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Abstract— Estimating patient-specific electrical tissue param-
eters is of considerable benefit towards personalisation of
cardiac biophysical models. In this paper, an adaptive inverse
parameter estimation algorithm is proposed to estimate the
myocardial apparent conductivity from endocardial electrical
potential measurements. The forward electrophysiology prob-
lem is posed as an Eikonal model and is solved using an
anisotropic fast marching method. The conductivity estimation
algorithm is validated on patient data obtained using hybrid
X-ray/magnetic resonance imaging. Future directions towards
improving such estimation procedures are also indicated.

I. INTRODUCTION

Cardiac biophysical modelling aims to develop computa-

tional models that can simulate realistic human heart motion

and function in silico. During the last decade, major progress

in medical imaging, cardiac modelling and computational

power have made personalised simulations achievable. While

the scientific importance and enormous clinical potential of

the biophysical approach have been acknowledged [1], [2],

its translation into clinical applications largely remains to be

done. Estimation of patient-specific tissue parameters will

largely improve the capabilities of such personalised models

and thus facilitate rapid clinical translation. In this paper, we

focus on personalisation of cardiac electrophysiology models

by estimating an apparent electrical conductivity parameter.

Modelling the cell electrophysiology has been an active

area of research since the seminal work of Hodgkin and

Huxley [3]. The precise modelling of the myocardium in-

volves a cell membrane model embedded into a set of partial

differential equations (PDE) modelling a continuum. We can

divide these models into three categories, from the more

complex to the more simpler (numerically):
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• Biophysical models: semi-linear evolution Partial Dif-

ferential Equation (PDE) with ionic models (up to fifty

equations for ions and channels [4])

• Phenomenological models: semi-linear evolution PDE

with mathematical simplification of biophysical models

(bidomain, monodomain [5])

• Eikonal models: one static non-linear PDE for the

depolarisation time derived from the previous models

(eikonal curvature [6], eikonal diffusion (ED) [7])

Solutions of the evolution PDE are computationally very de-

manding, due to the space scale of the electrical propagation

front being much smaller than the size of the ventricles.

The motion of the front governed by the eikonal equation

however is observed at a much larger scale, resulting in faster

computations.

The inverse parameter estimation problem for cardiac

electrophysiology models was previously attempted using

ionic models [8], phenomenological models [9], and eikonal

models [10]. However, as inverse problem solution tech-

niques require multiple forward model evaluations, eikonal

models are perhaps best suited with low forward model

computational cost and less number of parameters to adjust.

Further, meaningful clinical data currently available reliably

describe the propagation times, but are not suited for accurate

estimation of extra/intra cellular action potentials. For these

reasons we chose to base our work with eikonal models as

the forward model.

The paper is organised as follows. In section II, an

adaptive zonal decomposition algorithm is presented for

estimating volumetric apparent conductivity parameter from

depolarisation isochronal measurements and a fast eikonal-

diffusion electrophysiology model. Section III gives details

of clinical data acquisition and presents the validation of

the conductivity estimation algorithm with patient data, and

followed by a brief discussion. Finally, conclusions are

made and some future directions to improve the presented

algorithm are indicated in section IV.

II. APPARENT CONDUCTIVITY ESTIMATION

In this section, we begin by explaining the forward electro-

physiology model and then the adaptive zonal decomposition

approach is outlined to estimate the apparent conductivity

(AC). The definition of AC and its relation to tissue specific

electrical conductivity is provided further in this section.
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A. Forward Problem: Eikonal Diffusion Model

The static ED equation for the depolarisation time (T (x))
in the myocardium is given by

c0

√

D(x)
(

√

∇T (x)tM∇T (x)
)

−∇ ·(D(x)M∇T (x)) = τ(x),

(1)

where the superscript t denotes transpose, c0 is a dimension-

less constant related to the cell membrane and τ(x) is the

cell membrane time constant. The tensor quantity relating to

the fibre directions is given by M = AD̄At, where A is the

matrix defining the fibre directions in the global coordinate

system and D̄ = diag(1,λ 2
,λ 2). λ is the anisotropic ratio of

space constants transverse and along the fibre direction and

is set at 0.25 in the present paper. Other parameter values

that are set are c0 = 2.5 and τ = 0.79 ms.

The nonlinear Equation (1) is solved using a fixed point

iterative method combined with a very fast eikonal solver

based on a modified anisotropic fast marching method

(FMM) [11]. The FMM is a single-pass algorithm to solve

the classical eikonal equation (without the diffusion term

∇ · (DM∇T )) and an anisotropic version presented earlier in

[10] was extended to solve on volumetric unstructured mesh

with tetrahedral elements.

As the method is based on fast marching which is an

O(N log(N)) algorithm, where N denotes the number of

nodes in the mesh, the electrical propagation is solved at

a much faster rate as compared to the bi-domain or mono-

domain equation based finite element models. For example,

the solution of a 10000 node mesh can be achieved in the

order of a few seconds, and hence the method is suitable for

fast forward evaluations required in the inverse approach.

B. Adaptive zonal estimation algorithm

The adaptive algorithm is now outlined which enables the

personalisation of the electrophysiology eikonal model from

measured depolarisation times on the endocardial surface.

The diffusion coefficient D in the ED equation is an intrinsic

property of the myocardial tissue given by D = λ 2
f = σ f r̄m,

where λ f is the space constant in millimetres along the fibre

direction, σ f is the inverse of the sum of effective resistivities

of intra and extra cellular domains and r̄m is the inverse of

membrane conductance per unit area. In this paper, we refer

to the square root of the diffusion coefficient
√

D as AC

(d) in this paper and outline an algorithm to estimate this

parameter. The AC value provides an indication of the extent

of influence of the excitation wavefront at a particular point

along the fibre direction [12].

The AC estimation algorithm is divided into two stages

namely global and local. A nominal value of the AC dglobal

is first sought which minimises the mean error between

the measured and simulated isochrones of depolarisation.

This global estimation step enables us to bring the simu-

lated isochrones using the model to the scale of measured

isochrones and also provides us with a good initial estimate

of AC for the local parameter estimation.

Once the simulated depolarisation time map globally fits

the measured one, a local adjustment of the model is

possible. We begin by dividing the entire cardiac tissue

Ω into prespecified M regions R = {Ω1,Ω2, · · · ,ΩM}. The

conductivity is then assumed to be given by

d(x) =
M

∑
j=1

d jφ j(x), (2)

where φ j(x) is the Lagrange basis function defined on Ω j.

Thus the dimension of the problem is reduced to M. The AC

values are obtained by minimising the discrete cost function

given by

C (d) =
1

N (ν) ∑
v∈ν

[

T m
v −T s

v (dΩ1
,dΩ2

, · · · ,dΩM
)
]2

, (3)

where ν denotes the set of all the vertices of the endo-

cardial surface and N (.) denotes the set’s cardinality, T m
v

denotes the measured depolarisation time at the vertex v

and T s
v (dΩ1

,dΩ2
, · · · ,dΩM

) denotes the depolarisation time

obtained by solving the fast electrophysiological model with

the AC values set as {dΩ j
}M

j=1.

A multilevel approach is pursued to solve the estimation

problem. We begin with a minimum number of subdivisions

(zones) of the volume. At each level, an iterative approach

is used to estimate the zonal conductivity values. At each

iteration we estimate a conductivity value for each subregion.

The M−dimensional minimisation problem is converted

into a series of one dimensional minimisation problems by

varying the AC value on one considered subregion and

keeping all other subregion’s AC constant. The order in

which the subregions are considered for minimisation follows

the causality of the electrical wave propagation. This is

achieved by pre-ordering the M zones according to the mean

measured depolarisation times of all the endocardial vertices

present in each zone. The one dimensional minimisation

is achieved using a modified Brent algorithm detailed in a

previous publication [10]. After convergence, the zone with

maximal difference between mean T m and mean T s is further

subdivided and the algorithm proceeds to the next level.

III. APPLICATION TO PATIENT DATA

In this section, we present the application of the proposed

AC estimation algorithm on patient data suffering from left

bundle branch block. The patient was a 60 year old female

with NYHA class III symptoms (NYHA classes stand for

the stages of heart failure according to the New York Heart

Association). The aetiology of heart failure is thought to be

dilated cardiomyopathy although cardiac MRI did show two

non-viable areas of a moderate size which are consistent

with a previous subendocardial infarction. The clinical data

acquisition and fusion procedure is briefly outlined and then

description of electrophysiology model inputs (anatomy, fi-

bres) is provided. We then apply the estimation algorithm for

three different isochronal datasets obtained during baseline

(sinus rhythm) and two endocardial pacing positions.

A. Clinical Data Acquisition and Fusion

The MR examination involved balanced SSFP Cine imag-

ing for the estimation of ventricular geometry, function and
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volumes, and late enhancement images with gadolinium con-

trast agent for scar anatomy. The electrical data was obtained

by performing non-contact mapping using the Ensite 3000

multi-electrode array catheter system (St Jude, Sylmar, CA).

We use a real-time registration solution as described in [13]

that allows the spatial integration of MRI-based anatomical

and functional data with X-ray-based catheter data, such as

intracardiac electrical and pressure signals.

B. Model Inputs Preparation

The electrophysiology model in section II requires patient-

specific anatomy and a description of cardiac fibre orienta-

tion. Image processing tools have been utilised to extract

the bi-ventricular myocardium from the patient’s cine-MRI

images. The workflow consisted of 1) image preparation,

in order to enhance image quality; 2) interactive segmen-

tation of the myocardial boundaries at mid diastole; and

3) construction of the volumetric anatomical model. For

regional personalisation of the simulation, each tetrahedron

is automatically labelled according to the anatomical region

it belongs to (LV+septum, RV, scar tissue, see Fig 1). The

scar label is based on the expert manual delineation on

late enhancement MRI. The fibre description was obtained

from the statistical atlas of the cardiac fibre architecture and

methodology as described in [14] (see Fig. 1b).

(a) Personalised Anatomy (b) Personalised Fibres

Fig. 1. (a) 3D anatomical model of patient myocardium with anatomical
labelling (LV in blue, RV in green and scar in red);(b) Personalised fibre
orientations obtained from database

C. AC Estimation

In this section, we present the results obtained using

the AC estimation algorithm adjusted with three different

depolarisation isochrones sets. The three sets include the

isochrones for normal sinus rhythm (baseline) and for two

endocardial pacing locations i.e., P1 (apical) and P2 (septal-

posterior). The biventricular myocardium was initially di-

vided into a right ventricle (RV) and three left ventricular

(LV) (septal-posterior, septal-anterior and lateral) subregions

(see Fig 2a for labels and anterior direction is coming

out of the page and posterior direction is into the page).

As the depolarisation measurements were only on the LV

endocardial surface, care was taken so as not to optimise

in the regions where there were no endocardial nodes. The

RV AC value was set to estimated dglobal value. Note should

be made of the way in which the subdivision at each level

was performed. The considered region was subdivided along

the circumferential and long axis placed at the barycentre of

the region. No division was performed in the wall thickness

direction. Thus each considered region was divided into 4

segments with full wall thickness. The performance results

are presented in Table I.

(a) (b)

Fig. 2. (a) Apparent conductivity map (units = mm) obtained from baseline
isochrones. The bi-ventricular mesh was cut along a plane in the long axis
direction. The black transparent regions show the scar locations and the blue
colour in the septal region (low AC) clearly indicates the patient having left
bundle branch block; (b) Ensite data (geometry and baseline isochrones)
and MRI derived volumetric myocardial mesh in MR scanner coordinates.
The isochronal data on the MR endocardial surface is obtained by nearest
neighbour interpolation from the ensite geometry.

D. Results and Discussion

The apparent conductivity maps estimated for all three

data sets are shown in Fig. 3 along with the scar locations

obtained from late enhancement images (transparent black

regions). From these figures, it can be seen that low apparent

conductivity value (blue) regions do correspond with scar

locations (Basal scar - all three subfigures and Apical scar -

P2 pacing location). Further, as can be seen from Fig. 2a and

Fig. 3, all the maps show a marked decrease in AC in the

septal region. This is probably due to the left bundle branch

block. Statistics are provided in Fig. 4.

(a) Mean AC map (b) Standard Deviation

Fig. 4. (a) Mean and (b) Standard deviation of AC estimated for the patient
displayed on the 17 segment AHA model bullseye plot

TABLE I

PERFORMANCE ESTIMATES OF THE AC ESTIMATION ALGORITHM

Mode C (initial) C (global) dglobal C ( f inal) M

Baseline 441.292 89.59 0.576 5.687 50
P1 (apical) 541.938 114.366 0.576 12.38 50

P2 (septal-posterior) 445.38 98.8134 0.576 12.02 37
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(a) AC (baseline) (b) AC (P1, apical pacing) (c) AC (P2, septal-posterior pacing)

Fig. 3. Apparent conductivity maps (units = mm) estimated using ensite isochrones of depolarisation of (a) normal sinus rhythm (baseline); (b),(c) different
endocardial pacings. The spheres represent the pacing catheter tip locations. The transparent black regions in all three figures indicate the scar location
obtained from expert segmentation of late enhancement cardiac MRI images.The myocardium is viewed from the valve plane towards the apex.

In Fig. 3a and Fig. 3b, the estimation algorithm indicates

high apparent conductivity in the region of the apical scar.

This discrepancy can be explained by comparing the relative

positions of endocardial surface generated with ensite during

the electrophysiology measurement study and the actual

MR derived biventricular myocardium (see Fig. 2b). The

ensite balloon was much further from the apex location

(≈ 50.89mm), thus decreasing the reliability of measured

isochrones corresponding to the apical region. The limita-

tions of the present study was that the method was evaluated

in a single patient and incorporating more subjects is an

ongoing piece of work.

IV. CONCLUSION

An adaptive zonal decomposition algorithm is presented

to estimate volumetric apparent conductivity of myocar-

dial tissue by solving an inverse problem. Such estima-

tion algorithms pave the way towards personalisation of

cardiac electrophysiological models. The algorithm obtains

an estimate of the conductivity parameter by minimising

the difference between simulated isochrones of an eikonal

model to the measured isochrones of depolarisation. The

algorithm has been applied on patient data obtained in a

hybrid x-ray/magnetic resonance imaging environment. The

conductivity maps obtained show a reasonable consistency

even though the pacing locations were changed. Possible

regions of slow conduction (low AC) have been identified

and shown to correlate with scar locations obtained using late

enhancement MR image segmentations using this procedure.

The limitation of the present work is that the conductivity

estimation is performed on the entire wall thickness and a

topic of future work is to incorporate estimation even across

the wall thickness. The accuracy of AC estimation could also

be improved by incorporating epicardial depolarisation times

measured by catheters in the coronary network.
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