given the registration context.

First, we describe the most common and meaningful reori-
entation strategies: theFinite Strain(FS) and thePreservation
of the Principal Direction(PPD) proposed by Alexanderet
al. [40]. They are defined in the case of affine transformations
and extended to non-rigid deformations [40] by approximating
at each voxel the deformation fieldT (matching the reference
image to the transformed image) with an affine transformation
A = Id+∇T where Id is the identity matrix and∇ the gradient
operator. Second, we point out their fundamental differences
on a typical case of synthetic diffusion tensor field transformed
by basic affine transformations. Third, we compare them on
real cases of cardiac diffusion tensors non-rigidly transformed
for experimental validation.

A. Finite Strain (FS)

In the FS reorientation strategy, the rotation component of
the local affine transformation is used to reorient the diffusion
tensors. The polar decomposition of an affine transformation
A can be written as follows:A = RU where R is the
rotation component andU a deformation component. Actually,
the rotation component is the least squares approximation of
the affine transformation by a rotation and has a closed-form
solution [52]: R = (AAt)−

1
2 A. In the case of the FS, the

action of an affine transformation on a diffusion tensorD
(whose operator is?) is defined as follows:

A ? D = RFS(A) ·D ·RFS
t(A)

whereRFS(A) is the rotation component of the affine trans-
formationA.

Since the transformation of a diffusion tensor only depends
on the affine transformationA, we can infer interesting prop-
erties. For instance, we propose to compare the action of the
transformation on the diffusion tensor field (whose operator
is ?) and the action of the transformation on the gradient of
diffusion tensors (whose operator is•) in the case of a global
affine transformation.

Let us considerX the voxel coordinates in the original
space andD the original diffusion tensor field. Respec-
tively X ′ = AX and D′ are their transformed values.
We use here the minimal representation vec(D) of a dif-
fusion tensorD = (Dij)i,j=1,2,3 to take into account the
multiplicity of its off-diagonal elements [29]: vec(D) =
(D11,

√
2D12, D22,

√
2D31,

√
2D32, D33)t. Thus, the classi-

cal Euclidean norm of this vector representation is equal to
the classical Euclidean norm of the diffusion tensor.

In the space of the transformed image, we have:

∇X′vec(D′
FS(X ′)) = ∇X′vec(A ? D(A−1X ′))

∇X′vec(D′
FS(X ′)) = ∇X′vec(RFS(A)·D(A−1X ′)·RFS

t(A))

As RFS only depends onA which is constant over the space:

∇X′vec(D′
FS(X ′)) = A−1•∇Xvec(RFS(A)·D(X)·RFS

t(A))

Thus:

A • ∇X′vec(D′
FS(X ′)) = ∇Xvec(A ? D(X))

Fig. 4. [First Column] Cardiac fiber structure (adapted from LeGriceet
al. [1]). [Second Column] Original basic fiber structure with eigenvectors
vi. [Third Column] Example of shearing applied to the basic fiber structure:
continuous arrowsAvi are the transformed eigenvectors through the shearing
and dashed arrowsv′i are the eigenvectors related to the correlation between
the fiber microstructure and the diffusion tensor.

The gradient of a transformed diffusion tensor field is equal
to the transformed gradient of the original diffusion tensor
field. Since the action of the transformation is consistent with
the gradient on diffusion tensors, we expect to preserve the
geometric features. We can characterize the FS reorientation
strategy as a geometric transformation of the diffusion tensor
fields.

B. Preservation of the Principal Direction (PPD)

The basic idea of the PPD reorientation strategy is to
come back to the underlying microstructure described by the
diffusion tensor. In the case of cardiac diffusion tensors, it
has been shown [15]–[19] that the eigenvectors are linked to
the fiber and laminar sheet orientations. The primary eigen-
vector v1 is aligned with the fiber direction as is the tertiary
eigenvectorv3 with the normal direction to the laminar sheet
(see first column in Fig. 4). Once we have a model of the
underlying microstructure, we transform it through the local
affine transformation. Then, from this transformed microstruc-
ture we build the transformed diffusion tensor according to
the relationship between the eigenvectors and the underlying
microstructure [40].

An affine transformation can be described by a composition
of basic transformations: translation, rotation, scaling and
shearing. Translations and uniform scalings do not modify the
orientation of the fiber structure, and the transformation of
the fiber structure through rotations is obvious. Non-uniform
scaling and shearing are the most problematic basic transfor-
mations to apply to the fiber structure since the amount of
deformation depends on the original structure. An illustration
of this dependency is shown in Fig. 4 with the action of pure
shearing on the basic microstructure of cardiac fibers. The
direct transformation of the original eigenvectorsvi leads to
the vectorsAvi and the final transformation deduced from the
deformation of the fiber structure leads to the vectorv′i.

The fiber and laminar sheet structures are preserved when
mechanically deformed by an affine transformation. Fibers
are locally considered as lines and the affine transformation
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Fig. 5. Synthetic diffusion tensor field with a sinusoidal variation of
the orientationθ of the primary eigenvectorv along the direction of the
x coordinates. The diffusion tensors are colored in red when the primary
eigenvector is oriented along the direction of thex coordinates and in green
along the direction of they coordinates. As an illustration of the differences
between the action of the FS and PPD reorientation strategies, a basic
non-uniform scalingA (in this figure a compressionα < 1 along thex
coordinates) is applied to the diffusion tensor field.

of a line remains a line. Thus, the new primary eigenvector
v′1 pointing in the direction of the deformed fibers is the
normalized direct transformation of the primary eigenvectorv1

pointing in the direction of the original fibers:v′1 = Av1
||Av1||

. In

the same way, laminar sheets are locally considered as planes
and the image of a plane through an affine transformation
remains a plane. Thus, the laminar sheet is spanned byv1 and
v2 and its image byAv1 andAv2. The secondary eigenvector
v′2 lies in the laminar sheet plane and is orthogonal to the

fiber direction by definition:v′2 = Av2 − (Av2 · v′1)v
′
1

||Av2 − (Av2 · v′1)v
′
1||

.

The tertiary eigenvectorv3 is aligned locally with the normal
vector of the laminar sheet plane. The normal vector of the
image of a plane through an affine transformation is given
by the following expression (more details in the Appendix):

v′3 = (A−1)tv3

||(A−1)tv3||
. One can easily show that this expression

leads to the same result as the one proposed in [40] where
they buildv′3 from v′1 andv′2 to obtain an orthonormal frame:
v′3 = v′1 × v′2. This new formulation has the advantage to be
independent of the computation of the other eigenvectors and
to show the contravariant action of the affine transformation
on the tertiary eigenvector.

The three transformed eigenvectors form an orthonormal
frame. Thus, the diffusion tensor is reoriented as follows:

A ? D = RPPD(A,D) ·D ·RPPD
t(A,D)

where RPPD(A,D) = V ′t · V is the rotation mapping the
original eigenvectors{vi}i=1,2,3 on the transformed eigen-
vectors {v′i}i=1,2,3 respectively described by the matrices
V = [v1, v2, v3] andV ′ = [v′1, v′2, v′3].

In this way, the PPD is by definition a mechanical transfor-
mation of the heart and its fiber architecture that for instance
occurs when the heart is deformed during the cardiac cycle.

Fig. 6. Illustration of the difference between the action of the FS and PPD
reorientation strategies: sine of the orientation anglesθPPD and θFS of the
vector field after a non-uniform scaling transformation. The orientation angle
θ is the angle between the primary eigenvector and the direction of thex
coordinates as described in Fig. 5. The original orientation is described by
the red curve.

C. Comparison of the Reorientation Strategies

1) Affine Transformation of Synthetic Data:To better un-
derstand the effect of the presented reorientation strategies,
we first illustrate the differences between the FS and the PPD
on a simple synthetic diffusion tensor field transformed by a
non-uniform scaling (see Fig. 5). To simplify the calculations
and to clarify the example, we only consider the primary
eigenvector of the diffusion tensors in 2D. One can easily
extend this study in 3D on all the eigenvectors. Let us consider
the following profile of the primary eigenvector orientations
that only depends on the position along the direction ofx
coordinates:

v(x) =
(

cos(x)
sin(x)

)
wherex ∈ [0, 2π].
We apply the following non-uniform scaling to the vector

field:

A =
(

α 0
0 1

)
Let v′FS(x

′) = RFS(A)v(x) be the transformed vector by
the FS and letv′PPD(x

′) = RPPD(A, v)v(x) be the transformed
vector by the PPD:

v′FS(x
′) = v(x′

α )

v′PPD(x
′) =

Av(x′

α )
||Av(x′

α )||
=


α cos( x′

α )√
α2 cos2( x′

α )+sin2( x′
α )

sin( x′
α )√

α2 cos2( x′
α )+sin2( x′

α )


wherex′ ∈ [0, 2πα].
Since the polar decomposition of a non-uniform scaling

does not contain any rotation component, the orientation of
the vectors is not modified using the FS reorientation strategy:
RFS = Id. Thus, only a resampling of the diffusion tensor field
is performed.
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We observe in Fig. 6 that the profile of vector orientation
along the direction of thex coordinates is modified in the case
of the PPD strategy whereas this profile is only resampled in
the case of the FS strategy. The difference between these two
strategies is enhanced with the importance of the compression
(α < 1) and stretching (α > 1). This example illustrates
the mechanical effect with the PPD and the preservation of
geometric features with the FS. The choice of the reorientation
strategy will depend on the context of the diffusion tensor
transformation. If we consider that there is a mechanical
transformation due to the registration process (for instance, the
registration of the same heart at a different time of its cycle),
we would prefer the PPD. On the other hand, if we want to
preserve geometric features of the diffusion tensor field (for
instance, in the case of a resampling of the heart), we would
prefer the FS. The strategy used to transform the diffusion
tensors will influence the statistics as follows and thus their
interpretation.

We know that the transmural variation of the fiber orien-
tation is a common feature between hearts. In our case of
inter-subject comparison, we would prefer the FS to preserve
this feature.

2) Non-Rigid Transformation of Real Cardiac Data:Set-
ting up a thorough experiment to validate the choice of a
reorientation strategy in the case of non-rigid transformations
is not trivial. We propose here a basic experiment that could
help to find practical arguments to guide the choice of the
reorientation strategy. First, we register the whole cardiac
dataset to a given heart. This reference heart is not transformed
to minimize the influence of the reorientation strategy in the
following comparisons. After registering a heart to the geome-
try of the reference heart, we compare the eigenvectors of the
transformed DT-MRI with those of the reference image. Since
both of the reorientation strategies preserve the eigenvalues,
the difference between them only relies on the orientation
of the transformed eigenvectors. To evaluate the accuracy of
the registration to the reference DT-MRI, we compute the
angular differences between the eigenvectors of the reference
diffusion tensor and the transformed ones obtained from both
of the reorientation strategies. This experiment is limited in
the sense that only a strong difference between them would
help to conclude. Indeed, these differences can be blurred
by the inter-subject variability. Gathering the comparisons of
16 registrations using 2 reference hearts,7.2% of all the
registered voxels are better registered with the FS than with
the PPD. Furthermore, the average angular difference of the
eigenvectors is0.3 degrees over all the voxels. These results
show that the quality of the registration on experimental data
is similar in both cases. Thus, we will rely on theoretical
arguments to give preference to a reorientation strategy.

D. Choice of the Reorientation Strategy

Finally, we propose to rely on the three following theoretical
arguments to decide which reorientation strategy is better
suited for our inter-subject statistical study. First, the FS
preserves the geometric features of the diffusion tensor fields.
Thus, using the FS, we can directly compare these features,

especially the transmural variation of the fiber orientation
which is known to be a common feature between hearts.
Second, the FS does not depend on the extraction of the
eigenvectors whereas the PPD relies on a strong correlation
between the eigenvectors and the underlying fiber structure.
An error in the extraction of this structure (for instance, due
to noise in the DT-MRI acquisition) could be propagated to the
transformation of diffusion tensors and thus to the computed
statistics. The interpretation of these statistics should take
into account these errors on the transformation of diffusion
tensors. Third, the FS is consistent with the Log-Euclidean
metric used to compute statistics that do not depend on
the reference geometry. Indeed, if the reference geometry is
modified, all registered diffusion tensors in a voxel of this
reference geometry are transformed with respect to the same
rotation. Since the Log-Euclidean metric is rotation invariant,
the statistics computed in two different reference geometries
are equivalent. On the contrary, since the PPD reorientation
depends on the original diffusion tensor, each of the regis-
tered diffusion tensors in a given voxel are transformed with
respect to a different rotation. Thus, one can easily show that
statistics computed with the Log-Euclidean metric would not
be equivalent in two different reference geometries. Further
studies on the comparison between the Log-Euclidean metric
and a metric more consistent with the PPD transformation
would be necessary. Consequently, we think that one should
prefer the FS reorientation strategy in the context of inter-
subject cardiac DT-MRI registration for statistical analysis to
preserve geometric features, whereas the PPD reorientation
strategy is better suited to the mechanical deformation during
the cardiac cycle.

IV. D IFFUSION TENSORSTATISTICS

Once the DT-MRIs are transformed into the same coordinate
frame, we compute their first- and second-order statistics to
extract relevant information about the average diffusion tensors
and their variability within a given population. Since the
diffusion tensor space does not form a vector space, we cannot
compute their Euclidean mean and covariance and we have
chosen to use the Log-Euclidean framework to compute those
statistics. Similarly, the geometric and physical interpretation
of the 6 × 6 covariance matrix is not straightforward and
we propose simple expressions to extract the variabilities of
the eigenvectors and eigenvalues by projecting the covariance
matrices onto proper directions. The proposed method extends
previous work [34] that computes statistics on eigenvectors
after extracting them from each diffusion tensor.

A. Log-Euclidean Mean and Covariance

There exists several methods to compute statistics on the
diffusion tensor information. A statistical framework based on
a dyadic tensor representation of eigenvalue-eigenvector pairs
has been presented in [34] to reduce the bias in the estimation
of the mean and variance of the eigenvalues and eigenvectors.
This framework has been extended for building brain DT-
MRI atlas in [33] by computing the mean, median and mode
of diffusion tensors. These values are computed based on a
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Fig. 7. [First Column] Increment δv1 of the primary eigenvector about
its averagev1. [Second Column] Orientation variability of the eigenvectors
described by an ellipsoidal cone of uncertainty.

Euclidean metric that is not consistent with the nature of the
diffusion tensor space. Different authors use the same affine-
invariant metric based on Riemannian geometry to compute
statistics on diffusion tensors for different applications: anal-
ysis of principal modes of sets of diffusion tensors [31], new
anisotropic DTI index [27], [28], segmentation of diffusion
tensor images [30] and the basis of a general and consistent
set of algorithms for diffusion tensor processing [29]. Recently,
the Log-Euclidean metric [32] has been proposed to provide a
simpler and faster framework to compute consistent statistics
on diffusion tensors. Indeed, the Log-Euclidean metric leads to
a closed form solution whereas the computation of the affine-
invariant metric is based on a minimization process.

Owing to its simplicity and low computational time, we
use the Log-Euclidean metric. We compute the meanDlog of
the transformed diffusion tensorsDi and its corresponding
unbiased covariance matrixΣ [29] in the Log-space within
each voxelX of the average geometry:

Dlog(X) = exp( 1
N

N∑
i=1

log(Di(X)))

Σ(X) = 1
N − 1

N∑
i=1

vec(∆Di(X)) · vec(∆Di(X))t

where vec(∆Di) is the minimal representation [29] of
∆Di = log(Di) − log(Dlog) and where N is the
size of the dataset. The minimal representation of a
diffusion tensor D = (Dij)i,j=1,2,3 is vec(D) =
(D11,

√
2D12, D22,

√
2D31,

√
2D32, D33)t. Thus, the classi-

cal Euclidean norm of this vector representation is equal to
the classical Euclidean norm of the diffusion tensor.

B. A New Analysis of the Diffusion Tensor Covariance Matrix

The norm of the covariance matrix
√

Tr(Σ) is actually
the square root of the unbiased mean square distance of the

samples to the mean diffusion tensor1N − 1

N∑
i=1

‖∆Di‖2 =

1
N − 1

N∑
i=1

vec(∆Di)t·vec(∆Di). Since the covariance matrix

is formulated in the Log-space, its norm is homogeneous to a
ratio quantifying the relative variability of the whole diffusion
tensor.

We are interested in gaining further insight of the vari-
ability of the whole diffusion tensor with the variability of
meaningful features such as the eigenvalues and eigenvectors.
We propose here new efficient tools to extract the variability
of the eigenvalues and eigenvectors around their mean from
the covariance matrix of diffusion tensors. The basic idea is
to project the covariance matrix onto the directions given by
an appropriate orthonormal basis{Wi}i=1,...6 of the tangent
space of the diffusion tensors manifold at the mean diffusion
tensor (see Appendix for more details):

W1 = v1 · v1
t W4 = 1√

2
(v3 · v2

t + v2 · v3
t)

W2 = v2 · v2
t W5 = 1√

2
(v3 · v1

t + v1 · v3
t)

W3 = v3 · v3
t W6 = 1√

2
(v2 · v1

t + v1 · v2
t)

where the {vi}(i=1,2,3) are the eigenvectors of the mean
diffusion tensor.

1) Eigenvalues Variability:Let us consider{δλi}i=1,2,3 the
deviation of the eigenvaluesλi = log(di) about their mean
in the Log-space. Their variancesE(δλi

2) can be directly
formulated as the projection of the covariance matrix onto
the directions of the{Wi}i=1,2,3:

E(δλi
2) = vec(Wi)t · Σ · vec(Wi)

These variances give directly the relative variability of the
eigenvalues{di}i=1,2,3 in the Euclidean space. We can easily
study their absolute variance in the Euclidean space since
δdi = di.δλi at the first order:

E(δdi
2) = di

2[E(δλi
2)] = di

2[vec(Wi)t · Σ · vec(Wi)]

The variances of the diffusion tensor eigenvalues in the Log-
spaceE(δλi

2) are also interesting to study since they can
be linked to the normalized scatter measure of the diffusion
tensors about their mean [33]. Indeed, the normalized scatter
measureS2 describes a global dispersion of all the eigenvalues
at the same time:

S2
2

=

1
N − 1

N∑
i=1

‖Di −D‖2

‖D‖2 = E(‖δD‖2)
‖D‖2 =

3∑
i=1

E(δdi
2)

3∑
i=1

di
2

By contrast, the variance of the eigenvalues in the Log-
space extracted from the covariance matrix gives information
on the normalized dispersion of each eigenvalues about its
Log-Euclidean mean independently:

E(δλi
2) = E(δdi

2)
di

2

2) Eigenvectors Variability:Let us consider{εij}i,j=1,2,3

the coordinates of the deviation{δvi}i=1,2,3 of the eigen-
vectors {vi}i=1,2,3 in the frame of the mean eigenvectors
(see Fig. 7). These coordinates correspond to the tangent of
the angle{tan(θi,j)}i,j=1,2,3 with the mean eigenvector. The
projections onto the{Wi}(i=4,5,6) represent the rotation vari-
ability of the coupled orthonormal vectors(v2, v3), (v1, v3)
and (v2, v1) respectively aroundv1, v2 andv3 (see Fig. 7):
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E(ε23
2) = 1

2(λ2 − λ3)2
[vec(W4)t · Σ · vec(W4)]

E(ε13
2) = 1

2(λ1 − λ3)2
[vec(W5)t · Σ · vec(W5)]

E(ε12
2) = 1

2(λ1 − λ2)2
[vec(W6)t · Σ · vec(W6)]

The advantage of this formulation compared to previous
works [33], [34], where they study independently the dyadic
tensor corresponding to each eigenvector, is to get the eigen-
vectors variability knowing that they are coupled to make
an orthonormal frame. We notice that these orientation vari-
ances are dependent on the distance between the eigenvalues.
When two eigenvalues are close to each other, the associated
eigenvectors are not well defined. Thus, high variances on
eigenvectors may correspond to two different situations: either
a high variability of well defined eigenvectors, or a situation
where eigenvectors are not well defined. On the contrary, low
variances have a unique interpretation: the eigenvectors are
well defined and their variability is low. This dependence
on the definition of the eigenvectors is not specific to our
methodology since the one developed by [34] needs also to
extract the eigenvectors to build their corresponding dyadic
tensors. The main difference between the two approaches lies
in the order of the computation of statistics. The dyadic tensor
approach first extracts the eigenvectors before computing their
statistics whereas in our method the tensor statistics are first
computed before extracting the eigenvectors. Thus, in our
framework, we can compute statistics on the diffusion tensor
even in an isotropic case.

From those three variancesE(εij
2), we can describe the

variability of each eigenvector with an ellipsoidal cone of
uncertainty (see Fig. 7) around that eigenvector. This is in
contrast to the dyadic coherenceκ proposed by [34] and
used in brain population analysis [33] to assess the orientation
dispersion around an average eigenvectorvi:

κ = 1−
√

β2 + β3
2β1

where the{βj}(j=1,2,3) are the eigenvalues of the mean dyadic
tensorsvi · vt

i of the diffusion eigenvectorsvi sorted from the
largest to the smallest. This dyadic coherence can be related
to a varianceσ2 = 1 − β1 = β2 + β3, and thus to the
radius of a cone of uncertainty around the eigenvectorvi.
Therefore, the dyadic coherence leads to a circular cone of
uncertainty whereas the projection of the covariance matrix
leads to an ellipsoidal cone of uncertainty, which is a more
detailed description of variability.

V. EXPERIMENTAL RESULTS

In this section, we use the presented framework to build and
study a statistical atlas of DT-MRIs for a better understanding
of the cardiac fiber architecture and of its variability within
a population of nine canine hearts. We propose preliminary
studies to bridge the gap between statistical models, synthetic
models and patient-specific models. First, we construct the
statistical atlas of canine hearts. Second, we compare this atlas
with a synthetic model of mammalian hearts to evaluate the
relevance of the simplifications made when building the syn-
thetic description of the fiber orientation. Finally, we proceed

Fig. 8. Histograms of the trace of the diffusion tensors in each heart acquired
at different temperatures. The DT-MRIs are normalized to better capture the
intrinsic variability between hearts.

to an inter-species comparison between the canine hearts and
a human heart. It provides a preliminary evaluation of the
relevance to use canine hearts for clinical applications. This is
a first step towards further studies with larger databases.

A. Data Acquisition

We used a DT-MRI dataset ofex vivofixed normal hearts (9
canine and 1 human hearts) acquired by the Center of Cardio-
vascular Bioinformatics and Modeling (CCBM) at the Johns
Hopkins University [18] and available on the internet2. Each
heart was placed in an acrylic container filled with Fomblin, a
perfluoropolyether (Ausimon, Thorofare, NJ). Fomblin has a
low dielectric effect and minimal MR signal thereby increasing
contrast and eliminating unwanted susceptibility artifacts near
the boundaries of the heart. The long axis of the hearts were
aligned with the z-axis of the scanner. Images were acquired
with a 4-element knee phased array coil on a 1.5 T GE CV/i
MRI Scanner (GE, Medical System, Wausheka, WI) using
a gradient system (from 14 to 28 gradients) with40 mT/m
maximum gradient amplitude and a 150 T/m/s slew rate. The
resolution of the images are around0.3× 0.3× 0.9 mm3 per
voxel. The temperature during acquisition was different from
one heart to another in a range from 18 to25◦C.

B. Pre-Processing Data

We apply a basic threshold with the Log-Euclidean norm of
the diffusion tensors to separate the heart from the background
noise. The histogram of the trace of the diffusion tensors shows
that there is an important dispersion which is not necessarily
due to an intrinsic variability between hearts (see Fig. 8).
For instance, the temperature of acquisition can be different.
We perform a global normalization of the mean value of
the diffusion tensors norm to minimize the influence of this

2http://www.ccbm.jhu.edu/research/DTMRIDS.php
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Fig. 9. [Upper Left] Average geometry from the anatomical MRIs. [Others]
Top (Upper Right), side (Lower Right) and bottom (Lower Left) views of fiber
tracking computed on the average DT-MRI. The colors describe the orientation
of the primary eigenvector according to the color sphere (visualization and
tensor processing were performed with MedINRIA available at http://www-
sop.inria.fr/asclepios/software/MedINRIA/). Atlas data are available on the
internet at http://www-sop.inria.fr/asclepios/data/heart.

Fig. 10. Global variability
√

Tr(Σ) (homogeneous to a ratio and expressed
as a percentage) of the whole tensor in three different orthogonal views: a
short axis view and 2 long axis views.

dispersion. Thus, the inter-subject statistical analysis of the
eigenvalues provides an information about the dispersion of
the diffusion rates over the space. To include realistic averaged
diffusion rates, we scale the eigenvalues of the DT-MRI atlas
with the Log-Euclidean mean (which is the geometric mean
in a one dimension space) of all these normalization factors.

C. Statistical Atlas

We applied the proposed framework to the dataset of nine
canine hearts presented previously. We obtain an average
geometry (see Fig. 9) and a smooth cardiac DT-MRI atlas.
In Fig. 10, we can observe the norm of the covariance matrix
showing a global stability of the compact myocardium and
several variable regions, especially at the RV and LV endocar-
dial apices where the fiber structure is probably less organized.
Some other variabilities at the surface of the heart are also due

Fig. 11. [First Row] Histograms of the global variability
√

Tr(Σ) of the
whole diffusion tensor (homogeneous to a ratio and expressed as a percentage)
and the variability of the primary, secondary and tertiary eigenvalues in the
Log-space{

√
E(δλi

2)}i=1,2,3 which are also the relative variability of
the eigenvalues in the Euclidean space. [Second Row] Histograms of the
standard deviations of the(V1, V2) frame orientation aroundV3, the(V3, V1)
frame orientation aroundV2 and the(V2, V3) frame orientation aroundV1

eigenvectors (angles in degrees).

to acquisition and registration artifacts. The histogram of the
norm of the covariance matrix (see Fig. 11) shows an average
variability of the whole diffusion tensor of around10%.

In order to have a better interpretation of this covariance
matrix and to understand the origin of the variabilities, we
project it onto the orthonormal basis{Wi}i=1,...6 of the
tangent space at the mean diffusion tensor. In Fig. 12, we
can observe the spatial distribution of the variability of the
eigenvalues. The percentages of variability of the1st, 2nd and
3rd eigenvalues are mostly lower than10% in the compact
myocardium (see Fig. 11). The variabilities of the diffusion
rates are homogeneous over the heart and stable within the
population.

Extracting the variability of the eigenvectors orientation is
important to evaluate the variability of the myocardial fiber
architecture. As shown in Figs. 11 and 13, the mode of
the standard deviations are7.9 and 7.7 degrees for the two
rotations around the secondary and tertiary eigenvectors in the
planes containing the primary eigenvector. These two values
describe the dispersion of the fiber orientation that appears to



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 10, OCTOBER 2007 11

Fig. 12. Relative variabilities of the primary, secondary and tertiary eigen-
values{

√
E(δλi

2)}i=1,2,3 about their respective mean. These variabilities
are shown in three different orthogonal views: a short axis view and 2 long
axis views.

be consistent within the population.
The orientation of the laminar sheets described by the

rotation of the plane Span(v2, v3) aroundv1 shows a much
higher mode of the standard deviation with22.7 degrees.
Mostly located in the sub-epicardium and sub-endocardium of
the left ventricle, these high variabilities of the laminar sheet
orientations could be due to the presence of two populations
of symmetric laminar sheets in the same heart [18]. The ex-
istence of these two populations was explained as the optimal
configurations of the fibers to maximize the systolic shear [53].
Second, since the secondary and tertiary eigenvalues are closer
one to each other than to the primary eigenvalue, we can
expect to have a low confidence in their definition. But a
low confidence in their definition means either that there is
no laminar sheets structure, or that diffusion tensors cannot
model the presence of two populations of laminar sheets in
the voxel. Beside these high variabilities in the sub-epicardium
and sub-endocardium, the laminar sheet orientations are still
globally less consistent within the population than the fiber
orientation.

D. Comparison of the Atlas with a Synthetic Model

Synthetic models of the cardiac fiber architecture, formu-
lated by analytical laws, are usually built from common
features observed on mammalian hearts and formulated by
analytical laws that simplify the reality. The synthetic model
proposed in [8] describes the fiber orientations in an ellip-

Fig. 13. Standard deviation of the(V1, V2) frame orientation aroundV3,
the (V3, V1) frame orientation aroundV2 and the(V2, V3) frame orientation
aroundV1 eigenvectors (angles in degrees). These variabilities are shown in
three different orthogonal views: a short axis view and 2 long axis views.

soidal template geometry of the ventricles. Since this synthetic
description is simply a vector field of the fiber orientation,
we only use the primary eigenvector of the statistical atlas.
We compare the histograms of the angular difference and
its Mahalanobis distance between the fiber orientations of
the synthetic model and the atlas. In Table I and Figs. 14
and 15, we observe that the distribution modes of the synthetic
model (19.6 degrees and0.95 times the standard deviation) are
higher than the distribution modes of the canine hearts (6.9
degrees and0.58 times the standard deviation). The synthetic
model is clearly outside of the population of canine hearts.
The ellipsoidal geometry and the fiber orientations of the
synthetic model are not accurate enough to catch all their
subtle variations. For instance, in the short axis view the
discontinuity at the crossing of the two ventricular walls is
not realistic [54]. Moreover, the synthetic description reaches
its limits at the right ventricular and left ventricular apices
where the modeling probably needs different analytical laws
from the compact myocardium.

E. Comparison of the Atlas with a Human Heart

There is no in vivo access to high resolution data and
normal hearts are preferred to be transplanted rather than
used for research purposes. Since studies of cardiac fiber
architecture are mainly based on dissections andex vivo
DT-MRI acquisitions of other mammalians, comparing the
statistical canine atlas with a human data gives the opportunity
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Fig. 14. Normalized histograms of the angular difference (degrees) of the
primary, secondary and tertiary eigenvectors between the atlas and: the canine
hearts, the human heart and the synthetic model.

to provide preliminary results on the relevance of using prior
knowledge from canine data in clinical applications.

Only one human heart is available in the JHU database, and
even if it is a high quality acquisition, the quality of the heart
itself is not as good as the canine ones due to its previous
usage for clinical applications. It limits the conclusion of this
study but since it is rare to have access to human data at high
resolution, it is a first step towards a more exhaustive inter-
species comparison of the cardiac fiber architecture.

We register the human data on the statistical atlas according
to the steps described in the Sections II and III to be consis-

Fig. 15. Mahalanobis distance of the angular difference (times the standard
deviation) of the primary, secondary and tertiary eigenvectors between the
atlas and: the canine hearts, the human heart and the synthetic model.

tent with the atlas building framework. Then, we perform a
statistical comparison at each voxel. First, we compute the
normalized Mahalanobis distanceµ [29]:

µ̌2
(Dlog,Dhuman)

=
1
M

vec(∆D)t · Σ−1 · vec(∆D)

where ∆D = log(Dhuman) − log(Dlog) and M = 6 the
dimension of the diffusion tensor space.

The mode of the normalized Mahalanobis distance is1.49
whereas it is lower than1 for canine hearts of the dataset.
To have a better understanding of the origin of this differ-
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Eigenvector/Heart Canine Hearts Human Heart Synthetic Model
Primary 6.9◦ - 0.58 10.1◦ - 0.81 19.6◦ - 0.95

Secondary 11.6◦ - 0.57 36.2◦ - 1.15 -
Tertiary 11.4◦ - 0.46 29.1◦ - 1.09 -

TABLE I
DISTRIBUTION MODES OF THE ANGULAR DIFFERENCES BETWEEN THE

EIGENVECTORS(DEGREES) AND OF THEIR CORRESPONDING

MAHALANOBIS DISTANCES (TIMES THE STANDARD DEVIATION).

ence, we compare the eigenvalues and the orientation of the
eigenvectors (see Figs. 14 and 15). The mode of the angular
differences of the primary, secondary and tertiary eigenvectors
are respectively10.1, 36.2 and 29.1 degrees. To compare
these differences with the variability of the canine population,
we compute the Mahalanobis distance of these orientation
parameters that are respectively0.81, 1.15 and1.09 times the
standard deviation (see Table I). These results confirm that the
fiber orientations between human and canine hearts are more
consistent than the laminar sheet orientations.

VI. CONCLUSION AND PERSPECTIVES

We presented a computational framework to build a sta-
tistical atlas of cardiac fiber architecture based on DT-MRIs.
We used most recent advances in diffusion tensor statistics to
propose new complete and consistent tools to translate their
covariance matrix into the variances of the eigenvectors and
eigenvalues. These tools are well-suited to study the variability
of cardiac fibers and laminar sheets within a population.

The registration strategy we proposed for atlas building is
not the only one fitting to our framework. Studying the choice
of the registration algorithm on the diffusion tensor statistics
could help in refining the quality of the results. Furthermore,
most recent advances in statistics on diffeomorphisms [51]
will improve the consistency of the registration framework.
One could also think about improving initialization step by
adding a polyaffine registration [55] to better match the main
cardiac structures as the ventricles and the atria.

We emphasized the differences of two common differ-
ent reorientation strategies when transforming the diffusion
tensors. TheFinite Strain (FS) reorientation strategy is a
geometric transformation preserving the gradient of diffusion
tensors. It seems more suited to the comparison of geometric
parameters of diffusion tensor fields. On the other hand, the
Preservation of the Principal Direction(PPD) is a mechanical
transformation of the underlying structure. This strategy is
preferred for the comparison of diffusion tensor fields when
their registration really has an underlying mechanical meaning.

We believe that this statistical atlas3 will lead to a better un-
derstanding of the cardiac fiber architecture. For instance, the
application of this framework to nine canine hearts confirms
the already established stronger intra-species stability of fiber
orientations than laminar sheet orientations. As preliminary
results of an inter-species comparison between a human heart
and the statistical atlas of canine hearts, we observe the good
inter-species stability of the fiber orientations. Of course,
the access to a larger database will provide more reliable

3available at http://www-sop.inria.fr/asclepios/data/heart

inter- and intra-species statistics. A better understanding of
the inter-species differences would help for instance to extend
experimental results from one species to another. Building and
comparing statistical atlases of normal and pathological hearts
could also help in a better quantification of the pathology, for
instance in the remodeling process.

Moreover, such a statistical atlas offers a valuable prior
knowledge in the context of electromechanical modeling of the
heart. The information about the laminar sheets is particularly
relevant since it has been shown to influence significantly the
cardiac motion [53], [56], in particular the wall thickening and
the apico-basal torsion [3]. A precise study of the impact of the
cardiac fiber architecture on the electromechanical simulations
would make it possible to design the best fiber model for
simulation-based clinical applications.

APPENDIX A
PROJECTIONS OF THECOVARIANCE MATRIX

Let us consider the dyadic tensor decomposition of the
average diffusion tensor in the Log-space:

W = log(Dlog) =
3∑

i=1

λivi · vi
t

whereλi = log (di) and the{di}i=1,2,3 are the eigenvalues of
the diffusion tensorDlog. Considering the deviationsδλi and
δvi of the eigenvaluesλi and the eigenvectorsvi around the
mean diffusion tensor, the previous expresion becomes:

W + δW =
3∑

i=1

(λi + δλi)(vi + δvi).(vi + δvi)t

Let us consider the incrementεij of each vectorδvi in the
frame of the mean eigenvectors{vj}j=1,2,3:

δv1 = ε11v1 + ε12v2 + ε13v3

δv2 = ε21v1 + ε22v2 + ε23v3

δv3 = ε31v1 + ε32v2 + ε33v3

These coordinatesεij in the frame of the mean eigenvectors
{vj}j=1,2,3 correspond to the tangent of the angle between
vi + δvi and vj . Since v1,v2 and v3 form an orthonormal
frame ofR3, εij = −εji at the first order:

(vi + δvi)t · (vj + δvj) = (1 + εii)εji + (1 + εjj)εij = 0
(1 + εii)εji + (1 + εjj)εij + o(εij , εji) = 0

εij + εji = o(εij , εji)

Furthermore, the{vi+δvi}i=1,2,3 are unit vectors. It means
there is a relationship betweenεi1, εi2 andεi3:

(1 + εi1)2 + ε2
i2 + ε2

i3 = 1

Thus, εii = − 1
2 (ε2

im + ε2
in) + o(ε2

im, ε2
in) which means that

we can consider thatεii = 0 at the first order.
Finally, considering the first order terms we obtain the

following expression:
δW = δλ1W1 + δλ2W2 + δλ3W3 + ε23

√
2(λ2 − λ3)W4

+ε13

√
2(λ1 − λ3)W5 + ε12

√
2(λ1 − λ2)W6

where the{Wi}i=1,2,3 form an orthonormal basis of the
tangent space at the mean diffusion tensor:



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 10, OCTOBER 2007 14

W1 = v1 · v1
t W4 = 1√

2
(v3 · v2

t + v2 · v3
t)

W2 = v2 · v2
t W5 = 1√

2
(v3 · v1

t + v1 · v3
t)

W3 = v3 · v3
t W6 = 1√

2
(v2 · v1

t + v1 · v2
t)

Thus, we can formulate the variances ofε12, ε13, ε23, δλ1,
δλ2 andδλ3 with respect to the projections of the covariance
matrix onto the orthonormal basis{Wi}i=1,...6 of the tangent
space:

E(δλ1
2) = vec(W1)t · Σ · vec(W1)

E(δλ2
2) = vec(W2)t · Σ · vec(W2)

E(δλ3
2) = vec(W3)t · Σ · vec(W3)

E(ε2
23) = 1

2(λ2 − λ3)2
[vec(W4)t · Σ · vec(W4)]

E(ε2
13) = 1

2(λ1 − λ3)2
[vec(W5)t · Σ · vec(W5)]

E(ε2
12) = 1

2(λ1 − λ2)2
[vec(W6)t · Σ · vec(W6)]

APPENDIX B
AFFINE TRANSFORMATION OF APLANE

The affine transformation of the parameters of a plane is
known since a long time. We present here a simple demon-
stration provided in [57].

Let P be a plane and its normaln. The affine transforma-
tions preserve the parallelism and therefore the image of a
plane is plane. It means that every vectorv in the planeP is
transformed through an affine transformationA into a vector
v′ = Av in the image planeP ′ (see Fig. 16). By definition,
every vectorv in the planeP is orthogonal to its normal:
vt ·n = 0. We can writevt ·n = 0 as follows:nt(A−1A)v = 0.
A modification of this expression leads to((A−1)tn)t ·Av = 0
and thus to((A−1)tn)t · v′ = 0 which is the definition of a
vector orthogonal to the planeP ′. Finally, the normaln′ of

the image planeP ′ is given byn′ = (A−1)tn
‖(A−1)tn‖ .

Fig. 16. Affine transformation of a planeP with normaln into a planeP ′

with normaln′.
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