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ABSTRACT

In order to translate the important modelling work into clinical tools,
the selection of the best model for a given application is crucial. In
this paper, we quantitatively compare personalisation of two differ-
ent cardiac electrophysiology models on the same dataset, in order to
help such a selection. One is a phenomenological model, the Aliev-
Panfilov model (1996), and the other one is a simplified ionic model,
the Mitchell-Schaeffer model (2003). In the preliminary steps of
model personalisation, we optimise the forward problem with the de-
termination of an optimum time integration scheme for each model,
which could result in stable and accurate simulations without the
use of unnecessary expensive high temporal and spatial resolutions.
Next, we personalise the two models by optimising their respective
parameters, to match the depolarisation and repolarisation maps ob-
tained ex-vivo from optical imaging of large porcine healthy heart.
Last, we compare the personalisation results of the two different
models.

1. INTRODUCTION
Quantitative and Numerical modelling of the human body has been
an important research interest for the last decades, but in order to
translate this work into clinical applications, there is an important
need for personalisation of such models, i.e. estimation of the model
parameters which best fit the simulation to the clinical data. Car-
diac model personalisation is required to develop predictive models
that can be used to improve therapy planning and guidance. For
instance, Radiofrequency (RF) ablation therapy on patients suffer-
ing from atrial fibrillation and ventricular tachycardia has a success
rate of only 50% due to non availability of clinical consensus on
optimum RF ablation patterns. Thus the procedure is a trial and er-
ror process highly depending on cardiologist experience. Whereas
personalised cardiac models could provide sufficiently accurate and
optimum RF ablation patterns, consecutively increasing the success
rate of RF therapy. To achieve this, the choice of the proper model
is crucial, as the complexity and the observability of the parameters
will have a huge impact on the feasibility of such personalisation.
In this paper, we propose a personalisation method for cardiac elec-
trophysiology and apply it to quantitatively compare two different
cardiac electrophysiology models in terms of personalisation. This
work gives insights on which model would be the most appropriate
for such application. The personalisation is done using the fusion of
optical and MR imaging, in order to have high quality ex-vivo data
for this comparison.
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A variety of mathematical models describing the cardiac elec-
trical phenomenon have been developed and simulated at various
scales. These models can be categorised into three main categories:
Ionic models (IM), Phenomenological models (PM) and Eikonal
models (EM). IM [1] characterise ionic currents flowing through
the cardiac cell membrane and involve a lot of parameters and vari-
ables, thus are not well suited to solve inverse problem. However
they do have analytic biological interpretation of the parameters
and their influence on the behaviour of the model. EM [2] are very
simple, describing only the time at which a depolarisation wave
reaches a given point and does not precisely model the reaction
parts of the cardiac electrical phenomenon. At the intermediate
level are PM [3], which describe the action potential generation
and propagation along the cell membrane, and are divided into
mono-domain, modeling the transmembrane potential variable, and
bi-domain modeling the intra- and extra-cellular potential variables.
In this paper, we personalise two models: one phenomenological
mono-domain model, the Aliev-Panfilov (AP) model [4] consisting
of two nonlinear partial differential equations describing the cou-
pled depolarisation and repolarisation processes, and one simplified
ionic model, the Mitchell-Schaeffer (MS) model [5], described by
two nonlinear ordinary differential equations for transmembrane
potential variable and a gating variable for sodium current depicting
the repolarisation phase. Authors focused recently on estimation
of parameters using EM [6] and PM [7], but only on 2D surface,
whereas personalisation of PM on 3D volume was studied with a
simple explicit time integration scheme [8]. However, this paper is
the first to present quantitative comparison of personalisation of PM
and simplified IM on 3D volume. In our approach, the electrophys-
iology model is spatially integrated using a tetrahedral mesh of the
myocardium created from MR image taking into account the fibre
orientation as well, and is temporally integrated using an optimum
time integration scheme.

To summarise, the main contributions of this paper are: (i)
quantitative evaluation of several time integration schemes and spa-
tial resolutions for AP and MS models, (ii) personalisation method
and (iii) quantitative comparison of the personalisation of these two
models using the fusion of optical and MR data.

2. SIMULATION OF ELECTROPHYSIOLOGY MODELS
AP Model Phenomenological mono-domain AP model is derived
from the two state variables Fitzhugh-Nagumo (FHN) model. Since
we simulate and observe only one single cardiac cycle, a simplified
repolarisation equation is used:

∂tu = div(D∇u) + ku(1− u)(u− a)− uz + Jstim(t)
∂tz = −ε(ku(u− a− 1) + z)

(1)



u is a normalised transmembrane potential, and z is a variable mod-
elling the repolarisation. The main roles of the parameters are: k
scales the reaction term, a is a threshold for the reaction phenomenon
and controls the apd, and ε controls the coupling between the trans-
membrane potential and the repolarisation variable. Jstim is the
stimulation current, at the pacing location.

MS Model MS model is a simplified ionic model derived from the
Fenton Karma (FK) ionic model [5]:8>>><>>>:

∂tu = div(D∇u) +
zu2(1− u)

ζin
− u

ζout
+ Jstim(t)

∂tz =

8<:
(1− z)
ζopen

if z < zgate

−z
ζclose

if z > zgate

(2)
u is still a normalised transmembrane potential, and z is the gat-
ing variable for sodium ion influx which depicts the repolarisation
phase. Jin = (zu2(1 − u))/ζin represents the combination of in-
ward sodium current which raises the action potential voltage and
Jout = −u/ζout represents the outward potassium current that de-
creases the action potential voltage describing repolarisation. The
parameters ζopen and ζclose control the repolarisation variable, with
ζclose directly related to the apd.

The diffusion term in both models is controlled by the diffu-
sion tensor D. This spatial diffusion can be related to a pseudo-
conductivity. In the longitudinal direction of the fibre, this pseudo-
conductivity is set to d which is one of the parameters we adjust,
and to d/2.52 in the transverse directions. These electrophysiology
models are solved spatially over a volumetric tetrahedral mesh of the
left and right ventricles using the finite elements method, and in time
using a time integration scheme, described next.

Time Integration A variety of explicit, semi-implicit and implicit
schemes categorised as first, second and third order schemes have
been evaluated for cardiac bidomain model [9]. Here we imple-
ment and evaluate these schemes for monodomain AP and MS
model in terms of solution accuracy, stability, and computational
time. A reference solution approximately representing the exact
solution of the model is computed using finer 3D mesh resolu-
tion (mean edge length of tetrahedra) h and temporal resolution δt
(h = 0.33mm and δt = 10−6s), with implicit scheme. Stability
of a given time integration scheme is determined by varying the
model parameter controlling the wave speed, and observing the
solution for oscillations, for a range of h and δt. Second order
schemes are observed to be more stable at higher wave speed and
large time steps. Whereas accuracy is determined with constant
model parameters and by computing the wave speed error (as shown
in Fig.1, similar for MS model) with respect to the reference solu-
tion for a range of h and δt. And we observe that for small h and
small δt, all time integration schemes are comparable, for small h
and large δt higher than first order schemes provide relative wave
speed error < 1% and for large h the wave speed error is high
irrespective of time integration scheme used. Computational time
(2.16 GHz, dual core, 2.0 GiB) of one time step for explicit and
semi-implicit schemes are comparable and is relative to the mesh
size (for ≈ 247250 number of tetrahedra) ≈ 1s and for fully im-
plicit schemes ≈ 1s for small δt to ≈ 3s for large δt. From all of
this analysis, we determine an optimum h, time integration scheme
and δt for both models. By optimum value, we mean the largest
possible value for which the relative error < 10%. For AP model
the optimum time integration scheme is Second order semi-implicit

Backward Differentiation (SBDF) with δt = 1ms, and for MS
model it is Modified Crank-Nicolson/Adams-Bashforth (MCNAB)
(second order scheme) with δt = 0.1ms, for both the models op-
timum h = 1.5mm with one time step computation time ≈ 1s.
SBDF is given as follows: (3/2 un+1 − 2un + 1/2 un−1)/δt =
D(un+1) + 2F (un, zn) − F (un−1, zn−1). MCNAB is given as:
(un+1−un)/δt = 9/16 D(un+1)+3/8 D(un)+1/16 D(un−1)+
3/2 F (un, zn) − 1/2 F (un−1, zn−1), where D represents the dif-
fusion term and F represents the reaction term of the model and n
is the current iteration number.

Fig. 1. Transmembrane potential u wave for AP model and zoom
(dashed box), temporally integrated with different schemes, on h =
1.5mm, δt = 1ms in comparison with reference (abscissa: nor-
malised potential vs time (s)).

3. OPTICAL AND MR IMAGE DATA PROCESSING
In this paper we performed the adjustments using optical recordings
obtained on a healthy porcine heart. The explanted hearts were at-
tached to a Langendorff perfusion system which permits to maintain
the electrophysiological integrity of the hearts over 1-2 hours. The

(a) (b)

Fig. 2. (a) Raw optical signal (anterolateral view) showing action
potential wave(white) and (b) Volumetric myocardial mesh gener-
ated from MR data, with projected depolarisation time isochrones
(in s) derived from filtered optical data.

fluorescence dye (reflecting directly the changes of transmembrane
potential) and the electro-mechanical uncoupler were injected into
the perfusion line (more details are given in [10]). The hearts were
paced with an electrode near the apex for 5 ms. The fluorescence sig-
nals are captured with high temporal (270 fps) and spatial (< 1mm)
resolution, using a pair of CCD cameras (BrainVision Jp). At the
completion of the optical experiment, the hearts were imaged using
MRI for anatomy. A volumetric mesh was generated from the im-
ages with the INRIA softwares CGAL and GHS3D, resulting in a
tetrahedral geometry. Diffusion Tensor Imaging was also used to
estimate the fiber directions. The optical images recorded by the 2
CCD cameras were reconstructed into a 3D stereoscopic surface of
the heart. Several opaque markers were glued onto the epicardium



to provide a way to register the optical images with the surface of the
model generated from MR images. We estimated a rigid transforma-
tion between the optical and MR markers by solving the least-square
differences. We then projected the isochronal maps onto the regis-
tered volumetric mesh from MR Imaging with an interpolation from
the triangular stereoscopic surface.

4. MODEL PERSONALISATION METHOD

Determination of model parameters that result in a simulation which
is similar to the measured data is defined as personalisation. Here,
we match the depolarisation and repolarisation time isochrones de-
rived from the optical data to those obtained from model simulation
by optimising two model parameters. This adjustment is done in two
phases: Calibration and Iterative Adjustment.

Calibration. This step is used to initialise the model param-
eter values using analytical relationships between the measure and
parameter, which are extracted by performing several model simula-
tions for a range of parameter values and observing the correspond-
ing measure (c or apd resp.). Then a function is fitted in the least
squares sense to these values of measure.

Iterative Adjustment. This step is used to optimise the parame-
ters with calibration result as initial guess. In order to keep computa-
tions reasonable, we divide the left ventricle into 17 zones as defined
by American Heart Association and a similar division of 9 zones for
the right ventricle, when an iterative adjustment is performed. The
algorithm used here is a trust region method [11] which finds the
minimum of a subproblem, such as a quadratic model created using
gradient and approximate hessian matrix at the current search point,
and which is implemented using the Trilinos solver package. Here
we use an objective function that minimises the difference between
the simulated and measured c (or apd resp.) by iteratively adjusting
the parameter value for each zone. By assuming that c and apd of
a zone are not strongly influenced by the neighbouring zones, the
parameter value of all zones can be adjusted simultaneously, thus
considerably reducing the number of simulations required.

AP Model Parameters. One dimensional analysis of the AP
model [3] provides a relationship between the conduction velocity c
and parameters of first equation of the model, c =

√
2kd(0.5 − a),

the same analysis provides the relationship between parameter a and
action potential duration apd as apd = (a− 1)2/4a. It is observed
that one of the parameter affecting the conduction velocity c is a,
which also controls action potential duration apd, thus due to this
coupling, we first adjust the parameter a to the measured apd, since
it does not depend on any other parameter except a. Other two
parameters affecting the conduction velocity are d and k, d repre-
sents the diffusion properties of the myocardial tissue and k stands
for the reaction term along the membrane, both constitutively repre-
sent the electrical wave propagation speed. Since we have only one
measure c available from the measured data, we adjust regionally
(per zone) the parameter d which represents the pseudo-conductivity,
while keeping k constant globally (value taken from the literature).
The relationships between measures and parameters are only true
in one dimension, as in three dimensional propagation the curva-
ture of the diffusion wavefront affects c and coupled apd. Therefore
we perform the calibration step of extraction of analytical relation-
ship in 3D using the function determined from 1D analysis as given:
c(d) = α

√
d+β and apd(a) = (αa2 +βa+γ)/a. These functions

are used to fit in least squares sense to the measures. The constant β
is added to the relationship between c and d to better fit the numer-
ical simulations and take into account the numerical diffusion and
discretization errors. Once the relationship is estimated, it is used to

determine the parameter value di (resp. ai) for the measured median
measure eci (resp. gapdi) for each zone i. For apd, as we have two so-
lutions we select the one which lies in the range of acceptable values
of parameter a from the literature. These paramater values of d and
a are used then to initialise the iterative adjustment step, which min-
imises the following criteria on each zone: J(di) = (eci − bc(di))

2

and J(ai) = ( gapdi−dapd(ai))
2, where bc(di) is the median conduc-

tion velocity over zone i for the parameter di (dapd(ai) alike).
The personalisation approach described above is defined as

regional estimation (as performed per zone). Whereas another ap-
proach for apd personalisation adapted here is local estimation,
where we directly use the calibration function to estimate the pa-
rameter a locally at each vertex. This could be performed as apd of
the measured data is more spatially independent. For the diffusion
term, the iterative adjustment is needed in order to correct errors
coming from spatial effects, like curvature. Also the conduction
velocity estimation from the data is noisy, such regional approach
allows to smooth this effect.

MS Model Parameters. The diffusion term in both models is
the same, whereas the reaction terms differ. And as discussed ear-
lier, we choose to adjust diffusion parameter d to match the con-
duction velocity c. Thus the same calibration function as for AP
model is used to calibrate and then we perform iterative adjustment.
Whereas the action potential duration for single heart cycle is de-
fined by the model [5] as follows: apd = ζcloseln(1/hmin) where
hmin = 4ζin/ζout. Again as we only have one measure apd avail-
able from the measured data, we choose to adjust ζclose, while keep-
ing the other parameter values from the literature. It is defined by
the model that c has no relationship with ζclose, which provides no
coupling between the action potential duration and the conduction
velocity. Thus we can simultaneously adjust parameter d and ζclose.
The defined relationship between ζclose and apd remains valid also
in 3D thus allowing us to directly estimate locally at each vertex, the
parameter ζclose without calibration and iterative adjustment.

5. RESULTS

Before personalisation of both models, the error maps for action po-
tential duration and depolarisation times are computed using a sim-
ulation with the parameter values given from literature.

Action Potential Duration. For AP model, the mean absolute
error on apd before personalisation is 159.5ms (≈ 40% of apd),
reduced to 17.81ms (≈ 5%) after personalisation with regional es-
timation and to 22.1ms (≈ 6%) with local estimation of the param-
eter a. Whereas for MS model, before personalisation it is 86.99ms
(≈ 21%), reduced to 8.72ms (≈ 2%) with direct estimation of the
parameter ζclose locally, as shown in Fig.3.

(a) (b)

Fig. 3. Action potential duration error maps (in s) after personalisa-
tion for (a) AP model (with local estimation) and (b) MS model



(a) (c)

Fig. 4. Maps of (a) parameter a for AP model (with local estimation)
and (b) parameter ζclose for MS model

Depolarisation time. For AP model, before personalisation
mean absolute error on the depolarisation time is 55.77ms (≈ 28%
of depolarisation duration), to 6.2ms (≈ 3%) with adjustment of the
parameter d. Whereas for MS model, before personalisation error is
58.9ms (≈ 30%), to 5.1ms (≈ 2%) with personalisation.

(a) (b)

Fig. 5. (a) Depolarisation time error descent and (b) histogram.

(a) (b)

Fig. 6. Maps of parameter d for (a) AP model and (b) MS model

6. DISCUSSION AND CONCLUSION

In this work, we have compared the personalisation of AP and MS
models on the same dataset. Both models have a few number of
parameters to be adjusted, thus are comparable in terms of personal-
isation. However, from the personalisation results, the MS model has
following pros: (i) It does not have a coupling between action poten-
tial duration and conduction velocity present, whereas for AP model
apd and c are coupled as they both share the relationship with the pa-
rameter a. (ii) In terms of apd personalisation, AP model with local
estimation results in higher final error with continuous parameter a
map, while with regional estimation which requires iterative adjust-
ment has lower final error but discontinuous parameter a map. And

for the MS model, which has a defined relationship for parameter
ζclose that can be used locally, the error reduces only with direct es-
timation to considerably lower final error as shown in Fig.3, and has
continuous parameter ζclose map too as shown in Fig.4 (Note: apd is
inversely proportional to a and directly proportional to ζclose), both
model parameters confirm shorter apd for right ventricle compared
to left ventricle, which is a known phenomenon. (iii) Regarding de-
polarisation time isochrones personalisation, the MS model is more
sensitive to the parameter d thus resulting in sharper error descent
with iterative adjustment for a few number of iterations and lower
final error, while the AP model needs more iterations and has higher
final error as shown in Fig.5, (iv) also the parameter d represent-
ing apparent conductivity in the heart is almost constant for the MS
model compared to AP as shown in Fig.6, which is expected in this
case of healthy heart. (v) MS model has clearly defined and analyt-
ical, biological interpretation of the parameters compared to AP. On
the other hand, the con for MS model is: it has a critical timestep
for semi-implicit scheme 10 times smaller than the critical timestep
for AP, thus making AP simulations faster. These comparison results
show how such a framework can help in choosing the right model for
a given clinical application, where the optical data can be replaced
by endocardial Electro-Anatomical mapping of the patient. How-
ever, for further evaluation, model prediction of depolarisation and
repolarisation time isochrones for different pacing locations using
estimated parameter values should be compared for both models.
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