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Personalised Electrophysiological Models of Ventricular Tachycardia for
Radio Frequency Ablation Therapy Planning

Abstract:
Computer models of cardiac Electrophysiology (EP) can be a very efficient tool to better understand

the mechanisms of arrhythmias. Modelling cardiac electrophysiology for arrhythmias in silico has been
an important research topic for the last decades. In order to translate this important progress into
clinical applications, there is a requirement to make macroscopic models that can be used for the
planning and performance of the clinical procedures. The objective of this thesis was to construct
such macroscopic EP models specific to each patient for study and prediction, in order to improve
the planning and guidance of radio frequency ablation (RFA) therapies on patients suffering from post
infarction Ventricular Tachycardia (VT). In this work, we approached this goal in the following way.

The construction of patient-specific macroscopic 3D EP model required model personalisation i.e.
estimation of patient-specific model parameters. Before application to the patient data, a quantitative
adjustment of such models to experimental data was needed in order to test their realism and predictive
power, this remains a challenging issue at the organ scale. First, we proposed a framework for the per-
sonalisation of a 3D cardiac EP model, the Mitchell-Schaeffer (MS) model, and evaluated its volumetric
predictive power under various pacing scenarios. This was performed on ex vivo large porcine healthy
hearts using Diffusion Tensor MRI (DT-MRI) and dense optical mapping data of the epicardium. The
3D model parameters were optimised using features such as 2D epicardial depolarisation and repo-
larisation maps. The sensitivity of our personalisation framework was evaluated to different pacing
locations and results on its robustness were shown. Then volumetric model predictions for various
epi- and endocardial pacing scenarios were also evaluated. This work demonstrated promising results
with a low personalisation and prediction error. Next, in order to apply this personalisation technique
to the patient data efficiently with computations compatible with clinical constraints, we proposed
a coupled personalisation framework which combines the power of the two kinds of models (simple
Eikonal (EK) model & simplified biophysical MS model) while keeping the computational complexity
tractable. The EK model was used to estimate the conductivity parameters, which were then used to
set the parameters of the MS model. Additional parameters related to the restitution for the tissue were
further estimated for the MS model. This framework was applied to a clinical dataset derived from a
hybrid XMR imaging and sparse non-contact mapping procedure on a patient with heart failure. This
framework was then also applied to more sparse in vivo contact mapping datasets for chronic infarcted
hearts. The personalised model was also tested to determine the effects of using only endocardial or
epicardial mapping measurements. Such quick personalisation of EP models to sparse clinical data
opened up possibilities of using models in clinical settings to understand various diseases.

In order to simulate post-infarct VT with macroscopic 3D models, the structural and functional
heterogeneity of the tissue near the scars i.e. peri-infarct zones (PIZ) was included. The structural
heterogeneity was estimated through high resolution late gadolinium enhanced MRI, while functional
heterogeneity was achieved from the estimated patient-specific tissue heterogeneities using the proposed
coupled personalisation framework. The 3D MS model was also adapted to simulate the macroscopic
structural behaviour of fibrosis near the scars in PIZ. Next, the simulation of an in silico VT stimulation
study using the personalised adapted MS model was then performed, to quantify VT risk, in terms
of inducibility maps, re-entry patterns and exit point maps. A rule-based modelling approach for RF
ablation lesions based on state of the art studies was proposed. This approach was carried out due to
the lack of patient’s imaging data on RF ablation lesions. Furthermore, the acute and chronic effects
of the RFA lesions were simulated. The chronic RFA lesions were then used to assist in estimating the
post ablation success of RF ablation in silico.

Lastly, the in silico VT stimulation study was applied to in vivo personalised data of patients, who
underwent the clinical VT stimulation study. A validation of the in silico post-infarct VT prediction
was performed against the clinical induced VT. The role of spatial heterogeneity of the patient’s car-
diac tissue properties estimated from the personalisation framework, in the genesis of ischemic VT was
learnt, along with their characteristics for entry/exit points, the potential candidates of RF ablation.

Keywords: Cardiac electrophysiology modelling, Arrhythmia modelling, Inverse problems, Non-
linear optimisation, Model personalisation, Radio Frequency Ablation planning, Electroanatomic map-
ping, Optical mapping, Post-infarct ventricular tachycardia







Modèles électrophysiologiques personnalisés de tachycardie ventriculaire
pour la planification de la thérapie par ablation radio-fréquence

Résumé : Les modèles informatiques de l’électrophysiologie (EP) cardiaque peuvent être un outil
très efficace pour mieux comprendre les mécanismes des pathologies comme l’arythmie. La modélisation
de l’électrophysiologie in silico a été un sujet de recherche important ces dernières décennies. Afin de
pouvoir utiliser ces progrès importants dans les applications cliniques, il faut mettre en place des modèles
macroscopiques qui peuvent être utilisés pour la planification et l’évaluation des procédures cliniques.
L’objectif de cette thèse est de construire de tels modèles macroscopiques spécifiques à chaque patient
pour le diagnostic et la prévision, dans le but d’améliorer la planification et le guidage de l’ablation par
radio-fréquence (ARF) des patients souffrant de tachycardie ventriculaire (TV) après infarctus. Dans
ce travail, nous avons abordé cet objectif en plusieurs étapes :

La construction d’un modèle macroscopique 3D spécifique à un patient requiert la personnalisation
de ses paramètres aux données du patient, c’est-à-dire trouver les paramêtres qui permettant de mieux
reproduire les données acquises. Avant d’utiliser sur des données cliniques, cet ajustement a été validé
sur des données expérimentales afin de tester le réalisme et le pouvoir prédictif, ce qui reste une question
difficile à l’échelle de l’organe. Tout d’abord, nous avons proposé un cadre pour la personnalisation d’un
modèle cardiaque 3D, le modèle de Mitchell-Schaeffer (MS), et nous avons évalué sa puissance prédictive
dans plusieurs configurations de stimulation. Cela a été réalisé sur des données ex vivo de cœurs porcins
sains à l’aide d’images médicales et des données cartographiques optiques de l’épicarde. Les paramètres
du modèle 3D ont été optimisés en utilisant des fonctions telles que la dépolarisation épicardique
2D et des cartes de repolarisation. La sensibilité de notre cadre de personnalisation a été évaluée
avec différentes stimulations et les résultats sur sa robustesse ont été présentés. Puis, les prédictions
du modèle volumétrique sur divers scénarios de stimulation épi-et endocardiques ont également été
évalués. Ensuite, afin d’appliquer cette technique de personnalisation aux données du patient de manière
efficace avec des calculs compatibles avec les contraintes cliniques, nous avons proposé un cadre de
personnalisation couplée qui combine deux types de modèles (eikonal (EK) et MS) tout en gardant une
complexité de calcul raisonnable. Le modèle EK a été utilisé pour estimer les paramètres de conductivité,
qui ont ensuite été utilisés pour définir les paramètres du modèle MS. D’autres paramètres liés à la
restitution du tissu ont également été estimés pour le modèle MS. Ce cadre a été appliqué à un ensemble
de données cliniques provenant d’imagerie hybride XMR et d’une procédure de cartographie sans contact
sur un patient souffrant d’insuffisance cardiaque. Ce cadre a ensuite été appliqué à des données de
cartographie de contact pour des affections chroniques des cœurs infarcis. Le modèle personnalisé a
également été testée afin de déterminer les effets de l’utilisation de mesures de cartographie endocardique
ou épicardique.

Pour simuler une TV post-infarctus avec des modèles 3D macroscopiques, l’hétérogénéité structurelle
et fonctionnelle du tissu près des cicatrices (péri-infarctus zones (PIZ)) a été incluse. L’hétérogénéité
structurelle a été estimée par imagerie IRM de rehaussement tardif, tandis que l’hétérogénéité fonc-
tionnelle a été réalisée en utilisant le cadre de personnalisation couplé proposé. Le modèle 3D MS a
également été adapté pour simuler le comportement macroscopique structural de la fibrose près des
cicatrices dans les PIZ. Ensuite, la simulation d’une étude in silico de stimulation de TV en utilisant
le modèle adapté personnalisé MS a été réalisée, pour quantifier le risque de TV en termes de cartes
d’inductibilité, ré-entrées des modèles et des cartes de points de sortie. Une approche de modélisation
pour l’ablation par RF fondée sur l’état de l’art a été proposée. Cette approche a été effectuée en raison
de l’absence de données d’imagerie du patient sur les lésions d’ablation par RF. En outre, les effets aigus
et chroniques des lésions RFA ont été simulés. Les lésions chroniques de ARF ont ensuite été utilisées
pour aider à estimer le succès de l’ablation par RF in silico. Enfin, l’étude in silico de stimulation de
TV a été appliquée aux données in vivo personnalisées des patients, qui ont suivi ce protocole. Une
validation de la prévision in silico de TV post-infarctus a été réalisée et comparée à la TV clinique
induite. Le rôle de l’hétérogénéité spatiale des propriétés des tissus cardiaques estimés à partir du cadre
de la personnalisation dans la genèse de TV ischémique a été évalué, ainsi que les caractéristiques des
points de sortie, qui sont les candidats potentiels à l’ablation par RF.

Mots clés : Modélisation d’électrophysiologie cardiaque et arythmies, problèmes inverses, optimisa-
tion non-linéale, personnalisation des modèles, planification de l’ablation par radiofréquence, cartogra-
phie électro-anatomique, cartographie optique, tachycardie ventriculaire post-infarctus





The best material model for a cat is another [cat], or preferably the same cat.

Arturo Rosenblueth - Philosophy of Science, 1945

What distinguishes a mathematical model from, say, a poem, a song, a portrait
or any other kind of "model," is that the mathematical model is an image or

picture of reality painted with logical symbols instead of with words, sounds or
watercolors.

John Casti - Reality Rules, 1997
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Abbreviations & Nomenclature

Table 1: Abbreviations and acronyms used in this thesis.

Acronym Description
3D-SSFP 3 Dimensional Steady-State Free Precession MR imaging
AHA American Heart Association
AC Apparent Conductivity
AP Action Potential
APath Accessory Pathway
APD(RC) Action Potential Duration (Restitution Curve)
APD Rest Action Potential Duration Restitution
ARI Activation Recovery Interval
AV Atrioventricular Node
AVNRT AtrioVentricuar Nodal Reentry Tachycardia
BSP(M) Body Surface Potential (Mapping)
Cath Lab Catheterisation Laboratory
CHU Centre Hospitalier Universitaire, Bordeaux, France
CL Cycle Length
CT Computed Tomography
CV Conduction Velocity
CV Rest Conduction Velocity Restitution
CVD CardioVascular Disease
DCM Dilated CardioMyopathy
DI Diastolic Interval
DT Depolarisation Time
ECG ElectroCardioGraphy
ECGI ElectroCardioGraphy Imaging derived from BSPM
ED Eikonal-Diffusion
EK Eikonal Model
EM Electro-Mechanical (model)
EP ElectroPhysiology
EPS ElectroPhysiology Study
FEM Finite Element Method
FK Fenton-Karma (cell model)
FMM Fast Marching Method
FWHM Full Width at Half Maximum
IBT Institute of Biomedical Engineering, Karlsruhe, Germany
ICD Implantable Cardioverter-Defibrillator
ICM Ischemic CardioMyopathy
ICT Information and Communication Technology
IHD Ischemic Heart Disease



INRIA Institut National de Recherche en Informatique et en Automatique /
Centre de recherche Sophia Antipolis - Méditerranée

KCL King’s College London, UK
LA Left Atrium
LAT Local Activation Times
LE MRI Late Enhancement Magnetic Resonance Imaging
LGE-CMR Late Gadolinium Enhanced Cardiac Magnetic Resonance imaging
LIVT Left Idiopathic Ventricular Tachycardia
LV Left Ventricle
LVEF Left Ventricular Ejection Fraction
MAP Monophasic Action Potential
MCNAB Modified Crank-Nicolson/Adams-Bashforth
MIPS Medical Image Processing and Simulation (INRIA library)
MI Myocardial Infarction
MM Minimal Model (cell model)
MR(I) Magnetic Resonance (Imaging)
MS Mitchell-Schaeffer (cell model)
NCM Non-Contact Mapping
PDE Partial Differential Equation
PF Pacing Frequency
RA Right Atrium
RC Restitution Curves
RF(A) Radio-Frequency (Ablation)
RT Repolarisation Time
RV(A) Right Ventricle (Apex)
RVOT Right Ventricular Outflow Tract
SA Sinoatrial Node
SCD Sudden Cardiac Death
TNNP Ten Tusscher-Noble-Noble-Panfilov (cell model)
VF Ventricular Fibrillation
VT Ventricular Tachycardia
VT-Stim Ventricular Tachycardia Stimulation
XMR Hybrid X-Ray/MR system



Table 2: Nomenclature used.

Nomenclature Description
Na+ Sodium ions
Ca2+ Calcium ions
K+ Potassium ions
Cl− Chlorine ions
Cm membrane capacitance
Iion total ionic current
Im membrane current
Jstim stimulus current
Ix membrane current for ion x

Jin total inward ionic currents
Jout total outward ionic currents
σ stress tensor
Td depolarisation time
Tr repolarisation time
Vm membrane voltage
D Diffusion tensor
d pseudo-conductivity in the fiber direction (apparent conductivity)
dMS pseudo-conductivity in the fiber direction for MS model (s−1)
dEK pseudo-conductivity in the fiber direction for EK model (m2)
r conductivity anisotropy ratio in transverse planes (no unit)
τopen opening time-constant of the gate (s)
τclose closing time-constant of the gate (s)
τin time-constant for inward currents (s)
τout time-constant for outward currents (s)
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1 Clinical Context

The pathophysiology of the heart represents a highly relevant and epidemiologically
significant contributor to mortality and loss of quality of life within Europe, where
each year cardiovascular diseases (CVD) cause over 4.35 million deaths including
nearly half of all non-accidental deaths [PPR+05]. This, currently western, epidemic
is now also spreading to developing nations with CVD predicted to become the most
common cause of death in these countries by 2030 [Org09, Org04, Org03]. CVD is
most commonly a consequence of atherosclerosis, manifesting itself in diseases such
as coronary artery disease, congestive heart failure, cardiac arrhythmias and sudden
cardiac death (SCD). The loss of quality and quantity of life producing a significant
financial burden is spread across community sectors with approximately 62% of costs
due to direct health care costs, 21% due to productivity losses and 17% due to the
informal care of people with CVD. Thus the early detection and prediction of the
progression of CVD are key requirements towards improved treatment, a reduction
in mortality and morbidity, and of course to reduce healthcare costs within the
European economy.

In the majority of cases, SCD is triggered by the onset of ventricular tachy-
cardia (VT), an abnormally rapid heart rate originating in the ventricle [HCM01].
If undetected and untreated, VT can rapidly degenerate in ventricular fibrillation
(VF) which is a chaotic propagation of the electrical impulse in the heart, caus-
ing an abnormal contraction and inefficient blood pumping. This cascade of events
leads within minutes to cardiac arrest and asystole (no pulse) and eventually to
death unless the heart’s electrical activity is immediately restored using defibrilla-
tion shocks [RZ+05]. Termination of sustained VT can be achieved by cardioversion
in order to reset the overall electrical activity of the heart. Cardioversion by shock
therapy can be achieved by external electrical defibrillation or internally via an im-
plantable cardioverter-defibrillator (ICD) that continuously monitors for and can
detect episodes of VT. In the case of monomorphic VT, termination can also be



4 Chapter 1. Introduction

achieved by anti-tachycardia pacing, which is accomplished by the ICD rapidly pac-
ing the heart. The use of ICDs for secondary prevention has been increasing because
ICD therapy has been proven to reduce mortality by up to 39% in patients who sur-
vived near fatal VF or who have sustained VT [LGL+03]. The percentage of VT
patients with appropriate ICD firing was 68% at one year and 81% at two years
after implantation. However, ICD therapy is a non-curative approach to patients
with VT. It does not prevent the VT from re-occurring, and up to 80% of ICD re-
cipients still require pharmacological anti-arrhythmic therapy [FGDSG07]. Patients
with frequent ICD firing due to monomorphic VT also experience significantly de-
creased quality of life associated with VT symptoms and distress anticipating ICD
activation, and hence require additional therapy.

Radio-frequency (RF) ablation offers a potential curative therapy for monomor-
phic VT, which aims to interrupt the re-entry circuit by placing RF thermal lesions
on the isthmus. However, the major challenge is identification of the location of
the VT substrate (i.e., the isthmus in the re-entry circuit). Currently, this can
be achieved with electrophysiological (EP) substrate mapping, a technique that
constructs voltage, propagation and impedance maps of the endocardium and/or
epicardium, most commonly via intra-cardiac catheter-based procedures. However,
there is a clear need to improve the methods to characterise the substrate of VT,
and to explore other modalities that can supplement diagnostic information and
can help in selecting better treatment strategies. Those patients with monomorphic
sustained VT associated with chronic infarct, particularly those being considered for
RF ablation (RFA), are an important initial target population. Advances leading
to improved treatment planning and outcomes assessment would have immediate
impact on the quality of life in this substantial patient population. Thus, research
efforts are focused towards construction of accurate patient-specific treatment plat-
forms.

A large part of this thesis was performed within the euHeart1 project, a four-year
European project partially funded by the European Community (7th Framework
Program) (Fig. 1.1). The project is coordinated by Philips Technologies GmbH
Aachen (DE), and involved 15 technical partners (including INRIA, France) and
three clinical partners, namely King’s College London (London, UK), University
Hospital Pontchaillou (Rennes, France) and Hospital Clínico San Carlos de Madrid
Insalud (Madrid, Spain). The aim of the euHeart project is to incorporate In-
formation and Communication Technology (ICT) tools and integrative multi-scale
computational models of the heart within clinical environments to improve diag-
nosis, treatment planning and interventions for CVD and thus to reduce the allied
healthcare costs. These computational models also provide an excellent basis to
optimise the design of implantable devices for improved therapy. The opportunity
of multi-scale modelling spanning multiple anatomical levels (sub-cellular level up
to whole heart) is to provide a consistent, biophysically-based framework for the
integration of the huge amount of fragmented and inhomogeneous data currently

1http://www.euheart.eu
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Figure 1.1: Diagram of the euHeart, a European research initiative targeting the
personalised diagnosis and treatment of cardiovascular disease: the leading cause of
morbidity in the western world. Image taken from http://www.euheart.eu/

available. However, the application of this research was not been translated into
clinical environments mainly due to the difficulty of efficiently personalising the
biophysical models and to the lack of multidisciplinary research.

The objective of this work was to use personalised biophysical models of the
cardiac electrophysiology in order to improve the planning and guidance of radio-
frequency ablation therapies on patients suffering from Ventricular Tachycardia
(VT). Indeed, there is no clinical consensus about the optimum RF ablation patterns
for these diseases yielding to a great deal of trial and error during the procedure
which highly depends on the cardiologist’s experience. This work on using person-
alised models to guide RF ablation therapies can provide a consensus on optimum
RF ablation patterns for these diseases.

In order to plan and guide RF ablation therapy for VT the questions mainly
tackled in this thesis were:

• How do we personalise biophysical models to the sparse in vivo clinical data?

• How do we simulate ischemic ventricular tachycardia and RF ablation patterns,
as observed as in clinics and provide guidance and planning?

• Are we really simulating patient-specific ischemic VT?

2 Manuscript Organisation

The thesis is organised along our published and submitted studies, on which it is
largely based. The resulting manuscript progresses from the development of per-
sonalisation tools for cardiac EP models, to the modelling & prediction of cardiac
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arrhythmias for planning of RF ablation therapy. The definition of personalisation
used in this thesis is: parameter estimation of 3D cardiac EP models derived from
patient’s imaging and electrophysiological mapping data.

This thesis is organised in three parts demonstrating the three main contribu-
tions: 1) Development of personalisation frameworks for 3D cardiac EP models,
using various cardiac EP mapping data. 2) Modelling ventricular tachycardia and
RF ablation lesions, for planning of RF ablation therapy. 3) Prediction & validation
of ventricular tachycardia using clinical data.

Chapter 2 gives a background on cardiac anatomy, myocardial infarction, elec-
trophysiology and ventricular arrhythmias. It also describes the state of the art
technologies used in clinics, for mapping cardiac electrophysiology. Along with the
basics and state of the art research being carried out in modelling cardiac electro-
physiology in silico.

In Chapter 3, based on [RPD+11], we propose a framework for the person-
alisation of a 3D simplified biophysical cardiac EP model, the Mitchell-Schaeffer
(MS) model to 2D epicardial ex vivo optical and MR data. We also evaluate its
volumetric predictive power under various pacing scenarios. The sensitivity of the
personalisation framework to different pacing locations is also performed.

In Chapter 4, based on [RCS+11], we propose a coupled personalisation frame-
work, which combines the benefits of a simplified eikonal model (EK) with a simpli-
fied biophysical MS model. We also demonstrate its applicability to in vivo clinical
data using non-contact EP mapping data.

In Chapter 5, based on [RSDA11], we extend the framework’s applicability to
in vivo contact EP mapping data. And we also evaluate the influence of using only
endocardial mapping or epicardial mapping measurements, on the personalisation
framework.

In Chapter 6, based on [RCS+11, RDS+11], we illustrate the main macroscopic
characteristics of post-infarction Ventricular Tachycardia (VT) (chronic ischemic
VT), and adapt the simplified biophysical MS model to incorporate those features.
The personalised MS model derived from the in vivo clinical data is then used to
perform an in silico simulation of a VT stimulation study to predict the induction
of VT. This simulation study is used to assess the risk of VT for the patient and
also to plan a potential subsequent radio-frequency (RF) ablation strategy to treat
VT.

Implantation of ICD post ablation, causes the unavailability of imaging data on
RF ablation lesions for VT patients. In Chapter 7, based on [RDS+11], we propose
a rule based modelling approach of RF ablation lesions post ablation therapy, based
on the state of the art studies. The RF ablation lesions are also modelled to simulate
the acute and chronic effects of RFA therapy. The acute RF ablation lesions are
then be modelled in the simulated VT stimulation study to assist in robust location
of potential RF ablation lines in silico, while chronic RF ablation lesions could then
be modelled in accessing the long-term success rate of RFA therapy.

In Chapter 8, based on [RCD+12] we apply the in silico VT stimulation study
to in vivo personalised data of patients, who underwent the clinical VT stimulation
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study. A validation of the in silico VT prediction is performed against the clinical
induced VT. We also study the role of spatial heterogeneity of the cardiac tissue
properties estimated from the personalisation framework, in the genesis of ischemic
VT, and learn their characteristics for entry/exit points.

Lastly, Chapter 9 concludes this thesis with the list of contributions and directs
us towards the feasible perspectives to this work. Chapter 10 provides the list of
publications written during this work, along with some co-authored publications
and European project deliverables.
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1 Anatomy

The heart is a powerful muscular organ whose shape and function optimise the pump
function while minimising the muscular work. It is located anterior to the vertebral
column and posterior to the sternum. It is enclosed in a double-walled sac called the
pericardium. The superficial part of this sac is called the fibrous pericardium. This
sac protects the heart, anchors its surrounding structures, and prevents overfilling
of the heart with blood. The outer wall of the heart is composed of three layers.
The outer layer is called the epicardium. The middle layer is called the myocardium
and is composed of cardiac muscle which contracts. The inner layer is called the
endocardium and is in contact with the blood that the heart pumps.

The human heart has four chambers, two superior atria and two inferior ven-
tricles (Fig. 2.1). The atria are the receiving chambers and the ventricles are the
discharging chambers. The pathway of blood through the heart consists of a pul-
monary circuit and a systemic circuit. De-oxygenated blood flows through the heart
in one direction, entering through the superior vena cava into the right atrium (RA)
and is pumped through the tricuspid valve into the right ventricle (RV) before be-
ing pumped out through the pulmonary valve to the pulmonary arteries into the
lungs. It returns from the lungs through the pulmonary veins to the left atrium
(LA) where it is pumped through the mitral valve into the left ventricle (LV) before
leaving through the aortic valve to the aorta.

Myocardial Infarction Myocardial infarction (MI) results from the interrup-
tion of blood supply to a part of the heart, causing heart cells to die. This is
most commonly due to occlusion of a coronary artery following the rupture of a
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Figure 2.1: (a) Human heart, (b) Heart function (Images from Wikipedia) (c) Seg-
mented whole heart model from SSFP MR images

Figure 2.2: (a & b) Myocardial infarction of the tip of the anterior wall of the heart,
(Images from Wikipedia) (c) LE-CMR images showing infarction on the posterior
wall (highlighted in box)

vulnerable atherosclerotic plaque (Fig. 2.2). The resulting ischemia (restriction in
blood supply) and ensuing oxygen shortage, if left untreated for a sufficient period
of time, can cause irreversible damage or death (infarction) of heart muscle tissue
(myocardium). Ischemic heart disease (IHD), or chronic myocardial ischemia, is
a disease characterised by ischemia of the heart muscle, usually due to coronary
artery disease (atherosclerosis of the coronary arteries). Infarcted tissue can cause
a cardiac arrest, which is the stopping of the heartbeat, and cardiac arrhythmia, an
abnormal heartbeat.

2 Cardiac Electrical System & Arrhythmias

The normal intrinsic electrical conduction of the heart allows electrical propagation
to be transmitted from the Sinoatrial (SA) Node through both atria and forward
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to the Atrioventricular (AV) Node, then to the ventricle or Purkinje network and
respective bundle branches (Fig. 2.3). Time ordered stimulation of the myocardium
allows efficient contraction of all four chambers of the heart, thereby allowing sys-
temic blood circulation.

Cardiac action potentials arising in the SA node (and propagating to the left
atrium via Bachmann’s bundle) cause the atria to contract with a speed (Conduction
Velocity (CV)) of ≈ 0.5 m/s. In parallel, action potentials travel to the AV node via
internodal pathways. After a delay (≈ 0.07 s), the stimulus is conducted through
the bundle of His (≈ 2 m/s) to the bundle branches (≈ 2 m/s) and then to the
Purkinje network (≈ 4 m/s) at the endocardium (mostly apical) of the heart, then
finally to the ventricular myocardium(≈ 0.5 m/s) [MKY+02].

The pathway can be summarised as: SA node → internodal pathway → transi-
tional fibres → AV node → penetrating fibres → distal fibres → Bundle of his/AV
bundle → right and left bundle branches → Purkinje network (Fig. 2.3)(a). The
total time taken by the nerve impulse to travel from the SA node to the ventricular
myocardium is ≈ 0.19 seconds [MKY+02].

Action potentials (Fig. 2.3(c,d)) are generated by the movement of ions through
the transmembrane ion channels in the cardiac cells (Fig. 2.3)(b):

• Phase 0 – Depolarisation Rapid Na+ channels are stimulated to open,
flooding the cell with positive sodium ions. This causes a positively directed
change in the transmembrane potential. Depolarisation of one cell triggers the
Na+ channels in surrounding cells to open as well, causing the depolarisation
wave front to propagate cell by cell throughout the heart. The speed of depo-
larisation of a given cell (the slope of phase 0), determines how soon the next
cell will depolarise, thus the CV.

• Phase 1 - Early Repolarisation is the initial stage of repolarisation with
outflux of K+ & Cl−.

• Phase 2 - Plateau is the plateau stage where the rate of repolarisation is
slowed by the influx of Ca2+ ions into the cell. The Ca ions enter the cell slower
than the Na ions and help prevent the cell from repolarising too quickly, thus
extending the refractory period. This mechanism helps regulate the rate at
which cardiac tissue can depolarise. Phases 1 & 2 correspond to the absolute
refractory period.

• Phase 3 - Repolarisation is the later stages of repolarisation with outflux
of K+. Once repolarisation is complete, the cell will be able to respond to a
new stimulus. Phase 3 is that critical period where a strong signal may trigger
depolarisation which could lead to VT or VF.

• Phase 4 -Resting occurs after repolarisation is complete. During this phase,
known as the quiet or quiescent phase, there is no ion exchange across the
cellular membrane in most cardiac cells. Time difference between Phase 1 &
3 represents the Action Potential Duration (APD) for the cardiac cell.
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Figure 2.3: (a) Heart conduction system, the electrical activity of the heart is trig-
gered by the sinoatrial nodes (1) and then the atrioventricular nodes (2). It is
transported by the left bundle (5) and the right bundle (10) branches and finally
transmitted to the myocardium (8) through the Purkinje fibres (9). (c) Simplified
ECG with the main electrical waves (Images from Wikipedia). (b) Ion exchanges at
the surface of the cell membrane that generate the cardiac action potential [Mar02].
(d) Cardiac action potential

The cells in different regions of the heart do not all have the same action po-
tential, and thus have varying conduction velocities. Electrocardiography (ECG) is
a transthoracic interpretation of the electrical activity of the heart over a period
of time, as detected by electrodes attached to the torso. It is decomposed with
PQRST waves. P wave for atrial depolarisation, QRS complex reflects the rapid
depolarisation of ventricles, T wave represents the repolarisation of the ventricles.
The atrial repolarisation is hidden in the QRS complex. QT interval represents the
APD over the ventricles. Cardiac arrhythmia is any of a large and heterogeneous
group of conditions in which there is abnormal electrical activity in the heart. The
heartbeat may be too fast (tachycardia) or too slow (bradycardia), and may be
regular or irregular.

Ventricular Tachycardia Ventricular tachycardia (VT) is a fast heart rhythm,
that originates in one of the ventricles of the heart. This is a potentially life-
threatening arrhythmia because it may lead to ventricular fibrillation, asystole, and
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Figure 2.4: (a) Schematics of RF ablation therapy & electrophysiology study (EPS)
of cardiac arrhythmias (Images from Heart Centre Bad Krozingen) (b) Schematics
of ischemic VT on LV free wall (www.medmovie.com)

sudden death. VT can be classified based on its morphology: Monomorphic VT
(sustained morphology) & Polymorphic VT (beat-to-beat variations in morphology).
The most common setting for VT is ischemic heart disease (Fig. 2.4(b)), in which
myocardial scar tissue is the substrate for electrical re-entry. Treatments include
synchronised electrical cardioversion, ICD implantation, cardiac ablation & anti-
arrhythmic drug therapy.

Radio-Frequency ablation of Ventricular Tachycardia Radio-frequency ab-
lation is one of the treatment for VT. Using catheters, radio-frequency energy (low-
voltage, high-frequency electricity) is targeted toward the area(s) causing the ab-
normal heart rhythm, permanently damaging small areas of tissue with heat. The
damaged tissue is no longer capable of generating or conducting electrical impulses.
If the procedure is successful, this prevents the arrhythmia from being generated,
curing the patient. In some patients, insertion of a pacemaker is a planned part of
the procedure. The ablation catheters are usually inserted into the vein or artery
in the right and left groin (inner thigh) and are then positioned within the cham-
bers of the heart using fluoroscopy (Fig. 2.4(a)). An electrophysiology study, as
explained in the section 3, is then performed to identify regions of the heart causing
arrhythmia, and then ablated.

3 Mapping Cardiac Electrophysiology

Cardiac electrophysiology can be mapped with a host of systems, depending on the
state of the mapped heart (ex-vivo & in-vivo). For in vivo mapping, in a clinical
routine, cardiac electrophysiology is usually assessed non-invasively with electro-
cardiograms (ECG). The ECG is obtained by placing skin electrodes on the torso,
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Figure 2.5: Schematic of an optical experiment using a dual-camera system to
record the action potential from the heart perfused ex vivo via a Langendorff system
(a) and a snapshot of the actual experiment (b). (a,b taken from [PSL+09]). (c)
Schematics for a cardiac epi-fluorescence experiment in isolated guinea pig hearts
used in [HZS+08] for 3D optical imaging. (d) Myocardial wave reconstruction based
on subsurface wave front orientation (towards or away from the epicardium) and
fluorescent signal (maximal time derivative) employed in [HZS+08]. (c,d taken
from [HZS+08])

that measure the electrical signal produced by the heart. This routine has been
widely used for centuries in clinics and the clinicians are trained to detect cardiac
abnormalities based on the deflections from normal shapes of ECGs (Fig. 2.3(c)).

Optical mapping For ex-vivo cases, optical mapping techniques are widely used.
They use imaging devices such as a photodiode array or a charge-coupled device
video camera with the heart being illuminated and either continuously or spa-
tially scanned. The basis for these techniques is the use of voltage-sensitive dyes
(VSD) that bind to or interact with cell membranes. It has been the method
of choice to investigate arrhythmias experimentally at the tissue or whole heart
level [RJ01, ENS04]. VSDs can be introduced through coronary flow without sig-
nificant tissue damage and bind to the cardiac cell membranes. They respond
to changes in transmembrane potential by changes in excitation and fluorescence
spectra, which allow monitoring the cells electrical activity. Although recent ad-
vances have been made towards 3D optical imaging of cardiac electrical activity
[KBMP06, HBP+07, HZS+08], surface epi-fluorescence imaging remains the most
widely used technique in cardiac optical imaging [RJ01, ENS04, PSL+09, PSL+12].
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Recently [HBP+07] presented a study of the 3D propagation of electrical waves in
the heart wall using Laminar Optical Tomography (LOT), and showed promising re-
sults which demonstrated that LOT can clearly resolve the direction of propagation
of electrical waves within the cardiac wall in the rat ventricular tissue.

Minimally invasive electroanatomic mapping Cardiac electrophysiology can
also be studied intensively for arrhythmia patients, with minimally invasive methods
during an electrophysiology study (EPS). This procedure is performed in a Catheter-
isation laboratory (Cath lab) which is a specially equipped operating room. In order
to reach the heart with a catheter, a site is prepared that will allow access to the
heart via an artery or vein, usually in the groin. This site is then described as the
insertion point. Once the catheter is in and all preparations are complete, the EP
study begins. The X-ray machine gives a view of the heart and the position of the
electrodes, and allows the doctor to guide the electrodes through the heart. The
electro-physiologist begins by moving the electrodes along the conduction pathways
and along the inner walls of the heart, measuring the electrical activity along the
way.

A number of software tools, like the CARTO EP Contact Navigation System
(Biosense Webster, Inc., CA) (Fig. 2.6) and the EnSite Velocity Non-contact Map-
ping system (St. Jude Medical, MN, U.S.A.) (Fig. 2.7) have been developed aiming
to facilitate the mapping of measured electrical activity on the living anatomy of the
heart including the relative position of the catheter. These two systems are widely
available, and mainly represent the two distinct approaches, which are the contact
and the non-contact technique of electroanatomical mapping. The first step of 3D
electroanatomical systems is to create an accurate anatomical model. The creation
of the anatomic model of a cardiac chamber is heavily operator-depended, meaning
that improper selection of points by the operators may result in an untrustworthy
model. Misleading anatomy often results in diagnostic pitfalls by omitting crucial
parts of the arrhythmia circuit or the arrhythmia foci. A minimum of 50 points are
needed by both contact (CARTO) and non-contact (EnSite) 3D electroanatomical
systems to create the anatomy of a chamber of the heart, but 100 points are usually
appropriate. The accuracy of the 3D anatomical model can be compromised by un-
controlled factors such as the extreme breathing movements, tension of the mapping
catheter towards the myocardial wall and movement of the reference catheter.

Comparison between contact and non-contact electroanatomical mapping
Electroanatomical mapping has been proved to be quite useful in arrhythmias of
complex pathophysiological substrate and in poorly tolerated arrhythmias. Al-
though, both contact and non-contact electroanatomical mapping can be used to
facilitate ablation of VT, the non-contact mapping has the potential advantage to be
applicable in cases where the arrhythmia cannot be tolerated or in cases where the
clinical arrhythmia is not reproducible during the electrophysiology study. Finally,
the dynamic changes of the arrhythmogenic substrate induced by radio-frequency
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Table 2.1: Current applications of electroanatomical mapping systems. Table
from [AKTM09]

Cardiac arrhythmia Mapping system
AVNRT not necessary/ NavX system
APath-related not necessary/ NavX system
Atrial tachycardia contact/non-contact mapping

Nonsustained non-contact mapping
Atrial flutter contact/non-contact mapping
Atrial fibrillation contact mapping
Ventricular tachycardia contact/non-contact mapping

RVOT VT/ LIVT not necessary/only for difficult cases
IHD/DCM contact/non-contact mapping
Nonsustained/unstable non-contact mapping
Sustained/stable contact/non-contact mapping

ablation can be continuously evaluated by the operator. This advantage is of clinical
importance, given the unexpected changes of the complex arrhythmogenic substrate,
which may occur during the ablation of ventricular tachycardias, especially in the
setting of ischemic cardiomyopathy. In this setting, it is not uncommon that differ-
ent forms of ventricular arrhythmias may appear after the clinical arrhythmia has
been successfully ablated. Continuous monitoring of the virtual electrograms and
of the propagation map, afforded by the non-contact mapping during sinus rhythm
and during ventricular arrhythmias, may help the operators to effectively create a
curative strategy.

Conversely, in the case of contact electroanatomical mapping, a complete remap-
ping should be performed after the relapse of an arrhythmia because the previous
electroanatomical map is no longer valid if radio-frequency ablation lesions have
been applied. This is time consuming and in some cases it can be proved simply not
feasible. Mapping only the area of interest can be another strategy. On the other
hand, the EnSite balloon catheter is expensive and occupies a large space in the
cavity of interest. In particular it consists of a 64-electrode mesh, mounted on the
outside surface of a 18 x 40 mm balloon (Fig. 2.7b) . After appropriate positioning
in the cavity of interest, this balloon should not be moved, thereafter. The balloon
itself often represents an obstacle to the manipulation of the ablation catheter.

Non-invasive body surface mapping Century-old routine of non-invasive de-
tection and diagnosis of the cardiac electrical activity is performed with a 12-
lead electrocardiogram (ECG), a widely used test that is part of routine medical
care. However, this technology measures the reflection of cardiac electrical activ-
ity on the surface of the body (body surface potential), not on the heart itself.
Therefore, it has limited spatial resolution for determining regional cardiac elec-
trical activity and limited ability to locate regions of arrhythmic activity in the
heart. Recently, [Rud10, WCZ+11, WSD+07] have demonstrated a similar non-
invasive method that provides high spatial resolution maps of abnormal electrical
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Figure 2.6: (a) Fluoroscopic images of the chest, showing CARTO contact mapping
catheters in LV (b). (c) Electroanatomical mapping with CARTO EP Contact
Navigation System (Images from CHU, Bordeaux)

Figure 2.7: (a) Fluoroscopic images of the chest, showing EnSite balloon non-
contact mapping catheters in LV. (b) deflated and inflated EnSite balloon. (c)
Electroanatomical mapping with EnSite Velocity System (Images from KCL, Lon-
don)
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Figure 2.8: ECGI methodolgogy to have epicardial potential and activation maps
from BSPM. Figure taken from [WCZ+11].

activity on the heart surface (rather than on the body surface). This could con-
tribute greatly to the understanding of the mechanisms of ventricular arrhythmias
and to the diagnosis and treatment of cardiac rhythm disorders in patients. It
could also help to identify patients at risk of sudden cardiac death and to de-
velop mechanism-based therapy and guide patient-specific treatments. The tech-
nique used in [Rud10], is a non-invasive imaging method electrocardiographic imag-
ing (ECGI) for electroanatomic mapping of cardiac electrical activation. It is ob-
tained by solving the inverse problem of the reflected body surface potential towards
the underlying cardiac electrical activity. Such studies have also been performed
in [Dös00, FD09, MGBD10, WWZ+11]. ECGI holds a promise to a better future
with non-invasive diagnosis and early detection of CVDs, thus prevention of cardiac
related deaths [RPP+12].

In this thesis, we work with personalising 3D biophysical ventricular models de-
rived from imaging data to ex vivo optical mapping and in vivo electroanatomic
mapping (contact & non-contact). Although as a part of this thesis, we have col-
laborated with IBT Germany to start personalising models with ECGI mapping
derived from non-invasive BSPM mapping (Appendix D Table D.7 & D.8).

4 Modelling Cardiac Electrophysiology

Cardiac tissue contains excitable myocytes. Local depolarisation of the cardiac
myocyte membrane above a threshold voltage, for example in response to current
injection from a stimulating current provided by neighbouring myocytes, triggers the
opening of voltage-gated Na+ channels and a rapid membrane depolarisation, which
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generates an action potential. The action potential upstroke produces local gradients
in membrane voltage that cause current flow within the tissue. This current flow acts
in turn to open voltage-gated Na+ channels in neighbouring electrically connected
cells, resulting in propagation of the action potential through the tissue. The speed
and pattern of propagation depends on local tissue micro-structure, although at
macroscopic spatial scales cardiac tissue behaves as a functional syncytium.

Hence, most models of cardiac electrophysiology assume that cardiac tissue can
be treated as a continuum with diffused wave propagation in the tissue. Thus
heart electrical behaviour can be governed by reaction diffusion equations. The
biophysics of this process has been reviewed extensively elsewhere [KR04, PB00,
CBC+11, FNC+11]. In this thesis, we simulate this action potential propagation in
3D on a ventricular model derived from patient’s imaging data.

At the tissue scale cardiac tissue behaves as a functional syncytium of electrically
coupled cells. A homogenisation of the discrete representation of cardiac tissue as
a resistor network can be applied to derive a continuous description [NK+93], and
its idealised electrical behaviour may be considered as an excitable medium in 3D,
where excitable cells are coupled diffusively via the transmembrane voltage [KKS09].

Bi-domain & Mono-domain models Bi-domain models represent cardiac tis-
sue as a syncytium composed of intracellular and extracellular domains. It is as-
sumed that both domains are overlapping and continuous, but separated by the cell
membrane. The bi-domain model of cardiac tissue is based on current flow, distri-
bution of electrical potential and the conservation of charge and current [H+93]. It
treats the intracellular and extracellular spaces separately, leading to the following
coupled partial differential equations:

∇ · (Di +De)φe = −∇ · (Di∇Vm) (2.1)

∇ · (Di∇Vm) +∇ · (De∇φe) = −β(Cm∂tVm + Iion) (2.2)

where ∇· is the divergence operator, ∇ the gradient operator, φe is the extracel-
lular potential, Di and De are the intracellular and extracellular conductivity ten-
sors [Rot92], β is the surface-to-volume ratio, and the membrane voltage is given by
Vm = φi − φe, with φi as the intracellular potential.

The bi-domain model has the strong advantage to be based on a clear and physi-
ologically relevant modelling process including an homogenisation step from a micro-
scopic tissue scale to a macroscopic organ one. This underlying interpretation at a
microscopic tissue scale makes possible the embedding of the bi-domain model with
a full torso model via physiologically relevant coupling conditions at the heart/torso
interface [NK+93], allowing the simulation of the extra-cardiac potential field and of
the ECG. For these reasons the bi-domain model is very popular for the simulation of
the heart and torso coupled electrical activity [LGT03]. Meanwhile, the bi-domain
model is numerically highly demanding and various simplifications of this model
have been widely used. For example, the eikonal model variant [CFGR90] allows



4. Modelling Cardiac Electrophysiology 19

Figure 2.9: Simulated Action Potential Waveforms from a broad range of simple
and complex mathematical models of cardiac cells [FC08].

to model the spread of transmembrane potential wavefront during depolarisation,
and extra-cardiac potential fields can also be recovered during the depolarisation
sequence using the oblique dipole layer representation [CFGV+82]. All these sim-
plified version of the bi-domain model have their own limitations and this strategy
does not properly capture the feedback between the extra-cellular and extra-cardiac
potential fields.

In 1D, or when the intracellular and extracellular anisotropy ratios are equal
in 2D or 3D, the bi-domain representation reduces to the mono-domain. In the
mono-domain formulation, the governing differential equation is

∂tV = ∇ · (D∇V )− Iion/Cm (2.3)

where D is the conductivity tensor, Cm is the membrane capacitance, and Iion is
the ionic current specified by the model formulation used in each case. If there is no
injection of current into the extracellular space, descriptions of physiological action
potential propagation provided by mono-domain and bi-domain models are close to
each other even under the condition of unequal anisotropy ratio in the extracellular
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and intracellular spaces [CFPT05]. Complex patterns of action potential dynamics
in a realistic framework have been successfully simulated using the mono-domain
models [CGH03].

More recently [CNLH04, PDR+06], a new model referred to as the adapted mono-
domain model was proposed both to address the bi-domain model high computa-
tional cost problem and the coupling difficulty between the cardiac and extra-cardiac
space for the mono-domain model. In this framework, the transmembrane poten-
tial field is governed by a single reaction diffusion equation as for the mono-domain
model, the computation of which remains decoupled from the extra-cellular/-cardiac
potential fields. A complete extra-cardiac/-cellular potential field is then recon-
structed from the transmembrane potential which construction naturally includes
the physiological coupling between extra-cardiac and extra-cellular potentials on the
heart surface. The adapted mono-domain model is considered as an approximation
of the bi-domain model, providing both a much lower computational cost (since the
extra-cardiac/-cellular potential field can be computed when desired only) and a cor-
rect coupling on the heart surface between the extra-cardiac and extra-cellular po-
tential fields. The bi-domain and adapted monodomain models have been compared
extensively in [PRB+09], and the two models provided results in good agreement.

Myocardial model simulation in 3D As described earlier, models of cardiac
tissue electrophysiology are based on reaction-diffusion systems where the reaction
process is attributed to the cellular action potential, and the diffusion process repre-
sents current flow between cells. Most modelling approaches including mono-, bi-, or
multidomain models assume that cardiac tissue behaves as a functional syncytium.

Whole heart models are commonly composed of discrete volume elements, for
example tetrahedra [BEL03, VAT02] and hexahedra [FP04, SSK+10]. Each element
type has advantages and disadvantages. For instance, a mesh assembled from uni-
form cubic voxels can be derived easily from imaging data, but does not reconstruct
curved surfaces such as the epicardium effectively. In contrast, irregular tetrahedral
meshes can improve the representation of surfaces, but mesh generation can be more
difficult and the numerical methods associated with irregular meshes can result in
higher computational costs. Recent work aims at providing adaptive meshes with
high spatial accuracy that are appropriate for simulation of tissue electrophysiology
in details in the regions of interest.

In our work, we generate an adaptive tetrahedral mesh from the patient’s MR
images for simulations in 3D. Whole heart segmentation from 3 dimensional steady-
state free precession (3D-SSFP) MRI is done using a plug-in developed by Philips
Technologies GmbH, Aachen, Germany, in the framework of euHeart project. For
cases without 3D-SSFP MRI, ventricular segmentation is done from cine-MRI using
CardioViz3D1. The scar and peri-infarct zones (PIZ) segmentation is done using
widely accepted full width at half maximum (FWHM) method [KFFK09], more

1http://www-sop.inria.fr/asclepios/software/CardioViz3D
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details are listed in Section. 2.2.1. This segmentation is done in OsiriX1. The tetra-
hedral mesh generation is done by VTK2 & CGAL3. Simulations are done in MIPS4.
And visualisations are done in ParaView5). Adaptive meshes, with uniform large
elements used to represent less important regions and grid refinement at critical
points (e.g. border zones (PIZ)) are used for the simulations.

A Reaction-Diffusion system is a set of partial differential equations (PDEs). To
solve these PDEs, numerical techniques implemented on computers approximate the
PDEs and transform them into linear systems of equations (LSE) using discretisation
techniques. In cardiac electrophysiology, the Finite Difference Method (FDM), the
Finite Volume Method (FVM) and the Finite Element Method (FEM) are commonly
used. In our work, we use FEM implementation of reaction-diffusion systems on the
tetrahedral elements, based on the work of [Ser03],

Explicit, implicit, and semi-implicit methods can be used to solve the equations
describing the time dependence of action potential propagation. The choice of nu-
merical method influences the stability, computational cost and the accuracy of the
implemented model. Explicit methods have been used extensively [BP84, HP90].
They have low computational cost for each time step, but require the time step
to be small to guarantee stability for the diffusion operator. Implicit schemes can
be stable with longer time steps, but require solution of a non-linear system of
equations at each time step, and so are more computationally expensive. A good
compromise between these two methods are the semi-implicit methods, they are
studied extensively for bi-domain models in [EB08]. In this thesis, we implemented
and studied those schemes extensively for mono-domain models, in order to choose
the scheme which produced stable and accurate solutions. This study is described
in Appendix B.

Choosing an appropriate spatial and temporal resolution for a tissue model is
important and depends on the numerical method, cell electrophysiology model, diffu-
sion coefficients and their anisotropy ratio, and geometrical properties of the tissue
anatomy. Their choice affects the accuracy of the solution and results in errors
w.r.t conduction velocity and action potential duration [CGH03, Cou96]. For the
mono-domain models used in this work, we studied the effects of spatial and tem-
poral resolutions on the solution, with respect to CV (as it had negligible effects
on APD). The study led us to the selection of an optimum temporal and spatial
resolutions with low errors on the accuracy. This study is detailed in Appendix B.

Propagation in 3D is influenced by tissue anisotropy and curvature. There is
emerging evidence that 3D propagation is modulated by the fibre-sheet structure of
the cardiac tissue [GSG+07, LSC+95, PSSL08, SGH+05]. The fibre anisotropy is
modelled by the diffusion term in the model. The anisotropic 3× 3 Diffusion tensor
D used in the model is given by,D = diag(1, r, r) in an orthonormal basis whose

1http://www.osirix-viewer.com
2http://www.vtk.org
3http://www.cgal.org
4http://www-sop.inria.fr/asclepios/software/MIPS/
5http://www.paraview.org
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first vector is along the local fibre orientation, and r as the conductivity anisotropy
ratio in the transverse plane [Ser03].

Figure 2.10: (a) Confocal microscopy of isolated living ventricular myocyte from
rabbit [SGFI+08]. (b) 3D model of ventricular tissue with 11 complete myocytes
and 11 partial myocytes [LHS09]. (c) A 3D tetrahedral ventricular model, with fine
discretisation in regions around scars (black in colour) for fine modelling in PIZ.
(d) fibre orientations per tetrahedra following the myocyte direction.(e) Epicardial
(green), Endocardial(yellow & orange) and Myocardial (red) simulation domains
on MR derived meshes. (f) 3D MS model simulation snapshot at a point in time,
with action potential shown. (g) Depolarisation (Activation) isochrones from model
simulation. Arrows show the tissue anisotropy in model simulation, based on fibre
directions (h) APD maps from model simulation.

Classification of mono-domain cell models At the organ scale, mono-domain
cell membrane models are embedded into a set of partial differential equations
(PDEs) representing a continuum. Thus, we can divide the macroscopic approaches
into three categories, in decreasing order of computational complexity:

• Biophysical: semi-linear Reaction-Diffusion dynamic PDEs with ionic models
(over 50 variables for ions and channels) [Nob62]

• Phenomenological: semi-linear Reaction-Diffusion dynamic PDEs with math-
ematical simplifications of the biophysical models (2-3 variables) [Fit61]

• Eikonal: one static non-linear PDE for the depolarisation time derived from
the previous models (Eikonal-Curvature, Eikonal-Diffusion, 1 variable) [KS98]
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The models range from relatively simple, to more detailed models that are more
specific to particular species and regions of the heart, as seen in figure 2.9. In
this thesis, we use a simplified biophysical Mitchell-Schaeffer (MS) model [MS03]
for pacing and arrhythmia predictions and an eikonal model [SKD+07] for quick
parameter estimation to cope with clinical standards. We regard MS model as
a simplified biophysical model because of the derivation of its inward and outward
phenomenological currents as ionic components, similar to the derivations in Fenton-
Karma models [MS03, FK98].

Parameters & Tissue properties With the introduction of propagation in tis-
sue, the property of CV emerges. CV is related to the strength of both cell-to-cell
coupling and the ionic channels, and scales as the square root of both the diffusion
coefficient d (see equation 3.2) and the reaction term, as CV is also determined
by the characteristics of the action potential (Vm) upstroke. Although the maxi-
mum upstroke velocity (maximum dVm/dt) is loosely correlated with maximum CV.
In this work, we estimate the parameter (termed as Apparent Conductivity (AC))
controlling CV from patients EP data, as they are good indicators of sinus rhythm
blocks in diseased tissue regions [CRG+08].

The APD was found to progressively decrease as the wave moved away from
the stimulation site, and this effect was more pronounced in directions transverse
to the local fibre orientation [OKT+87]. Evidence of this negative linear correlation
between APD and activation time has been found in several animal species including
humans [HSE+09]. Thus the septum (muscle separating the LV and RV) is found
to be depolarised first and repolarised last. However, in our work we estimate the
APD distribution over the ventricles directly from the patient’s EP data.

Restitution is the rate adaptation of cardiac cells and tissue. Along with APD,
other quantities adapt to changes in rate. For instance, action potential amplitude
often diminishes, along with APD, at rapid heart rates. The resting membrane
potential can increase as well during rapid pacing. In tissue, the conduction velocity
of propagating waves also depends on rate and, in most cases, slows as the rate
increases.

Alternans is beat to beat alternation in action potential shape and duration,
and memory is the extent to which a particular action potential depends on the
sequence of preceding beats. In tissue, a number of important dynamical properties
associated with restitution, alternans, and memory may be altered by the presence
of electrotonic currents. The disturbance in their dynamics due to an infarction
can cause the development of arrhythmias [BOPGF04, CF04, FC08, TTBHP06], as
explained in the next section.

In this thesis, we use the MS model, which is able to hold the memory of one
preceding cycle, and has restitution properties, thus is able to simulate arrhythmias
macroscopically. We calculate the disturbance in the tissue restitution, with the
slopes of the restitution curves and their heterogeneity estimated from the patient’s
EP data, as described in the following chapters.
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Figure 2.11: (a) Experimental (top) and simulated (bottom) anatomical re-entrant
arrhythmia. (b) Initiation of a functional re-entry during the vulnerable window.
(c) Different types of spiral wave tip trajectories (hypocycloidal, hypermeandering
& linear). (d) Breakup of scroll waves in a simulated 3D tissue slab. (e) Spiral wave
dynamics of the TNNP model [TTNNP04], stable wave and gradual breakup with
pacing rate change. (f) (left) Single spiral wave in 3D on rabbit heart simulating VT,
(right) multiple spiral waves in the same geometry simulating VF. (g) 3D wavefront
(red) and scroll wave filaments (blue) during VF. (a-e taken from [FC08]) (g taken
from [TTHP+07])
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5 Modelling Cardiac Arrhythmias

In this section, we describe the mechanisms for ventricular tachycardia and fibril-
lation, and how it is modelled to understand the arrhythmogenic behaviour of the
heart. Extensive details on modelling ventricular tachycardia and the state of the art
is given in chapter 6 section 1 & section 2.1.1. Cardiac arrhythmias are associated
with abnormal initiation of a wave of cardiac excitation, abnormal propagation of
a wave of cardiac excitation, or some combination of the two. Cardiac arrhythmias
can manifest themselves in many different ways, and it is still not always possible
to determine the mechanism of an arrhythmia.

Arrhythmias can be classified in several ways. One useful classification is re-
entrant versus non re-entrant arrhythmias. In re-entry, cardiac tissue is repetitively
excited by a propagating wave circulating around an obstacle (anatomical re-entry)
or circulating freely in the tissue as a scroll wave (functional re-entry). Thus, there
is a strong spatial component to re-entrant arrhythmias: either a sufficiently large
spatial extent is needed to support the initiation and continuation of the arrhyth-
mia, or an appropriate geometry must be present to allow a re-entrant circuit. Non
re-entrant arrhythmias usually have at particular anatomical sites, one or more pace-
maker activities formed at abnormal locations (ectopic). Arrhythmias also can be
classified by the heart rate. Tachyarrhythmias are rhythms in which the heart rate
is faster than normal, usually taken as greater than 100 beats per minute. Tach-
yarrhythmias can arise from an accelerated sinus rhythm, an accelerated rhythm
from an abnormal ectopic site. However, more usually tachyarrhythmias are be-
lieved to arise from re-entrant arrhythmias, in which the period of the oscillation is
set by the time an excitation takes to travel in a circuitous path, rather than the
period of oscillation of a pacemaker [Jos08, MKY+02].

In this thesis, we focus on the re-entrant type of ventricular tachycardia. Re-
entrant arrhythmias can be confined to a single chamber of the heart, or can involve
several chambers. In some instances, it is convenient to think of the underlying
circuit for the re-entrant excitation as a one-dimensional ring (spiral (2D) & scroll
waves (3D) shown in Fig. 2.11)

Anatomical re-entry Anatomical re-entry has a wave circulating around an ob-
stacle (Fig. 2.11(a)) and can have a complex fluctuating propagation velocity that
arises as a consequence of the interaction of the wavefront with its own refractory
tail [QR91, CW91]. The re-entrant wave can generate through various mechanisms
which include source-sink mismatch and unidirectional block [Ber00]. The instabil-
ity of this wave can lead to degeneration of multiple re-entrant waves thus fibrillation
(Fig. 2.11(e,g)).

The analysis of the instability of this wave, relies on employing both the APD
restitution curve (APD as a function of DI) and the conduction velocity (CV) resti-
tution curve (CV as a function of DI) for a pulse travelling in space. This instability
can be analysed through discordant alternans [WFE+01, QGCW00]. Alternans in
tissue are different spatial patterns of APD. In the simplest case, the entire tissue
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experiences a long or short action potential together. The APD may vary spatially,
but as long as the entire tissue still alternates long-short together, the tissue is said
to exhibit spatially concordant alternans. When the tissue begins to alternate long-
short in some areas but short-long in other areas, spatially discordant alternans are
present. It is possible to determine whether alternans is concordant or discordant
by plotting two successive APDs at all points in the tissue. Discordant alternans
requires the presence of heterogeneity in APD or CV restitution to occur, otherwise
alternans would always be spatially concordant. Heterogeneous steep APD restitu-
tion curve slopes due to disturbances in the electrotonic currents near scar areas,
not only can give rise to discordant alternans, but also can lead to breakup of spiral
waves in tissue.

A sequence of premature stimuli delivered to the heart during normal sinus
rhythm can often lead to the initiation of tachycardia. In some clinical settings,
analysis of the resetting, entrainment, and initiation of tachycardias offers clinicians
important clues about the arrhythmia mechanism, and consequently can help the
cardiologist choose an appropriate therapy [Jos08, SD00]. The ability to induce
monomorphic ventricular tachycardia using a sequence of up to three premature
stimuli is often taken as an indication of anatomical re-entry as a mechanism for
the tachycardia. Since at least part of the re-entrant circuit is assumed to be one-
dimensional, this can provide a target for ablation therapy. All the anatomically-
based re-entrant arrhythmias as a first approximation can be thought of as a wave
circulating on a one-dimensional ring (at least for part of the circuit). Clinically, the
localisation of a re-entrant circuit is useful to the cardiologist, who can change the
topology by interrupting the ring or disk using RF ablation, which destroys tissue
that forms part of the anatomical circuit and thereby eliminates the anatomical
basis for the arrhythmia.

Functional re-entry Single or double spiral waves or scroll waves are often gen-
erated in excitable cardiac tissue or models of cardiac tissue by a single impulse de-
livered in the wake of a propagating wave during the vulnerable period, as shown in
Fig. 2.11(b). These re-entries do not rotate around obstacles; instead, they are called
functional as they rotate around a "functional" obstacle called the core of the spiral
or scroll wave. A single spiral or scroll wave with a fixed repetitious motion (which
may be anchored to some anatomical feature such as a blood vessel or scar) likely
would lead to a monomorphic tachycardia. If an initiated spiral wave is itself unsta-
ble, it may quickly break up into multiple waves [FK98, BWZ+02, BHZ94, BE93].
Clinical evidence exists for this, especially in the case of ventricular fibrillation,
which is usually preceded by a short-lived ventricular tachycardia (Fig. 2.11(e)).
Ventricular tachycardias occurring in patients other than those who have experi-
enced a previous heart attack, and perhaps even in hearts with completely normal
anatomy. In these individuals, it is likely that spiral and scroll waves are the underly-
ing geometries of the excitation. A particularly dangerous arrhythmia, polymorphic
ventricular tachycardia (in which there is a continually changing morphology of the
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electrocardiogram complexes), is probably associated with meandering spiral and
scroll waves (Fig. 2.11(d,f)) [GJP+95].

6 Conclusion

In this chapter, we presented a background of cardiac anatomy, myocardial infarc-
tion, electrophysiology and ventricular arrhythmias. We also described the state
of the art technologies currently being used in clinics, for mapping cardiac electro-
physiology. These include minimally non-invasive electroanatomic mapping with
two distinct widely used techniques (contact & non-contact), recently introduced
non-invasive body surface mapping with the derived epicardial ECGI, and optical
mapping of ex vivo cases studied for research purposes. Lastly, we outlined the ba-
sics as well as the research being carried out in modelling cardiac electrophysiology
and ventricular arrhythmias in silico.





Part II

PERSONALISATION OF
CARDIAC

ELECTROPHYSIOLOGY
MODELS





Chapter 3

Building Personalised EP Models
using ex vivo Experimental Data

(Optical Mapping)

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Data Acquisition and Processing . . . . . . . . . . . . . . . . 34

3 Model Simulation: Direct Problem . . . . . . . . . . . . . . . 37

4 Model Personalisation: Inverse Problem . . . . . . . . . . . 38

4.1 Case 1: Personalisation Using a Single PF . . . . . . . . . . . 39
4.2 Personalisation of DT Isochrones . . . . . . . . . . . . . . . . 39
4.3 Personalisation of Action Potential Duration . . . . . . . . . 42
4.4 Case 2: Personalisation Using Multiple PF . . . . . . . . . . 42
4.5 Personalisation of Restitution curves . . . . . . . . . . . . . . 42
4.6 Personalisation of DT Isochrones . . . . . . . . . . . . . . . . 43

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 DT & APD error maps . . . . . . . . . . . . . . . . . . . . . 44
5.2 Fitting of restitution curves . . . . . . . . . . . . . . . . . . . 44
5.3 Robustness to Pacing Location . . . . . . . . . . . . . . . . . 46
5.4 Evaluation of Volumetric Predictions . . . . . . . . . . . . . . 46

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Based on:

[RPD+11] J. Relan, M. Pop, H. Delingette, G. Wright, N. Ayache, and M. Ser-
mesant. Personalisation of a cardiac electrophysiology model using optical
mapping and MRI for prediction of changes with pacing. IEEE Transactions
on Biomedical Engineering, 58(12):3339–3349, 2011.

Additional material available in [RPD+10], [RSP+09a] and [RSP+09b]



32
Chapter 3. Building Personalised EP Models using ex vivo

Experimental Data (Optical Mapping)

Computer models of cardiac Electrophysiology (EP) can be a very efficient tool
to better understand the mechanisms of arrhythmias. Quantitative adjustment of
such models to experimental data (personalisation) is needed in order to test their
realism and predictive power, but it remains challenging at the organ scale. In this
chapter, we propose a framework for the personalisation of a 3D cardiac EP model,
the Mitchell-Schaeffer (MS) model, and evaluate its volumetric predictive power un-
der various pacing scenarios. The personalisation was performed on ex vivo large
porcine healthy hearts using Diffusion Tensor MRI (DT-MRI) and optical mapping
data. The MS Model was simulated on a 3D mesh incorporating local fibre orienta-
tions, built from DT-MRI. The 3D model parameters were optimised using features
such as 2D epicardial depolarisation and repolarisation maps, extracted from the op-
tical mapping. We also evaluated the sensitivity of our personalisation framework to
different pacing locations and showed results on its robustness. Further, we evaluated
volumetric model predictions for various epi- and endocardial pacing scenarios. We
demonstrated promising results with a mean personalisation error around 5 ms and a
mean prediction error around 10 ms (5 % of the total depolarisation time). Finally,
we discussed the potential translation of such work to clinical data and pathological
hearts.

1 Introduction

Modelling cardiac electrophysiology in silico has been an important research topic
for the last decades [HH52, NVKN98, KKS09, TTNNP04], and it can be a very
efficient tool to better understand the mechanisms of arrhythmias. Personalisation
of such models to experimental data is needed in order to test their realism and
predictive power, but remains difficult at the scale of the organ. Personalisation is
defined as the estimation of model parameters which best fit simulations to data. In
this chapter, we propose a robust personalisation method for a volumetric cardiac
electrophysiology model using surface data and we test its predictive power. The
personalisation and prediction evaluation were done using the high quality ex vivo
electrophysiology data obtained from the fusion of optical and MR imaging.

Cardiac electrophysiology models of the myocyte Action Potential (AP) at cel-
lular and sub-cellular scales can be broadly classified into three main categories:
Ionic Models (IM), Phenomenological Models (PM) and Eikonal Models (EK).
IM [HH52, BR77, LR91, NVKN98, TTNNP04] characterise ionic currents flowing
through the cardiac cell membrane with varying complexity and accuracy and have
many parameters and variables (it can be more than 50). Most of them are compu-
tationally expensive to simulate in volumetric domains and not well suited to solve
inverse problems (parameter estimation). EK [CGPT98, KKS09, SKD+07] are very
simple, describing only the time at which a depolarisation wave reaches a given
point without precisely modelling the potential value. At the intermediate level are
PM [Fit61, RV96, BWZ+02], which describe and capture just the shape of action
potential generation and propagation along the cell membrane, without modelling
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Figure 3.1: Flowchart describing the outline of this chapter.

all the ionic currents.
Here, we personalised a simplified biophysical model, the Mitchell-Schaeffer (MS)

model [MS03], modelling the action potential as a combination of sodium (Na+),
calcium (Ca2+) and potassium (K+) phenomenological ionic currents. We chose
this model because of the following reasons: (i) it provides a good analytical un-
derstanding of the membrane dynamics, (ii) it has a limited number of parameters
(5) to estimate, (iii) each parameter has a simple physical interpretation, and (iv)
it has explicit analytical formulae to express most of the measured features and
restitution properties using model parameters [MS03]. Finally, it was compared to
another classical PM models (the Aliev-Panfilov model [RV96]), and the MS model
was providing a better fit (lower final error, especially for the APD) with a more
homogeneous parameter map for conductivity [RSD+09].

The cardiac electrical activity was acquired ex vivo from controlled experiments
using optical imaging of the epicardium of healthy porcine hearts [PSL+09]. The
optical signal directly represents the tissue action potential. This data was then
processed to extract features of the AP propagation such as depolarisation time
(DT), repolarisation time (RT), Conduction Velocity (CV), Action Potential Dura-



34
Chapter 3. Building Personalised EP Models using ex vivo

Experimental Data (Optical Mapping)

tion (APD) and their restitutions. These features were then fused with a volumetric
mesh created from MRI of the ex vivo hearts, to obtain epicardial surface data.

Electrophysiology model personalisation can be basically addressed as an inverse
problem of parameter estimation. This problem was first addressed using a single
heart cycle for 2D phenomenological Aliev & Panfilov model in [MVDS+06], where
the AP propagation was simulated on a simple surface mesh modelling a dog’s heart
epicardium. Only the model parameter for the DT feature was adjusted. It was also
performed for 2D EK in [CRG+08] again with adjustment of the same feature but
for patient data. Finally, initial step towards personalisation of the 3D Aliev &
Panfilov model were taken in [LSP+08] with adjustment of DT and APD features
from a single cycle.

Here, we propose a personalisation framework for a 3D macroscopic MS model
on a volumetric bi-ventricular mesh of the myocardium using 2D epicardial surface
data. The robustness of this method to different pacing locations and its predictive
power were assessed.

2 Data Acquisition and Processing

The experimental data acquired consist of epicardial optical imaging that records
the AP wave propagation, and Diffusion Tensor-MRI representing the anatomy and
fibre orientations. The optical data have a higher spatial resolution compared to
in-vivo mapping data and provides a direct measurement of the AP [ENS04]. Such
dense and controlled data enabled the validation of the personalisation method and
prediction results. The data was acquired and processed in three stages (see Fig 3.2):

Stage 1: Optical Imaging Data

The explanted heart was attached to a Langendorff perfusion system with fluores-
cence dye and the electro-mechanical uncoupler (to suppress heart motion) injected
into the perfusion line. More details of the experimental setup can be found else-
where [PSL+09] (see Fig. 2.5). The heart was paced at a given rate, with an electrode
near the apex with a square wave voltage stimulus of 2-4V for 5 ms. The fluores-
cence signals were captured with high temporal (270 fps) and spatial (< 1mm)
resolution, using a pair of CCD cameras. Lastly, 5-7 opaque markers were glued
onto the epicardium and imaged, so as to provide a way to register the optical im-
ages with the epicardial surface of the model generated from MRI volume. Recorded
2D optical movie represents the changes in the fluorescent signal intensity, which
follow the changes in the AP. The signal intensity was then analysed for each pixel
of the movie to get DT and RT isochrones in the following way. First, the signal
was scaled for each pixel between its baseline and maximum value, cropping under
the baseline which we got from segmenting the values into two clusters, the baseline
being defined as the mean value of the lowest cluster. The scaled recordings were
then filtered with a 3D Gaussian convolution, spatially isotropic with a kernel width
of 1.0 and temporally using a kernel width of 3.0.
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Figure 3.2: Stage 1 (a) Raw optical data acquired (antero-lateral view). (b) Extrac-
tion of depolarisation times (blue dots) and APD90 (grey dots), (c) & (d) Extracted
DT & APD isochronal maps. Stage 2 (e) DT-MRI slice, (f) & (g) fibre tracking
from DT-MRI, (h) Volumetric mesh with assigned fibre orientations Stage 3 (i) top:
A snapshot showing the epicardial markers using optical camera, bottom: MRI
slice showing markers, (j) Stereoscopic surface generated from the two optical CCD
cameras with extracted features, (k) Registration of stereoscopic surface to the vol-
umetric mesh using markers and features projection, (l) & (m) Resulting DT and
APD maps on the mesh for epicardial surface only.

The DT were detected using the zero crossing of the second (d2F/dt2) derivatives
of the fluorescence signal intensity F (Fig 3.2(b)). The RT were detected using
APD90 (APD at 90% repolarisation, which is 0.9 times the difference between the
action potential peak amplitude and the baseline (Fig 3.2(b))). Finally, the DT
isochrones and APD maps for each cycle were reconstructed as 2D images (Fig 3.2(c
& d)).

Stage 2: Diffusion Tensor-MRI Data

The hearts were then imaged using a MR scanner. The details on MR pulse se-
quences and setup used is described in details in [PSL+09]. An in-plane resolution
of 0.5 × 0.5mm

2 and slice thickness of 1.5 mm was used. The heart anatomy was
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extracted from the MR data using classical segmentation algorithms such as thresh-
olding, mathematical morphology, isosurface extraction, and used to generate a vol-
umetric tetrahedral mesh using CGAL (http://www.cgal.org) and GHS3D (TetMesh,
http://www.distene.com) software. For each vertex, the assigned fibre direction is the
principal eigenvector of the corresponding voxel in the reconstructed tensor image,
see Fig 3.2(h).

Stage 3: Optical and MR Data Fusion

The optical images recorded by the two CCD cameras were used to reconstruct the
3D surface of the heart using stereoscopy (Fig 3.2(i)) [CPSW06]. The 2D isochronal
maps generated were then rectified based on the cameras calibration and stereoscopic
parameters. Each pixel of the isochronal maps corresponds to a vertex on the
grid mesh of the stereoscopic surface (Fig 3.2(j)). The glued opaque markers were
imaged with optical as well as MR data. An affine registration of the stereoscopic
surface onto the volumetric mesh was then performed using these markers [PSL+09]
(Fig 3.2(i)).

The DT isochrones and APD maps for each cycle were projected onto the volu-
metric mesh with an interpolation from the triangular stereoscopic surface, resulting
in epicardial DT isochrones and APD maps on the bi-ventricular mesh (Fig 3.2(k-
m)).

Dataset Used for Personalisation

We used two ex vivo hearts, which were optically imaged for steady-state heart
cycles and scanned with DT-MRI. The first heart was paced to produce 4 different
optical datasets, all at a frequency of 1.1 Hz, but obtained using 4 different pacing
locations (Fig 3.3(1st, 2nd, 3rd & 4th column)) which were near the apex of:

• 1A-LV-Epi-l : left ventricle epicardium (left side).
• 1B-LV-Epi-r : left ventricle epicardium (right side).
• 1C-LV-Endo: left ventricle endocardium.
• 1D-RV-Endo: right ventricle endocardium.

The second heart was paced to produce 5 different optical datasets, all paced at
one location near the apex of the left ventricle epicardium, but for 5 different Pacing
Frequency (PF) (Fig 3.3(5th column)): 0.5 Hz (2A), 0.7 Hz (2B), 0.9 Hz (2C), 1.1
Hz (2D), 1.2 Hz (2E).

Although these were healthy hearts, we could identify discrete areas of low con-
ductivity (see black ellipse in Fig 3.3). This was most likely due to tissue becoming
ischemic around a small branch of blood vessel, partially occluded by an air bubble
accidentally trapped into the perfusion line, resulting in oxygen deprivation of the
tissue and further installation of acute ischemia and cellular uncoupling. As a result,
an altered morphology of action potentials accompanied by a lowering of CV was
observed in these areas.

http://www.cgal.org
http://www.distene.com
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Figure 3.3: The first four columns are for dataset 1 and the last column is for
dataset 2. The first row shows the measured epicardial DT isochrones for various
pacing locations (depicted by arrows), the second row shows the respective APD
maps and the third row shows the local CV

msd computed from the measured DT
isochrones (small arrows on the surface show CV direction). Black ellipses highlight
the regions having low conductivity.

3 Model Simulation: Direct Problem

The MS model [MS03] is a 2-current simplified biophysical model derived from the
3-current ionic Fenton Karma model [FK98] The MS model is described by the
following system of Partial Differential Equations (PDE)






∂tu = div(D∇u) +
zu

2
(1− u)

τin
− u

τout
+ Jstim(t)

∂tz =






(1− z)

τopen
if u < ugate

−z
τclose

if u > ugate

(3.1)

where, u is the normalised action potential variable, and z is the gating variable,
which makes the gate open and close, thus depicting the depolarisation and re-
polarisation phase. Jin = (zu

2
(1 − u))/τin represents combination of all inward

phenomenological ionic currents, primarily Na+ & Ca2+, which raises the action
potential voltage and Jout = −u/τout represents combination of all outward phe-
nomenological currents, primarily K+ that decreases the action potential voltage
describing repolarisation. Jstim is the stimulation current, at the pacing location.

The parameters of the reaction terms and their standard values as reported
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in [MS03] are

• τopen: opening time-constant of the gate = 0.120 s

• τclose: closing time-constant of the gate = 0.150 s

• τin: time-constant for inward currents = 0.003 s

• τout: time-constant for outward currents = 0.06 s

The diffusion term in the model is controlled by the anisotropic 3 × 3 Diffusion
tensor D given by, D = d · diag(1, r, r) in an orthonormal basis whose first vector
is along the local fibre orientation, with d representing the cardiac tissue pseudo-
conductivity in the fibre direction and r as the conductivity anisotropy ratio in the
transverse plane. In order to have CV three times faster in the fibre direction than
in the transverse plane [KKS09], we fix a value of r = (1/3)

2
= 0.11(see Eq 3.2).

Thus, we have only one parameter of the diffusion term and its standard value for
CV = 50cm/s is given through a cardiac tissue pseudo-conductivity d = 1.5s

−1.
The model was spatially integrated on a 3D bi-ventricular tetrahedral mesh us-

ing a P1 Finite element method [SDA06]. Using an appropriate discretisation in
space for the model, with a mean edge length of ∆x, leads to a system of alge-
braic differential equations. The choice of ∆x influences the numerical solution
accuracy and depends on the maximum of du/dt. Thus we studied several time
integration schemes (Explicit, Semi-Implicit and Implicit) for the model with re-
spect to solution accuracy, stability and computational time expense (described in
details in [EB08, RSD+09]). As a result of this study, for MS model, we found the
following optimum choice for spatial discretisation as ∆x = 1.5mm and temporal
discretisation as ∆t = 0.1ms, with a semi-implicit, second order scheme known
as Modified Crank-Nicolson/Adams-Bashforth (MCNAB) [EB08]. The model was
simulated with initial pacing conditions as Dirichlet conditions (similar to voltage
stimulus in experiments), where u and z value of 1 was imposed for certain duration
to a set of vertices, which were chosen by extracting the earliest depolarising sites
from the DT isochrones.

4 Model Personalisation: Inverse Problem

By model personalisation, we estimate the model parameters such that the model
simulated features are similar to the extracted data features. Fortunately, MS model
has this relationship defined explicitly for features like APD for a single cycle (see
Eq 3.9) and APD & CV restitution (see Eq 3.11 and Eq 3.12). However CV for a
single cycle is analytically defined in 1D using reaction-diffusion analysis [CTSG04]
(see Eq 3.2), but in 3D, the wave front curvature also affects CV.

Using these relationships, we could determine the qualitative dependency of the
extracted data features to the model parameters, see Table 3.1.
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Single PF Multiple PF
DT APD CV Rest. APD Rest

d
√

−
√

−
τin

√ √ √ √

τout −
√ √ √

τopen − − −
√

τclose −
√

−
√

Table 3.1: Sensitivity of AP features to model parameters.

4.1 Case 1: Personalisation Using a Single PF

This case was applied to the first heart having a constant PF. In this case, we esti-
mated the parameter d using DT isochrones and the parameter τclose using the APD,
while all other parameters of the model were kept to their nominal values [MS03].
These adjustments are independent as there is no coupling between them (see Ta-
ble 3.1). Parameter estimation procedure is done as follows:

4.2 Personalisation of DT Isochrones

The apparent local CV (CV
msd) of the epicardial tissue can be estimated from

the spatial gradient of the measured DT isochrones T as, 1/CV
msd

= �∇Tx�. To
avoid the amplification of the acquisition/fusion noise by the spatial derivatives, we
smoothed CV

msd by averaging it over a neighbouring area, see Fig 3.3(3rd row).
The analysis of the MS model for CV along the simulated wavefront has been studied
in 1D [CTSG04] using travelling wave train solutions and is found to be

CV
sim ∝

�
d

τin
(3.2)

This relationship does not stand true in 3D propagation as the curvature of the
wavefront affects CV

sim. Eq 3.2 shows one measured feature depending on two
model parameters. We chose to estimate parameter d rather than τin, which could
be either estimated from restitution curves in case 2, or kept globally constant with
a standard value in case 1. The estimation of parameter d was done in the following
two steps:

Calibration Here we initialise the model parameter d using the analytical rela-
tionship (see Eq 3.2). The calibration function used here was given by CV

sim
(d) =

α
√
d + β, where the constants α and β were to be determined for 3D model sim-

ulation. α determines the scaling of Eq 3.2 in 3D with numerical diffusion and β

was added to better fit the numerical simulations to Eq 3.2 and represents dis-
cretisation errors in 3D. The constants were determined by performing several
model simulations for a range of d (d ∈ [0.1; 5.0]) over the interval of stability
of CV

sim
(d) ≈ 10cm/s− 2m/s. For each model simulation, a median of CV

sim
(d)
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was computed. This gives rise to an overdetermined linear system given as




...
medianCV

sim
k (d)

...



 =





...
...√

dk 1

...
...



 ·
�

α

β

�
(3.3)

where each line k is the result of a model simulation. The system (Eq 3.3) can also
be written in matrix notation as,

medianCVsim
= D · P (3.4)

We solve Eq 3.4 in non-linear least squares sense by simply computing the
pseudo-inverse : P = (D · DT

)
−1 · DT ·medianCVsim Once the relationship is esti-

mated, dglobal was determined from the median of CV
msd using

d
global

=

�
medianCV

msd − β

α

�2

(3.5)

where medianCV
msd

= median
i∈S

�
CV

msd
i

�
with i the vertex index and S the set of

the mesh vertices having measurements.

Iterative adjustment This step was used to optimise the parameter d locally
using a multi-resolution approach and the calibration result as initialisation. In
order to start domain decomposition, we first divide the LV into 17 zones as defined
by the American Heart Association (AHA), and similarly the RV into 9 zones. Then
the zones with high cost function J(dzone) after optimisation were subdivided further
into 4 zones for level I and so on (Fig 3.4).

Figure 3.4: Level 0 stands for the AHA segmentation of the bi-ventricular mesh into
26 zones. Level I is the subdivision of a zone into 4, Level II is a further subdivision.
The green sphere is the zone barycentre.

The cost function for each zone was given as

J(dzone) =
�

∀i∈S∩zone

�
DT

msd
i −DT

sim
i (dzone)

�2
(3.6)
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with vertex i in zone, belonging to the surface S having measured data. The cost
function Cd for the myocardium was

Cd =

�
1

n

�

∀zone∈mesh∩S
J(dzone)

2 (3.7)

where n is the number of zones having measured data. We minimise this cost
function using trust region optimisation [CGT00], which finds the minima of a
subproblem such as a quadratic model created using the gradient and approxi-
mate Hessian matrix at the current search point implemented using Trilinos solver
(http://trilinos.sandia.gov). The gradient is computed using a simple finite difference
scheme given by

∂J(dzone)

∂d
≈ J(dzone +∆d)− J(dzone −∆d)

2∆d
(3.8)

This optimisation was chosen to have a few number of gradient computations as
they are computationally expensive and require two simulation steps.

When using domain decomposition, we obtain piecewise constant parameter
maps. In order to have smooth parameter maps over the myocardium (and regularise
the optimisation), we solved at each iteration ∆P = 0, where P = dzone and has
its estimated value fixed for the barycentre of each zone (similarly as what is done
in [KTTN+08]).

The regularisation parameter λ (the diffusion coefficient used in ∆) is estimated
using the L-curve method, to find a good compromise between the data error and
the rounding error [Han99]. The DT error norm (residual) vs. parameter d norm
(solution) is computed for a range of λ and plotted as a loglog plot, shown in Fig. 3.5.
The optimal λ is estimated to be 1.0

Figure 3.5: L-curve estimated from the model simulations, for a range of regulari-
sation parameters, marked as circles

http://trilinos.sandia.gov
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4.3 Personalisation of Action Potential Duration

APD for a single heart cycle is defined by the model as

APDmax = τcloseln

�
1

hmin

�
where hmin = 4

�
τin

τout

�
(3.9)

Here we again have one feature dependent on three parameters. We chose to estimate
τclose, while keeping the others to their standard values because the Table 3.1 shows
that τclose has no sensitivity to DT, whereas τin and τout do have. Thus estimation
of τclose does not affect the adjustment of CV done before. The defined relationship
(Eq 3.9) remains valid also in 3D thus allowing us to directly estimate τclose locally
at each vertex without model simulations. The relationship is given as

∀i ∈ S : τ
i
close = APD

msd
i {ln (τout/4τin)}−1 (3.10)

where APD
msd
i is the measured APD for the vertex i belonging to the surface S

having data.
To propagate the estimated parameter values from the epicardium to the whole

myocardium, we diffused them spatially, as explained in the previous section [KTTN+08].

4.4 Case 2: Personalisation Using Multiple PF

This case was applied to the second heart having multiple Basic Cycle Lengths
(BCL). In this case, we estimated all parameters of the model in the following two
steps: first we estimated the parameter set θ = [τin τout τopen τclose d] using APD
& CV restitution features jointly. Then we refined the adjustment of d using the
isochrones for the largest BCL.

4.5 Personalisation of Restitution curves

Restitution defines the dependency of the next cycle APD (resp. CV) on the previous
cycle Diastolic Interval (DI). For a constant PF f , the steady-state BCL remains
constant : BCL = 1/f = APD + DI and thus APD − DI relationship remains
constant. In order to observe and extract the macroscopic restitution, we need to
have the heart optically imaged for multiple pacing frequencies, thus resulting in
multiple BCL and multiple APD − DI pairs for a spatial point (here directly on
optical data pixels, not mesh vertices). A dynamic pacing protocol [CTSG04] was
used: the heart was paced with a given PF until it reaches a steady-state APD, and
then the APD −DI pairs were measured. APD restitution curve for MS model is
analytically derived [MS03] as

f(DI) = APD = τclose ln

�
h(DI)

hmin

�
(3.11)
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where h(DI) = 1 − (1− hmin) e
−DI/τopen . Similarly also CV restitution curve is

derived [CTSG04] as:

g(DI) = (
1
4(1 +

�
1− hmin/h(DI))

− 1
2(1−

�
1− hmin/h(DI)))

�
2dh(DI)

τin

(3.12)

with g(DI) = CV as the next cycle CV. Parameter d in Eq 3.12 has units as
cm

2
/ms [Cai08], which was then converted to s

−1 with division by 0.1l
2, where l is

the maximum length of the heart domain in m. From Eq 3.11 & Eq 3.12, we can
observe parameter ratio (hmin) controlling both APD & CV restitution. This shows
a coupling between both restitutions. Thus we chose to estimate the parameters
for CV restitution (hmin, τin, d) and APD restitution (hmin, τopen, τclose) in a joint
manner, by having a cost function Cr which minimises the error on both restitution
curves and is given as, ∀i ∈ D :

min
θ

N�

j=1

((f(DI
i,j
, θ

i
)−APD

i,j
)
2
+ (g(DI

i,j
, θ

i
)− CV

i,j
)
2
) (3.13)

with pixel i in the optical data D having measures, N as total number of frequency
datasets, f(DI

i,j
, θ) corresponds to Eq 3.11, g(DI

i,j
, θ) corresponds to Eq 3.12 and

θ
i
= [τclose, hmin, τopen, τin, d] as the estimated parameter vector. θ

i was estimated
locally for each pixel i having measures for at least three different frequencies. Then
a mean value for each AHA zone was computed and set to its barycentre and dif-
fused to have smooth parameter maps. The parameter optimisation method used
here is a bound-constrained active set algorithm, which uses a sequential quadratic
programming method [FP63]. The bound set for parameters hmin, τopen, τin and
τclose was [0,1] (s), and for d was [0.1,5] (s−1). Parameter τout could be estimated
from estimated hmin & τin using Eq 3.9.

4.6 Personalisation of DT Isochrones

In this step 2, we refined the estimation of parameter d for a single cycle at the
lowest PF, since it represents the asymptotic value of CV restitution curve. This
was done in order to have d take into account changes in CV due to the wavefront
curvature on the volumetric mesh. Step 2 of this case was achieved similarly to
step 1 in case 1, see Section 4.2.

5 Results

The two datasets used here were healthy ex vivo hearts. Before personalisation of
the model, the simulations were computed with parameters at their standard values.
Detailed quantitative results are presented in Table 3.2, we only describe here one
case of each personalisation.
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(a) (b) (c)

Figure 3.6: DT error maps after calibration (left) and after iterative adjustment
(middle) steps of personalisation in case 1 for LV-Epi-r pacing (black arrow). Black
ellipse highlights the error in the low conductivity region. (Right) simulated per-
sonalised volumetric DT isochrones†.

5.1 DT & APD error maps

For the dataset 1B-LV-Epi-r, before personalisation, the mean absolute error on the
DT was 100 ms (≈ 58% of depolarisation duration ≈ 170 ms), see Fig 3.6. It had
first reduced to 59 ms (≈ 30%) using the calibration step for the d

global estimation
(Fig. 3.6a), and then to 5 ms (≈ 2%) with iterative adjustment(Fig. 3.6b). Around
25 direct model simulations were performed for the iterative adjustment step.

The resulting parameter map (Fig 3.9.a) shows the capture of the low conductiv-
ity region (black ellipse) observed in the dataset (Fig 3.3). With the personalisation
of parameter τclose, APD errors were reduced from 77 ms (≈ 25% of APD ≈ 300ms)
before personalisation to 9 ms (≈ 3%), for Dataset 1C-LV-Endo. Fig 3.6c also shows
the simulated volumetric DT isochrones after personalisation.

5.2 Fitting of restitution curves

Personalisation case 2 was applied to dataset 2. The estimated parameters were
τopen, τclose, τin, τout and d using multiple pacing frequencies (Fig 3.7).

The absolute mean square error Cr (Eq 3.13) was 20.35 before personalisation,
and reduced to 0.54 after personalisation, which implies a good fit of the both APD
and CV restitution curves to the data (Fig 3.8). Nonetheless as the parameters were
optimised by minimising the joint error on APD and CV restitution, we can still
observe some CV restitution misfits for few pixels at low frequency.

The zonal parameters estimated showed clear differences in values of τin & τout
for LV and RV. τclose shows lower values at the pacing location and RV zones, thus
showing APD heterogeneity between the LV and RV. τopen, a parameter controlling
the APD restitution slope, shows lower values (flat slope) near the pacing and basal

† A video on model simulation without/with personalisation for 1B-LV-Epi-r pacing is avail-
able as supplementary material at http://ieeexplore.ieee.org, snapshots are shown in Appendix
Table D.1

http://ieeexplore.ieee.org
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(a) d per zone (b) d diffused (c) τin

(d) τout (e) τclose (f) τopen

Figure 3.7: Estimated parameter values on the bi-ventricular mesh using personali-
sation case 2. Black ellipse represent capture of low conductivity regions (Fig 3.3(2A-
0.5Hz CV maps)).

Figure 3.8: Fitting of model APD (top) and CV (bottom) restitution curves to the
data points extracted from dataset 2 optical data. Red, Blue, Green and Magenta
colours each represent a data point.

regions compared to the remaining epicardium. The parameters depicting the tissue
conductivity from the diffusion term (d) and reaction term (τin), were also able to
locate the low conductivity area observed in the dataset 2 (see black ellipse in
Fig 3.3).
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(a) d (b) τclose (c) d (d) τclose

Figure 3.9: Parameter maps for LV-Endo (first two columns) and LV-Epi-r (following
two columns) pacing locations. Estimated d values per zone after personalisation
case 1 (first column) both capture the low conductivity region (black ellipse). The
second column is the estimated τclose in both cases.

5.3 Robustness to Pacing Location

We personalised the model with two different pacing scenarios for the same heart:
LV epicardium (right side) and LV endocardium. As the personalisation is per-
formed on the same heart at the same pacing frequency, we expect similar intrinsic
parameters. Fig 3.9 and Table 3.2 show qualitative and quantitative comparison
of the estimated parameter d and τclose for both pacing locations. We can observe
that the parameter values were mostly similar for both pacing locations, with the
same spatial distribution and RV / LV differentiation. The low conductivity area
was more basal for endocardial pacing as probably the fast conduction system is
recruited. The locally estimated parameter τclose was very similar for both pacing
locations. This analysis does confirm the low sensitivity of the estimated parame-
ter values to different pacing locations. Using Epi- & Endocardial pacing locations
for such analysis also tests the capture of transmural wave propagation, when the
dataset used to personalise is only epicardial surface data.

5.4 Evaluation of Volumetric Predictions

We evaluated volumetric predictions of the MS model for different pacing scenarios,
using the parameters estimated from the personalisation using endocardial pacing
(LV-Endo). The validation of the prediction was done in terms of the DT and APD
error qualitatively (see Fig 3.10) and quantitatively (see Table 3.2).

Even if the predicted isochrones produce higher errors than those produced for
LV-Endo, it was still small compared to the errors obtained with standard parame-
ters (less than 10%).

These predictions also allow to evaluate the capture of the transmural wave
propagation by comparing the predicted epicardial isochrones with the measured
ones. The behaviour of the model reproduces quite well the observations.
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Figure 3.10: Volumetric predictions using the model personalised with LV-Endo
pacing for dataset 1 and with multiple PF and LV-Epi pacing for dataset 2. First
row: pacing location 1A-LV-Epi-l. Second row: 1D-RV-Endo (arrows). Third row:
LV-Epi, PF: 0.5Hz. First three columns: predicted volumetric DT maps, second:
predicted APD maps. Please refer to Fig 3.3 for experimental epicardial values.
Third column: DT Error maps of prediction against experimental epicardial data,
fourth: APD error maps‡.

6 Discussion

Robustness to Pacing Location

Personalisation case 1 was able to recover approximately the same model parameters
irrespective of the pacing scenarios. The results look qualitatively and quantitatively
similar (Fig 3.6,Fig 3.9 & Table 3.2), implying low sensitivity of the personalisation
framework to pacing locations. The personalisation framework was probably able
to sufficiently capture the global minima of the cost function, as local minima are
highly unlikely to be the same for different pacing scenarios. This also shows that
the model parameters actually do not vary with different pacing locations for a
single pacing frequency. However the pacing locations considered here were all near
the apical regions of the endo- and epicardium. In order to have more evaluation
on its robustness, we need to perform personalisations with pacing locations in the
mid and basal regions, as well as with data having normal sinus rhythm conduction
pathway. The fast conduction pathways can make the adjustment from epicardial
data difficult because the depolarisation wave can reach the epicardial surface quite
simultaneously.
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Pacing Location Parameter d ±σ (s−1) DT Error
∆± σ (ms)

Parameter
τclose ± σ × 10−4 (ms)

APD Error
∆± σ (ms)

LV RV LV RV

LV-Endo 0.95± 0.03 1.36± 0.16 4.22± 6.75 0.22± 1.25 0.20± 4.90 4.98± 8.89
LV-Epi-r 0.96± 0.03 1.38± 0.11 2.54± 5.12 0.22± 3.04 0.21± 6.81 4.73± 5.57

LV-Epi-l - - 12.16± 14.57 - - 8.62± 9.21
RV-Endo - - 17.21± 18.15 - - 7.32± 8.97

Table 3.2: Parameters and errors (∆: mean, σ: standard deviation) for case 1
personalisation (1st row) and prediction (2nd row).

Estimation of Restitution Properties

Personalisation case 2 was able to estimate all model parameters including APD
and CV restitutions and can predict isochrones similar to the measured data for
multiple frequencies. Restitution properties of the cardiac tissue play a crucial role
in the cause of arrhythmias, hence were required to be estimated. However, in the
described case 2, we estimated the parameter vector θ and then used the estimated
d as an initial guess in step 2, to refine the d estimation with DT isochrones. This
second step can potentially modify the CV restitution adjustments done previously
in step 1. Thus the future work would be to adjust the parameters using CV
restitution and DT isochrones simultaneously.

Transmural Parameters & Volumetric Prediction

We estimated the model parameters for a volumetric mesh based on observations
on the epicardial surface. But ideally, we should check our estimated parameters
against measured transmural recordings. This could not be performed in this case
on the ex vivo heart as it damages the heart muscle, making retrieval of the fibre
orientation information using DT-MRI not possible. An other option is to acquire
simultaneous endocardial and epicardial data. This could be possible with catheter
based mapping systems used in the clinics.

Performance

On a 2.16 GHz, dual core, 2.0 GB Intel Centrino Duo PC, the computational time of
one time step for the MS model on 3D bi-ventricular mesh (≈ 247250 tetrahedra) for
semi-implicit MCNAB scheme was ≈ 1 s, with δt = 0.1 ms and mean edge length
δx = 1.5 mm. Parameter estimation of d using DT isochrones involved 20 ∼ 30

iterations, using simulations until the depolarisation of whole ventricles ≈ 150ms.
This needs a computational time of ≈ 1500s×n, where n is the number of iterations.
On the other hand, parameter estimation using other features such as APD and
restitution curves does not involve model simulations, but is solved using explicit

‡Videos of model predictions for 1A-LV-Epi-l & 1D-RV-Endo pacings are available as supple-
mentary material at http://ieeexplore.ieee.org, snapshots are shown in Appendix Table D.2

http://ieeexplore.ieee.org
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analytical formulae and requires inexpensive amount of time (≈ 1min). Thus the
most time consuming part of both personalisation frameworks is the parameter
estimation of d. This is due to the direct simulations of the biophysical MS model,
which has a fast upstroke ((du/dt)max), thus requires very fine spatial and temporal
resolutions.

Study Limitations & Error sources

On the data processing part, one of the limitations of this study was the lack of
correction of the optical signals, which are quite complex and contain information
from the sub-epicardial layer[HMV+05, BRE+06]. Such corrections would give more
reliable data and could improve the correspondence between the simulations and
experiment, as the simulations are volumetric. However, we don’t use the optical
signal value as such, but we only extract depolarisation and repolarisation time-
points from the data. This was extracted after filtering the data at each pixel, to
constitute the DT and APD maps. We most probably get some smoothing of these
maps due to the sub-epicardial layers, but we don’t expect these to create major
changes in the presented results as the induced error is probably small with respect
to all the different error sources listed below and the resolution used.

The error sources in personalisation and prediction include: (i) Less accurate
predictive power of the model due to its low complexity, (ii) Lack of successful re-
producibility of transmural parameter variation due to the usage of only epicardial
data. We hypothesise that these juvenile pigs do not have transmural variations,
(iii) Insufficiency in modelling the actual Purkinje system, and its potential ret-
rograde activation. However, there was no evidence from the presented data, (iv)
Insufficiency of domain decomposition to reproduce accurately the spatial variation
of the parameters.

Application to Pathological Cases & Clinical Data

This work can be applied to clinical data by replacing the surface optical data with
surface epi- or endocardial electro-anatomical mapping of the patient. Most of the
challenge lies in the reliable extraction of features such as DT and RT from sparse
and noisy patient data consisting of extracellular potentials. Also the in-vivo acqui-
sition of fibre orientations is challenging due to the heart motion. Nevertheless the
personalisation framework can be performed using the rule-based fibre orientation,
and still provides promising results [RCS+10]. Personalisation case 1 would prove
to be more efficient for predictions at a constant pacing frequency as it is the case in
Cardiac Resynchronisation Therapy (CRT). On the contrary, case 2 would be more
preferred for arrhythmias as it can reveal more features such as APD and CV resti-
tution properties for healthy, scars and grey zones. Also, an evaluation on the level
of complexity required for simulating arrhythmias in pathological cases is needed.
However, additional complexity has a strong impact on the tractability [GNK05]
and on the parameters identifiability [FN09].
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7 Conclusion

We presented a novel method for estimating volumetric model parameters from
surface data with single and multiple pacing frequencies. We extracted features
such as CV, APD, CV and APD restitutions macroscopically from the measured
cardiac data and used them to personalise the model. We estimated all the model
parameters making the model heart-specific. We evaluated the sensitivity of the
personalisation to different epi- and endocardial pacing scenarios and the results
show a robust behaviour of the framework to pacing location. Then we also tested
the volumetric prediction ability of the model for different pacing scenarios and
showed promising results.
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In order to translate the important progress in cardiac electrophysiology modelling
of the last decades into clinical applications, there is a requirement to make macro-
scopic models that can be used for the planning and performance of the clinical pro-
cedures. This requires model personalisation i.e. estimation of patient-specific model
parameters and computations compatible with clinical constraints. Simplified macro-
scopic models can allow a rapid estimation of the tissue conductivity, but are often
unreliable to predict arrhythmias. Conversely, complex biophysical models are more
complete and have mechanisms of arrhythmogenesis and arrhythmia-sustainability,
but are computationally expensive and their predictions at the organ scale still have
to be validated. We present a coupled personalisation framework which combines
the power of the two kinds of models while keeping the computational complexity
tractable. A simple Eikonal (EK) model is used to estimate the conductivity pa-
rameters, which are then used to set the parameters of a biophysical model, the
Mitchell-Schaeffer (MS) model. Additional parameters related to Action Potential
Duration (APD) restitution curves for the tissue are further estimated for the MS
model. This framework is applied to a clinical dataset derived from a hybrid XMR
imaging and non-contact mapping procedure on a patient with heart failure. This
personalised MS Model will then be used to perform an in silico simulation of a
Ventricular Tachycardia (VT) stimulation protocol to predict the induction of VT,
as detailed in Chapter 6. This proof of concept opens up possibilities of using VT
induction modelling in order to both assess the risk of VT for a given patient and
also to plan a potential subsequent radio-frequency ablation strategy to treat VT.

1 Introduction

Cardiac arrhythmias including ventricular tachycardia are increasingly being treated
by Radio-Frequency (RF) ablation. These procedures can be very effective but still
have unsatisfactory success rates widely ranging from 50−90%, with a 20−40%
late recurrence rate, due to a lack of clinical consensus on the optimum RF ablation
strategy [ASAG09]. There is a need for substantial guidance in locating the optimum
ablation strategy [SKS+93].

This guidance could be provided by personalised in silico cardiac electrophysi-
ology models, as such models may allow different ablation strategies to be tested.
A personalised model incorporates estimation of patient-specific parameters which
best fit the clinical data. Such a step is necessary to reveal hidden properties of the
tissue that are used to predict the behaviour under different pacing conditions.

There is a large variety of cardiac electrophysiology models for myocyte ac-
tion potential developed at cellular and sub-cellular scales [FC08, LR91, NVKN98,
TTNNP04, FNC+11]. Cardiac tissue and whole-heart electrophysiological com-
putations of these models are based on the principles of reaction-diffusion sys-
tems [Sac04, CBC+11]. According to the reaction term computation, these models
can be broadly categorised as Biophysical Models (BM), Phenomenological Models
(PM) and Generic Models (GM). BM [NVKN98, TTNNP04] model ionic currents
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and are the most complete and complex but are less suitable for parameter estima-
tion from clinical data due to a high computational cost and to the lack of observabil-
ity of their parameters. PM [BWZ+02, BOCF08] are based on PDEs and are of in-
termediate complexity level and less computationally expensive. GM [Fit61, RV96]
represent simplified action potentials and are the least complex. Simple Eikonal
Models (EM) [KKS09, CFGR90, SKD+07] model the action potential propagation
in the cardiac tissue without modelling the action potential itself. They can be very
fast to compute [CRG+08], but less reliable in arrhythmia predictions due to the
complexity of both the refractoriness and the curvature of the wavefront.

Computational modelling of cardiac arrhythmogenesis and arrhythmia mainte-
nance using such models has made a significant contribution to the understand-
ing of the underlying mechanisms [CW91, WFE+01, PK95, JG96, CF04, CR95].
These studies have shown a host of factors involved in the onset of arrhythmia
with wave fragmentation and spiral wave breakups, which include realistic ventric-
ular geometry [TT09], heterogeneity in repolarisation [KSGH08] and APD restitu-
tion [YFRM05, ART07] and CV restitution [BG02]. A combined clinical study and
synthetic modelling of APD restitution was shown in [NBS+06]. In this chapter,
we study these properties for a clinical dataset and evaluate its role in ischemic
Ventricular Tachycardia (VT) induction.

To introduce models directly into clinical practice, the ideal requirements are
low computational complexity, fast estimation of parameters (quick personalisa-
tion) and reliable predictions. These attributes cannot be found in one single
model, thus here we present a novel approach, wherein we combine two models
to obtain these attributes and apply them to a clinical dataset. We use a coupled
personalisation framework, which is fast and combines the benefits of an Eikonal
(EK) model [SCMV+05] with those of a simplified biophysical model, the Mitchell-
Schaeffer (MS) model [MS03]. The fast 3D EK model is used to estimate the tissue
conductivity parameter over the ventricles derived from non-contact mapping of the
endocardial surface potential, using an adaptive iterative algorithm. This is then
used to set the conductivity parameter of the 3D MS model. Additional parameters
related to APD restitution properties of the tissue are then estimated locally using
directly the 3D MS model and the measured endocardial surface potential.

This framework is applied to a clinical dataset from a patient with heart failure
and myocardial scar on MRI scanning using electrophysiological data from a non-
contact mapping study performed in a hybrid X-ray/magnetic resonance (XMR)
suite [RSB+05]. The ventricles were mapped with a statistical atlas for cardiac
fibres [PSP+07](Fig. 4.2). The resulting personalised 3D MS model is then used
to simulate a clinical VT-Stimulation (VT-Stim) procedure to show a potential
application of VT induction modelling. Fig. 4.1 shows the framework of the coupled
personalisation method and VT induction modelling, used.
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Figure 4.1: Flowchart describing the outline of this chapter.

2 Clinical Context

In order to evaluate the inducibility of VT in patients, the clinical procedure involves
stimulation with an EP catheter usually in the RV apex at different cycle lengths.
This type of protocol is used to test if re-entrant VT can be induced by such pacing
in patients at risk of VT. Such studies may be useful in predicting the risk of VT for
an individual patient but provide limited information on which to base a potential
ablation strategy of re-entrant VT circuits.

Our aim is to create a personalised electrophysiological model of a given patient
to which a virtual VT stimulation procedure can be applied. Moreover, a virtual
RF ablation procedure can then be applied to the model in order to test potential
ablation strategies.

In order to validate this approach, we have used an extensive clinical dataset,
derived from mapping of the LV endocardium. Such mapping is not routinely per-
formed for a VT-Stim procedure, however it is sometimes used to guide RF ablation.
This clinical dataset was obtained from an electrophysiology study performed in a
hybrid X-ray/MR environment. The electrical measurements obtained using an En-
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Figure 4.2: Top: MR derived segmented mesh with scars (in red). Bottom: fibre
orientations based on a statistical atlas.

site system (St Jude Medical, MN, US) (see Fig. 2.7) were registered to the patient
anatomy using XMR registration [RSB+05] (Fig. 4.4b).

2.1 Depolarisation and Repolarisation times extraction

The electrical data was collected with high pass filter settings for prominent QRS
detection and with low pass filter for T-Wave detection.

The depolarisation times were detected within the QRS window set from sur-
face ECG (Fig 4.3a) and were derived from the zero crossings of the Laplacian of
the measured unipolar electrograms V (Fig. 4.3b & 4.5a). The surface Laplacian
of electrograms gave reasonable results even in the case of multiple deflections and
also allows detection of local activation without interference from far-field activ-
ity [CWSdG+00].

The repolarisation times were detected within the ST window in surface ECG
(Fig 4.3a) and were derived using the "alternative method" as compared to the
standard wyatt method, because (i) most of the positive T-wave electrograms had
an indiscernible steep upstroke for repolarisation time detection with wyatt method,
(ii) a closer correlation was obtained between ARI and MAP duration with alter-
native method, as discussed in [YFRM05] and (iii) difference in APD extraction
from the two methods had only a minimal influence on the restitution slopes and
spatial distributions [NBS+06]. The measured T-wave polarity maps had positive T-
waves for early repolarising sites and negative for late as in agreement to [PVOC09]
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(Fig. 4.4).
The alternative method has repolarisation times derived from dV/dtmax for the

negative T-wave, at the dV/dtmin for the positive T-wave, and the mean time be-
tween dV/dtmax and dV/dtmin for the biphasic T-waves (Fig. 4.3c, 4.4, 4.4c & 4.5c).

The data was collected during intrinsic sinus rhythm and atrial pacing mode at
100 beats per minute (bpm), see Fig. 4.4c & 4.4d. Myocardial scar was segmented
manually from the Delayed Enhancement MR image.

The patient was a sixty year old woman with heart failure and NYHA class
III symptoms. The patient had a dilated cardiomyopathy with sub-critical disease
on coronary angiography although cardiac MRI showed subendocardial postero-
lateral scar in the left ventricle. The left ventricular ejection fraction was 25%
on maximal tolerated heart failure medication. The surface ECG demonstrated
significant conduction disease with left bundle branch block (LBBB) and a QRS
duration of 154 ms (normal QRS is less than 120 ms). Echocardiography, including
Tissue Doppler, confirmed significant mechanical dysynchrony in keeping with the
ECG findings.

This patient was selected for cardiac resynchronisation therapy (CRT). When
implanting a CRT device, there is a choice between a standard device, or one also in-
tegrating a defibrillator. Therefore, evaluating the risks of VT in such CRT patients
is important.

3 Cardiac Electrophysiology Models

3.1 Eikonal Model (EK Model)

The EK model simulates the propagation of the depolarization wave in cardiac
tissue, ignoring repolarisation phase. The EK model is governed by the eikonal-
diffusion (ED) equation [THP02, CFGR90] and is solved using the Fast Marching
Method (FMM). It can be written as

c0

�
dEK

��
∇T (x)tM∇T (x)

�
−∇ · (dEKM∇T (x)) = τ(x) (4.1)

where the superscript t denotes transpose, c0 is a dimensionless constant (= 2.5), and
τ(x) is the cell membrane time constant (= 0.003 s). dEK is the square of the tissue
space constant along the fibre and is related to the specific conductivity of the tissue
in the fibre direction, and has units of m2. The anisotropy is incorporated in the
diffusion tensor M = diag(1, ρ, ρ), with ρ the anisotropy ratio between longitudinal
and transverse diffusion. We use ρ = 1/2.5

2 in order to have Conduction Velocity
(CV) 2.5 times faster in the fibre direction [KKS09]. The non-linear Eq 4.1 is solved
using a fixed point iterative method combined with a very fast eikonal solver as
explained in details in [SCMV+05, CRG+08].
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Figure 4.3: (a) Measured surface ECG I, with QRS window (for depolarisation
time extraction) and ST window (for repolarisation time extraction). Ensite surface
unipolar electrograms (b) with high-frequency band-pass filter for detection (black
dots) of depolarisation times, and (c) with low-frequency band-pass filter for detec-
tion repolarisation times, from positive(red), negative (green) and biphasic (blue)
T-waves. Few electrograms had indiscernible T-waves (black).

3.2 Simplified Biophysical Model (MS Model)

The MS model [MS03] is a 2-variable simplified biophysical model derived from the
3-variable Fenton Karma (FK) ionic model [FK98]. It models the transmembrane
potential as the sum of a passive diffusive current and several active reactive currents
including combination of all inward (primarily Na+ & Ca2+) and outward (primarily
K+) phenomenological ionic currents. The MS model is described by the following
system of partial differential equations,






∂tu = div(dMSM∇u) +
zu

2
(1− u)

τin
− u

τout
+ Jstim(t)

∂tz =






(1− z)

τopen
if u < ugate

−z
τclose

if u > ugate

(4.2)
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Figure 4.4: (a) T-Wave polarity map on EnSite LV surface, with positive (red),
negative (green), bi-phasic (blue) and undetected (black) T-waves. (b) Repolarisa-
tion times projection from EnSite LV surface to MR LV endocardium after XMR
registration. (Black: undetected repolarisation times). Steady-state APD values
estimated and projected on the LV surface, for (c) baseline and (d) pacing in the
atria (at 100 bpm). (Black represents scars)

where, u is a normalised transmembrane potential variable, and z is a gating variable
which makes the currents gate open and close, thus depicting the depolarisation
and repolarisation phase. Jin = (zu

2
(1− u))/τin represents the the inward currents

which raises the action potential voltage and Jout = −u/τout represents the outward
currents that decreases the action potential voltage describing repolarisation. Jstim

is the stimulation current, at the pacing location. The literature values for reaction
term parameters are given in [MS03]. τin, τout, τopen and τclose has units of s. The
diffusion term in the model is also controlled by the diffusion tensor M. In the
longitudinal direction of the fibre, this pseudo-conductivity is set to dMS which is
one of the parameters we adjust, and to dMS .ρ in the transverse directions. dMS

has units of s−1. The electrophysiology model is solved spatially using P1 Finite
Element Method (FEM), and in time using an semi-implicit scheme as Modified
Crank-Nicolson/Adams-Bashforth (MCNAB) scheme, which is evaluated in terms
of accuracy, stability and computational time [RSD+09]. The parameter values and
simulation details are given Table. C.1 & Table. C.2 in Appendix C.

Scars were modelled with zero conductivity in the ischemic zones. While the
grey zones and the regions between scars (isthmus) had conductivity, APD RCs
estimated from the data, as shown in Sec. 5.1

4 Coupled Personalisation Method

4.1 Apparent Conductivity Parameter Estimation

Cardiac tissue conductivity is a crucial feature for the detection of conduction
pathologies. The Apparent Conductivity (AC) of the tissue can be measured by
the parameter dEK in the EK model.
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Figure 4.5: Upper row shows the comparison of the measured Depolarisation Time
(DT) isochrones on the LV surface only with model simulated DT isochrones on the
whole heart, lower row shows the same for measured (LV surface only) and model
simulated (whole heart) APD maps. Measurements are for baseline.

LV Endocardial values AC is initially estimated on the endocardial surface as a
global value using a simple bisection method which matches the average conduction
velocity of the measured Depolarisation Time (DT) isochrones to the simulated
ones. Using it as an initial guess, an adaptive multi-level domain decomposition
algorithm is used, which minimises the mean-squared difference of the simulated
and measured DT isochrones at each level using a Brent’s Optimisation Algorithm
presented in [CRG+08]. Due to the absence of transmural electrical propagation
information, we assume no variation across the left ventricle myocardium (excluding
LV endocardium and scars) and hence we prescribe a single value for the myocardial
tissue across the LV wall.

LV & RV Myocardial values The AC values for RV endocardium and RV my-
ocardial mass are set at 5.0 mm

2 and 0.64 mm
2 (from literature [KKS09]). The LV

myocardial AC value is estimated by one-dimensional minimisation of the follow-
ing cost function (mean-squared difference of simulated and measured isochrones at
endocardium + squared difference of simulated and measured QRS duration). The
simulated QRS duration is calculated as the difference between the maximum and
the minimum depolarisation times in the biventricular mesh and the measured QRS
duration is estimated from the surface ECG.

4.2 Coupling of EK and MS Model Parameters

The AC parameter for EK model dEK (Eq 4.1) is a scale for the diffusion speed of
the depolarisation wavefront in the tissue. The model Conduction Velocity (CV) is
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related to dEK (Fig. 4.6) as,

cEK =
c0

�
dEK

τ
in 1D & cEK = αEK

�
dEK + βEK in 3D (4.3)

where the constants αEK and βEK are introduced to take into account the dis-
cretization errors (in particular of the curvature) in 3D.

The corresponding conductivity parameter for MS model, dMS is also a scale
for the wave diffusion speed in the tissue. The model CV here is related to dMS

(Fig. 4.6) as,

cMS ∝
�

dMS

τin
in 1D & cMS = αMS

�
dMS + βMS in 3D (4.4)

where the constants αMS and βMS are introduced for the same reasons as of EK
model, while τin is kept as a constant. The estimated AC parameter dEK can then
be used to estimate the parameter dMS . The parameter dEK gives model CV cEK ,
which is similar to the actual measured data CV (cmsd) after the parameter es-
timation step. Thus to have MS model CV (cMS) similar to the measured data,
it has to be similar to EK model CV (cEK). The constants αEK and βEK rep-
resent numerical curvature, diffusion and discretisation errors for EK model based
on FMM. They are different from the constants αMS and βMS , which are diffusion
and discretisation errors based on FEM. These constants are determined in 3D for
the ventricular mesh. We performed several simulations with various dEK and dMS

values and noted the corresponding cEK and cMS values. Then, we fit the analyti-
cal curves given in Eq 4.3 & 4.4 in least square sense and determine the constants.
The constants estimated are αEK = 802.25, βEK = −268.54, αMS = 995.87 and
βMS = −554.38. Thus from eq 4.3 & 4.4, we have cEK = 802.25

√
dEK −268.54 and

cMS = 995.87
√
dMS − 554.38. For a given CV, dMS is slightly different from dEK .

This may be due to the fact that d has different units, as for EK model we model
depolarisation time and for MS model we model transmembrane potential. How-
ever they both are scales for diffusion, thus such a coupling is performed. Then, the
personalised dMS values are computed from corresponding estimated dEK values us-
ing 4.5 based on the condition, that cmsd = CV = cEK = cMS after personalisation.
Thus from eq 4.3 & 4.4, we have

dMS =

�
αEK

�
dEK + βEK − βMS

αMS

�2

(4.5)

4.3 Parameter Estimation for APD Restitution

APD Restitution is an electrophysiological property of the cardiac tissue and de-
fines the adaptation of APD as a function of the heart rate. It’s slope has a
heterogeneous spatial distribution, which can play a crucial role in arrhythmoge-
nesis [CF04, NBS+06, CBC+11]. The APD Restitution Curve (RC) defines the
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Figure 4.6: Parameter dEK and dMS relationship with simulated CV.

relationship between the next cycle APD and the Diastolic Interval (DI) of the pre-
vious cycle. The slope of these RCs is controlled by τopen and depicts the APD
heterogeneity present at multiple heart rates. APD RC for MS model is explicitly
derived as [MS03],

APDn+1 = f(DIn) = τclose ln





1− (1− hmin)e

−DIn
τopen

hmin





(4.6)

where hmin = 4 (τin/τout) and n is the cycle number. The maximum value of
APD is also explicitly derived as,

g = APDmax = τclose ln

�
1

hmin

�
(4.7)

LV Endocardial values We had recordings for the paced mode with 100 bpm
and a sinus rhythm rate (baseline). Therefore, for the estimation of the RC slope
from APD-DI values at two rates, we assume that APDmax (asymptotic value of
APD RC) should be approximately equal to the normal sinus rhythm APD, and the
slope value is adjusted with paced mode APD. From eq 4.6 & eq 4.7, we can observe
that τclose and hmin control both APD RC and APDmax, hence we estimate the
parameters minimising the error on them jointly. The cost function minimised is,

min
θ

N�

j=1

((f(DI
i,j
msd, θ

i
)−APD

i,j
msd)

2
+ (g(θ

i
)−APD

i,j
SRmsd

)
2
) (4.8)

with N as total number of pacing rates, i as the vertex having data (LV surface
only), θ = [τclose, τopen], APDSRmsd as measured sinus rhythm APD and DImsd



62
Chapter 4. Building Personalised EP Models using in vivo Clinical

Data (Non-Contact Mapping)

measured from the data as DImsd = 1/f − APDmsd, where f is the heart rate (in
Hz).

Only APD restitution is estimated as we only have two pacing frequencies, but
additional data would allow to also estimate CV restitution, as demonstrated on
experimental data in [RPD+11, RPD+10]. Parameter hmin is not estimated here
but kept to the literature value [MS03] as it also controls the CV unlike τclose &
τopen, thus disturbing the CV adjustments done before. The parameter optimisation
method used here is a non-linear constrained Active-Set Algorithm, with constraints
on τclose & τopen to be in the range of literature values [MS03]. Fig. 4.7c shows the
fit of RC to data.

Minimum DI can also be computed explicitly from the estimated parameter
values (Fig. 4.7c) as described in [MS03],

DImin = τopen ln

�
1− hmin

1− hthr

�
(4.9)

where,
hthr =

hmin

4vstim(1− vstim)
with vstim ≈

�
Jstim(t)dt

with Jstim as defined in eq 4.2.

LV & RV Myocardial values For RV, we fix one value measured from the
QT interval given through the surface ECG. To have a smooth gradation of APD
restitution from epicardium to endocardium, we diffuse the τclose & τopen values
spatially in the LV myocardium from endocardium to epicardium as in [KTTN+08]
(Fig. 4.7d).

Steady-state APDs for a pacing frequency f could then be estimated from the
intersection of the line DIn = 1/f−APDn+1 with the personalised RCs (Fig. 4.8(a)).
The model personalisation times are given in Table. C.2 in Appendix B.

5 Results

5.1 Parameter Estimation

The AC parameters estimated using the EK model, see Fig. 4.7a, show high conduc-
tion areas on parts of the endocardium, potentially depicting the Purkinje network
extremities, and a conduction block near the scar. The coupled MS model conduc-
tivity parameters were then estimated from this AC map. The mean absolute error
on simulated depolarisation times after personalisation was 7.1ms for the EK model
and 18.5ms for the MS model (≈ 10− 14% of depolarisation duration 131ms), see
Fig. 4.5 & 4.8b. The mean absolute error on APD was 8.71ms (≈ 2% of APD
300ms), showing a good fit as well, see Fig. 4.5 & 4.8c.

Fig. 4.7b shows the heterogeneity of the steady-state APD in terms of the es-
timated parameter τclose, as it is shorter on the free wall of the LV compared to
the septum (white ellipse). Also there is a longer APD compared to the neighbours
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near the scar (grey zones) and the region between the two scars (isthmus) Fig. 4.7b
(black ellipse). For APD restitution, the mean absolute error after fitting the curves
was 1.13ms, showing a good fit, see Fig. 4.7c. The region around the scars and
the isthmus were more heterogeneous for RC slope parameter τopen than the rest of
the LV, see Fig. 4.7d black ellipses. In Fig. 4.7d, red colour (low values of τopen)
corresponds to steep slopes and blue colour (high values of τopen) corresponds to
flat slopes, as shown in Fig. 4.7c. The colour bar is also applicable to the RCs. A
smooth apex-to-base gradient for APD RC can be observed in Fig. 4.7d. Isthmus
and grey zones were seen to have high APD values with more heterogeneous RC
slopes and conduction. All of these factors along with the scar geometry did play a
crucial role in induction of ischemic VT as explained later in Chapter 6.

5.2 Assessment of Heterogeneity Maps

Such maps reveal areas with a risk of VT (black ellipse in Fig. 4.8). But this is also
highly dependent on the pacing location, thus in order to really assess this risk we
simulate VT-Stim procedures with various pacing locations, as explained later in
Chapter 6.

In order to better interpret these parameter maps, we estimated the steady-state
APD maps for different pacing frequencies, see Fig. 4.8. We can observe that this
map is quite homogeneous for slow pacing frequency (60 bpm (1000 ms CL)), but its
heterogeneity then increases with pacing rate (100 bpm (600 ms CL), 150 bpm (400
ms CL)). Eventually it reaches a kind of plateau where it is then quite homogeneous
(200 bpm (300 ms CL)).

6 Discussion

6.1 Data Limitations

As only LV endocardial mapping data were used, the model personalisation had sev-
eral limitations, few of which are: (i) Lack of estimation of local RV and transmural
spatial distributions of conductivity and restitution properties. A global estimation
of these properties was done using body surface ECG waveforms as explained in
Sec. 4.1 & 4.3. (ii) Only two heart rates were used for fitting APD RCs. Thus only
two model parameters were estimated, and an assumption was made by consider-
ing the sinus rhythm APD, as a constraint on the asymptotic value of APD RCs
controlled by the parameter τclose, while the paced mode APD was used to adjust
the RC slope controlled by the parameter τopen. However, more measurements for
frequencies in the slope region (region between minimum DI and maximum value of
APD on APD RC) could have depicted the RC slope more accurately. (iii) Lack of
minimum DI measurement with pacing periods reaching up to the refractory period
of the myocardium. As these values can play a crucial role in the initiation and sus-
tainability of arrhythmias. However the model had its own simulated minimum DI
derived from the estimated parameters as shown in Sec. 4.3 and (iv) Usage of Non-
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Figure 4.8: Maps of absolute depolarisation time error (b) and APD error (c) be-
tween simulated and measured isochrones. Computation of local steady-state APDs
(a) for different cycle lengths from the estimated restitution curves. Red to blue
colours represent steep to flat slopes. Steady state values of APD for different heart
rates (cycle lengths in ms) (d). Black ellipse highlights the changes in heterogeneity
near PIZ

Contact Mapping (NCM) data and EP & MR fusion errors. Although NCM data
do have an advantage of measuring temporal EP data with more spatial acquisition
(surface) than the contact mapping data (point), the NCM data can be challenging
for local depolarisation and repolarisation time estimations. Also uncertainty on the
data can be added due to the difficult registration between the EnSite LV surface
and the MR-derived LV surface (Fig. 4.4).

6.2 Model Simplifications

In order to have a clinical relevant model for personalisation and VT risk assessment,
the MS model used had several simplifications, few of which are, (i) No actual
Purkinje network modelling. Exact locations of these Purkinje network extremities
are ambiguous and inextractable from the patients data, although they could play a
crucial role in arrhythmogenesis [BGR+06, SSW+04]. However, a high conductivity
endocardial region was obtained, which may be inferred as depicting the underlying
Purkinje network with personalisation (Sec. 4.1 & Fig 4.7a). A local estimation
of endocardial restitution properties (Sec. 4.3 & Fig 4.7d) also helped potentially
depict the abnormalities in the Purkinje network around scars, leading to arrhythmia
generation. (ii) Use of an atlas-based cardiac fibre model. Extraction of true in vivo



66
Chapter 4. Building Personalised EP Models using in vivo Clinical

Data (Non-Contact Mapping)

cardiac fibre orientations is the subject of ongoing research and including them would
give more accuracy to the VT-Stim predictions and inducibility maps. Finally,
orthotropic anisotropy could change the model behaviour, but acquiring patient-
specific data on cardiac laminar sheets seems even more challenging.

6.3 Conclusion

The proposed approach of coupled model personalisation for fast estimation of hid-
den parameters such as conductivity and APD restitution could enable the clinical
use of cardiac electrophysiology models in the future. The parameter estimation
algorithm is used on clinical interventional data and the obtained results are very
encouraging. The estimated conductivity and APD restitution parameters are able
to distinguish between the healthy areas and the pathological ones (scar and isth-
mus). Next, we need to validate the personalised model predictions with mapping
data for arrhythmias and integrate the simulation of RF ablation into a first cohort
of clinical cases.
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Personalisation, i.e. parameter estimation of a cardiac ElectroPhysiology (EP)
model is needed to build patient-specific models, which could then be used to un-
derstand and predict the complex dynamics involved in patient’s pathology. In this
chapter, we present an EP model personalisation approach applied to an infarcted
porcine heart, using contact mapping data and Diffusion Tensor MRI. The contact
mapping data was gathered during normal sinus rhythm, on the ventricles in-vivo,
endocardially as well as epicardially, using a CARTO mapping system. The Dif-
fusion Tensor MRI was then obtained ex-vivo, in order to have the true cardiac
fibre orientations, for the infarcted heart. Both datasets were then used to build
and personalise the 3D ventricular electrophysiological model, with the proposed per-
sonalisation approach. Secondly, the effect of using only endocardial mapping or
epicardial mapping measurements, on the personalised EP model was also tested.

1 Introduction

Modelling of the cardiac electrophysiology has been an important research interest
for the last decades, but in order to translate this work into clinical applications,
there is an important need for personalisation of such models, i.e. estimation of the
model parameters which best fit the simulation to the clinical data. Cardiac model
personalisation is required to develop predictive models that can be used to improve
therapy planning and guidance.

In this chapter, we apply the proposed coupled personalisation framework (EK-
MS) in Chapter 4, to an infarcted porcine heart. The fast 3D EK model is used
to estimate the tissue conductivity parameter over the ventricles from the contact
mapping of endocardial & epicardial surface potentials, using an adaptive iterative
algorithm. This is then used to set the conductivity parameter of the 3D MS model,
which could be then used for reliable arrhythmia predictions.

The contributions of this chapter are: 1) Application of the EK-MS personal-
isation approach to an infarcted porcine heart, using contact mapping data and
DT-MRI, and 2) Study of the effect of using either endocardial only or epicardial
only measurements, on the EP model personalisation.

2 3D Electrophysiology Model with Chronic Infarction

The models used in the EK-MS personalisation approach are simple Eikonal (EK)
model and a simplified biophysical model, the Mitchell-Schaeffer (MS) model.

The EK model simulates the propagation of the depolarization wave in quiescent
tissue, ignoring repolarisation phase. The EK model is governed by eikonal-diffusion
(ED) equation and is based on anisotropic Fast Marching Method (FMM). More
detailed analysis can be found in [CRG+08]. The model is simulated, as explained
before in Chapter 4.

The MS model [MS03] is a 2-variable simplified biophysical model derived from
the 3-variable Fenton Karma (FK) ionic model [FK98]. It models the transmem-
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brane potential as the sum of a passive diffusive current and several active reactive
currents including a sodium ion (influx) current and a potassium ion (outflux) cur-
rent. Unlike FK model, it does not model the Calcium ion current. More detailed
analysis can be found in [MS03]. The simulation details are the same as in Chapter 4
and as given in Table. C.2 in Appendix C.

In this chapter, we focus only on conductivity estimation, thus chronic scars are
modelled with low conductivity in the ischemic zones. While the grey zones (the
regions around scars) had conductivity estimated from the data, as shown later.
However, we had shown the approach of modelling chronic scars along with APD
heterogeneity before in the Chapter 4. The true fibre orientations in healthy and
infarcted areas, estimated from DT-MRI, are taken into account for simulations.

3 Contact Mapping and MR Dataset Processing

The adjustments were performed on an infarcted porcine heart. The acquired data
consists of contact mapping data gathered on the ventricles in vivo during normal
sinus rhythm, endocardially as well as epicardially, using a CARTO mapping system,
and a Diffusion Tensor MRI (DT-MRI) representing geometry and fibre orientation
ex-vivo.

The 3D mapping system (CARTO) localises the extracellular potentials at points
in 3D space and on a 3D ventricular geometry acquired by connecting all those
points, during the interventional procedure, using invasive catheters (see Fig. 2.6).
The measurement of extracellular potentials could be unipolar or bipolar (Fig 5.2(b)).
The mapping system then extracts the local activation times (LAT) for the contact
points in 3D space and produces a local activation map on the 3D ventricular ge-
ometry, representing the action potential wave propagation pattern, as shown in
Fig 5.2(a).

The DT-MRI is used to reconstruct the cardiac fibres using the principal eigen-
vector of the diffusion tensor. It is also used to create the 3D ventricular model, as
shown in Fig 5.1.

The 3D ventricular geometry acquired using CARTO is then registered to the 3D
ventricular model. The measurement contact points of the CARTO, are then pro-
jected on to the 3D ventricular geometry using closest points projections (Fig 5.2(c
& d)). Finally, the LATs measured at those points is then interpolated on the en-
docardial and epicardial surface, to have a rough guess on the action potential wave
propagation, as shown in Fig 5.3.

The interpolated epicardial and endocardial LAT maps on the 3D ventricular
model, are then used as input for EP model personalisation. In order to penalise
the point projection and interpolation errors, we use the projection distance of the
points and the interpolated projection distance maps (Fig 5.4) as a spatial penalising
factor in the conductivity estimation procedure, as explained later.
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Figure 5.1: (a) Volume rendering of DT-MRI to visualise scars (bright in intensity),
(b) 3D ventricular model constructed from DT-MRI, with labelled scar zones (black),
(c) cardiac fibre construction from DT-MRI, showing the fibre disorientation in and
around scars (black contour).

Figure 5.2: (a) LAT map constructed on a 3D ventricular geometry using CARTO
mapping system, (b) Unipolar & bipolar extracellular potentials measured using
invasive catheters, (c & d) measurement contact points (red - endocardial & blue -
epicardial) gathered in 3D space using CARTO, registered and then projected on the
endocardial (c) & epicardial (d) surface respectively, of the 3D ventricular model.

Figure 5.3: LAT maps construction from linear interpolation of the measurement
contact points (black) for (a) endocardial and (b) epicardial surfaces of the 3D
ventricular model.



4. Building personalised electrophysiological model 71

Figure 5.4: Projection distance calculated and interpolated from the contact points
(black), on to the endocardial surface.

4 Building personalised electrophysiological model

4.1 Coupled personalisation approach (EK-MS)

The coupled personalisation procedure used is explained in Chapter 4 in Section 4.
The input to the algorithm are the linearly interpolated LAT maps on the surface
of the ventricular model (Fig 5.3). The cost function for each zone to minimise, is
adapted here, and is given as

J(dzone) =
�

∀i∈S∩zone

�
PenaltyFactori ∗

�
LATi −DT

sim
i (dzone)

��2 (5.1)

with vertex i in zone, belonging to the surface S having measured data, DT
sim

are the simulated depolarisation times from the EK model, and PenaltyFactor is
computed from the normalisation of interpolated projection distance maps (Fig 5.4(b
& c)), with 1.0 representing lowest distance and 8.14e

−9 representing the farthest
distance.

4.2 Application

In order to assess the influence of mapping (endocardial and epicardial) details on the
model personalisation, we tested model personalisation with various configurations
as follows.

4.2.1 With endocardial and epicardial mapping

In the state of the art in clinics, simultaneous endocardial and epicardial mappings
are the finest amount of acquisition details possible for capturing the action po-
tential wave propagation dynamics during normal sinus rhythm. Thus we use the
apparent conductivity estimated using this mapping data, as the closest approxima-
tion of the true tissue conductivity distribution, with the proposed personalisation
approach. The mean error on activation times, after model personalisation was
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Figure 5.5: Volumetric activation times after personalisation using endocardial &
epicardial mapping (top row), only epicardial mapping (middle row) and only en-
docardial mapping (bottom row).

15.93 ms. Fig 5.5(a & b) shows the activation isochrones after personalisation, and
Fig 5.6(a & b) shows the AC distribution, along with the residual activation time
error after optimisation.

4.2.2 With endocardial mapping

Now we use only the endocardial mapping, to estimate the AC distribution. The
mean error on activation times, after personalisation was 15.26 ms. Fig 5.5(e) shows
matching of the LV endocardial isochrones with Fig 5.5(a) and data (Fig 5.3(a)), but
has a large misfit of the epicardial isochrones (Fig 5.5(f) compared against Fig 5.5(b)
and Fig 5.3(b)). Thus the reproducibility of the isochrones on the epicardial side
is highly prone to errors. This is confirmed by the large prediction errors on the
epicardial surface, as shown in Fig 5.7(c).

4.2.3 With epicardial mapping

Here we use the epicardial mapping, to estimate the AC distribution. The mean
error on activation times, after personalisation was 9.59 ms. Fig 5.5(c & d) shows
good matching of the LV endocardial isochrones, as well as epicardial isochrones
with Fig 5.5(a & b) and data (Fig 5.3(a & b)). Thus epicardial mapping could be
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Figure 5.6: The first two columns show estimated AC distributions (dEK (m2) , dMS

(s−1)) and last two columns show residual error after personalisation, for various
configurations explained.

sufficient enough to reproduce the true wave propagation dynamics, as compared
to endocardial mapping data. This is confirmed by the low prediction errors on the
endocardial surface, as shown in Fig 5.7(b).

5 Conclusion

In this work, we have shown the application of a proposed coupled personalisation
framework to the contact mapping data of an infarcted porcine heart. The car-
diac fibre orientations estimated from DT-MRI were incorporated inside the model
personalisation for a more accurate tissue conductivity estimation. We also tested
the influence of mapping details on the model personalisation algorithm. We found
that personalisation using epicardial mapping gave a conductivity estimation clos-
est to the one obtained with personalisation using both endocardial and epicardial
mapping, and also showed a low prediction error. On the other hand, the person-
alisation with endocardial mapping had an important deviation from the estimated
distribution obtained with both endocardial & epicardial mapping. It also had an
important prediction error on the epicardial surface. Thus, within this experimen-
tal setting, epicardial mapping proved to be a sufficient acquisition to reproduce a
tissue conductivity distribution, closer to the one estimated using both endocardial
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Figure 5.7: Graph: mean and standard deviation of the difference of AC values
estimated for the 3 configurations. Zero mean with low standard deviation shows
good agreement between the AC values for a given data point. Other figures show the
prediction error on the endocardial side, for personalisation with epicardial mapping
(b) and on the epicardial side, for personalisation with endocardial mapping.

and epicardial mapping. This was also the case when the personalisation was done
on similar data from a clinical case [KRC+11]. Such finding has to be tested on
other configurations, for different healthy and pathological cases.
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In order to develop an in silico RFA planning platform for cardiac arrhythmias,
there is a need to simulate arrhythmias with macroscopic 3D models. Here, we illus-
trated the main macroscopic characteristics of an ischemic VT. These include the
structural and functional heterogeneity of the tissue near the scars i.e. peri-infarct
zones (PIZ). We adapted a mono-domain 3D EP model to simulate its macroscopic
structural behaviour. The macroscopic functional heterogeneity was achieved from
the estimated patient-specific tissue heterogeneities (CV, APD, CV & APD restitu-
tion) using the proposed coupled personalisation framework as explained earlier in
Chapter 4. Next, we showed the simulation of an in silico VT stimulation study using
the personalised and adapted MS model, to quantify VT risk, in terms of inducibility
maps, re-entry patterns and exit point maps.

1 Introduction

There are various forms of Ventricular Tachycardia (VT) reported in the literature.
The details on different types of VT is given in table 6.1. They can be classified into
two main groups as given in Fig. 6.1 [MKY+02]. In idiopathic VT cases, VT may
arise through abnormal firing of a small group of cells in an otherwise normal heart,
called as early or delayed after depolarisations, depending on their firing times. If
these small critical areas can be located, (they are usually in certain well-defined
anatomical regions), focal, point catheter Radio-Frequency (RF) ablation can cure
the problem [WK07]. The most common form of VT reported is with scarred ventri-
cles (e.g. after myocardial infarction or congenital heart disease surgery or in heart
muscle disorders) called as infarct-related or scar-related VT [ASAG09]. VT asso-
ciated with other forms of structural heart disease (e.g. hypertrophic and dilated
cardiomyopathy, arrhythmogenic RV cardiomyopathy) are observed to have similar
mechanisms as scar-related VT [MKY+02]. The RF ablation strategy of scar-related
VT is very different from normal heart VT and targets the whole arrhythmogenic
zone [WK07]. Despite of using complex electrical mapping systems, the long-term
success rates of scar-related VT is 30− 60% only, as reported in [ASAG09]. In this
work, we focus on modelling scar-related VT.

After the occurrence of scar (myocardial infarction), structural, functional and
electrical remodelling of the ventricles takes place. Which is characterised by pro-
gressive dilation, hypertrophy, distortion of the cavity shape, and deterioration in
contractile function. The relation between ventricular remodelling and ventricular
tachycardias after acute myocardial infarction has not been explored systematically
yet. Ventricular tachycardia is mainly due to a re-entry caused by a unidirectional
block and slowed conduction within the re-entrant circuit [WE00]. Post-infarction
structural remodelling creates partially healed regions (called peri-infarct or bor-
der zones) around the scars as seen in Fig. 6.2. Slow impulse propagation velocities
through peri-infarct zones are partially caused by fibrosis (see Fig. 6.5). In addition,
peri-infarct zones are also observed to have longer effective refractory period com-
pared to the normal tissue as a result of post-repolarisation refractoriness [WE00].
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Table 6.1: Classification of Ventricular Arrhythmias. Table based on [AKTM09]

Classification by Electrocardiography
Non-sustained VT Three or more beats in duration terminating

spontaneously in less than 30 seconds
(rate > 100 bpm, CL < 600 ms)

Monomorphic Non-sustained VT with single QRS morphology
Polymorphic Non-sustained VT with changing QRS morphology

at CL between 600 & 180 ms
Sustained VT VT greater than 30 s in duration and/or requiring

termination due to hemodynamic compromise
in less than 30 seconds

Monomorphic Sustained VT with stable single QRS morphology
Polymorphic Sustained VT with changing or multiform QRS

morphology at CL between 600 & 180 ms
Bundle branch related tachycardia VT due to re-entry involving His-Purkinje system,

usually with LBBB morphology, usually
occurs in setting of cardiomyopathy

Bidirectional VT VT with beat-to-beat alternans in the QRS axis.
Torsades de pointes VT associated with long QT or QTc

and characterised by twisted peaks
of the QRS complexes during the arrhythmia

Ventricular flutter Regular (CL < 30 ms variability) ventricular
arrhythmia ≈ 300 bpm (CL 200 ms)
with a monomorphic appearance.

Ventricular fibrillation Rapid, usually > 300 bpm (CL < 180 ms) irregular
ventricular rhythm with variable QRS morphology.

Models of Ventricular Arrhythmias The majority of the ventricular models
used in the study of arrhythmia mechanisms have focused on the rotational propa-
gation of complex 3D electrical waves in the heart. These self-sustaining re-entrant
waves (termed spiral waves in 2D and scroll waves in 3D) occur in a variety of non-
linear excitable media. An experimental study using fluorescence mapping of electri-
cal activation in the heart from [DPS+92] demonstrated the presence of such waves
in cardiac tissue and their role in ventricular fibrillation (VF). The study [PK95]
demonstrated a realistic, 3D model of scroll-wave activation in the heart. The
authors captured the dynamics of excitable tissue by using the two-variable phe-
nomenological FitzHugh-Nagumo model [NAY62] of membrane kinetics.

The studies [JG96, GJ+98] proposed that in small hearts (mouse, rabbit) a single
rapidly drifting and meandering rotor could underlie VF, in large hearts including
those of humans, VF could be sustained by numerous coexisting rotors. The role
of the 3D ventricular geometry in wave fragmentation and spiral wave breakup was
explored in [Rog02, XQY+04].

Additionally, the studies [CH04, Cla08] demonstrated that the behaviour of the
vortex filaments was found to depend on action potential duration (APD) hetero-
geneity in the ventricles [ART07]. The study [TT09] examined VF in ventricles
with both homogeneous and heterogeneous APD. The study determined that het-
erogeneity in APD produced increased turbulence in the ventricles. The studies
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Figure 6.1: Classification of various forms of VT. Image from [MKY+02]

on the transition from tachycardia to fibrillation in particular, have been focused
on the development of APD alternans [BRB07] and the role of alternans and APD
restitution [CF04, BQH+07] in conduction block, dynamic stability in re-entrant
activity, and transition to VF.

In recent years, significant advances have been made in the use of biophysically
detailed membrane kinetics models integrated with realistic geometries to under-
stand the mechanisms by which arrhythmias arise and are maintained in the human
heart [TTHP+07]. However, the geometrical data for the model were obtained from
an ex-vivo normal human heart [TTHP+07] and the fibre architecture of a canine
heart was used. Using the TNNP model, further investigations were done on the ef-
fect of heterogeneous restitution properties in human VF by incorporating clinically
measured restitution properties [KTTN+08]. The study found that the number of
filaments and the excitation periods depended on the extent of the restitution het-
erogeneity. Thus, restitution heterogeneity was found to play an important role in
arrhythmogenesis by providing a substrate for cardiac arrhythmias.

2 Modelling Post-infarction Ventricular Tachycardia

Post-infarction scar-related ischemic VTs are usually initiated by mechanisms of re-
entry in the ventricular myocardium. Re-entry depends on the co-existence of an
arrhythmogenic substrate, which is a pre-existing structural pathological condition,
and a trigger, such as acute ischemia that initiates the electrical abnormality.

2.1 Structural Heterogeneity

Myocardial infarction or other pathologies (myocarditis, sarcoid etc.) results in the
formation of infarcts. Infarcts show marked spatial heterogeneity, with areas of
necrosis interspersed with bundles of viable myocytes, particularly at the periphery
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of the infarct (called border zone or peri-infarct regions). This may lead to for-
mation of fibrocellular, fibrosclerotic, or fibroadipose scars with irregular outlines.
Schuleri et al [SCG+09] have reported this heterogeneity histologically and its corre-
lation against DE-MRI and DE-MDCT techniques, for chronic myocardial infarcts
(Fig. 6.2).

Figure 6.2: Example of matching histological data in chronic infarcts against DE-
MDCT (A and B) and -MRI (D and E). The peri-infarct zone (PIZ) is visualised
between 2 black arrows by intermediate signal intensity (white circle) in DE-MDCT
images. In D & E, infarct scar (white arrows), and the PIZ (white circle) show
different signal intensity in DE-MRI. (C and F) Masson trichrome stain depicts
viable myocardium in red (*) from nonviable tissue in blue. At higher magnification
(F) the islands of viable myocytes (red) within the scar tissue are visualised, showing
the heterogeneity of the PIZ. Image taken from [SCG+09]

The peri-infarct regions mainly consists of fibrosis or fibrofatty replacement of
ventricular myocardium. This replacement or scarring fibrosis corresponds to the
replacement of damaged myocytes by collagen (Fig. 6.3) [MLC+11]. It can have a
localised distribution (patchy fibrosis) or diffused distribution (diffuse fibrosis), as
shown in Fig. 6.3. Patchy fibrosis is often found in ischemic cardiomyopathy and
may lead to strands of conducting tissue surrounded by areas of dense unexcitable
scar [DBVR06]. These strands are called "isthmus". Isthmuses typically create a
substrate for potential re-entries. Fig. 6.5 shows the underlying schematics present
in ischemic VT occurrence.
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Figure 6.3: Multiple components present in a cardiac interstitium for healthy tissue
(A & B) and fibrotic tissue (C) (increase of collagen matrix to replace damaged
cells) [MLC+11]. Different textures of Fibrosis (D: Patchy and E: Diffuse) present
in regions around the necrotic core [DBVR06]

Fleming et al [Fle10] have studied the fibre orientations of peri-infarct tissue
against healthy and densely infarct tissue. They have reported a decrease in fibre
organizations with the presence of randomised fibre orientations in peri-infarct and
infarct tissue, as seen in Fig. 6.4. This has been also confirmed with the findings of
Pop et al. [PSM+09] with DT-MRI of porcine hearts, as seen in Fig. 6.4.

2.1.1 Modelling Fibrosis

Despite the importance of fibrosis in arrhythmogenesis, most of the computer sim-
ulation research into tachyarrhythmias has so far focused on structurally normal
cardiac tissue and only a few studies have dealt with modelling fibrotic tissue. The
effects of large numbers of unexcitable obstacles mimicking fibrotic strands on wave
propagation in a simplified model for cardiac tissue was studied in [Per97]. The study
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showed that textures of fibrotic strands may induce anisotropic propagation, widen-
ing and fractionation of electrograms, and influence the rotation of scroll waves.
Recently, the study [TLHHS05] showed that textures of string-like fibrotic obstacles
lead to electrogram fractionation in human ventricular tissue simulated with the
Priebe–Beuckelmann model. The diffuse fibrosis was simulated by removing lateral
gap junctions in human atrial tissue in [SHDB07]. Increased heterogeneity in in-
tercellular coupling was found to lead to vulnerability for partial wave block and
re-entry. Most of these studies demonstrated that fibrosis could lead to increased
vulnerability for re-entry.

The studies [Pan02, TTP03, TTP05] showed the possible effects of diffuse fibrosis
on wave propagation, spiral wave dynamics, and spiral break-up-induced onset of
fibrillatory excitation in cardiac tissue. They found that diffuse fibrosis increases
the vulnerability of tissue to wave break and spiral wave formation, increases spiral
wave rotation period and suppresses steep restitution-mediated spiral break-up. The
same study was performed with a detailed ionic model in [TTP07] (see Fig. 6.6 top
row), the results suggested that diffuse fibrosis can suppress steep restitution spiral
break-up by slowing down of re-entry, causing this to be a less likely mechanism for
fibrillation in fibrotic hearts. The authors expected that the effects of fibrotic tissue
are more pronounced in thin than in thick cardiac tissue. In this work, we follow
similar kind of approach as in [TTP07] to model fibrosis.

For modelling of peri-infarct regions structurally for ischemic VT, we incorpo-

Figure 6.4: Fibre orientations within en face image, for infarct, PIZ and healthy
tissue. Decrease in fibre organization within the infarction is reflected by the broad
fibre angle histogram (A - E) [Fle10]. Influence of scar on fibre orientations generated
on the ventricles using DTI (G & H) [PSM+09]
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Figure 6.5: Schematics for re-entry circuits of ischemic VT, A: multiple components
present in induced VT circuit with external stimulation, B: isolated self-sustained
VT re-entry circuit, C & D: localization of entry and exit points.

rate patchy fibrosis, around scars in the personalised anatomical model. In practical
terms, this is done by taking random tetrahedral cells in the peri-infarct regions
as electrophysiologically inactive or dead, while other tetrahedra are kept as elec-
trophysiologically healthy. The patchy fibrotic texture is enforced by making the
elements cells neighbouring those already labelled as inactive in one random direc-
tion, as also inactive. The patchy nature of the myocardium can be quantified as a
percentage of dead cells out of the total volume of the peri-infarct tissue. Simula-
tions of this microscopic approach in 3D, with fibrosis in the PIZ areas is shown in
Fig. 6.6.

This approach to model patchy fibrosis requires to use many small tetrahedra
which is very computationally demanding. As reaction-diffusion simulation treats
the cardiac tissue as a continuum with diffused wave propagation, a more macro-
scopic approach to model the fibrosis can be performed by considering three types of
tissues in the myocardium: non-conductive tissue (necrotic core), healthy myocytes
and highly resistive collagen network. The last two types could also be combined
into a single class of slow conductive pathways in the peri-infarct tissue. This could
be achieved by using the theory of homogenization, which is used to model the
materials that often have different properties at different points [CD99]. However,
we present here a first (rough) approximation which is done by a weighted sum of
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Figure 6.6: Top row: Plane wave propagation in 2D tissue without and with 30%
fibrosis, figure from [TTP07]. Bottom row: Simulation of an isolated self-sustained
VT re-entry circuit (C) on a personalised anatomy (A), after VT induction (B),
with higher level of patchy fibrosis (60%) present in PIZ.

diffusion and reaction terms. As a first approximation, we assume that there is a
linear relationship between the contributions of the two domains, on diffusion and
reaction terms.

The incorporation of a decrease in fibre organisations in PIZ is done currently
by using a mixture of anisotropic and isotropic propagation, the ratio of which
is controlled by the percentage of patchiness in the fibrotic tissue. The loss in
normal fibre orientations is also modelled synthetically by generating random fibre
orientations in the necrotic core and border zones, as shown in Figure 6.7(d). Thus
for modelling fibrosis, we can model its macroscopic behaviour using multi-domain
models. Sub domains of which include healthy myocytes and collagen network.

Here, we present an adaptation of the simplified biophysical MS model, to rep-
resent the two domains of fibrosis. The domain of collagen network is modelled by
an isotropic diffusion term with low conductivity (dcollagen), to account for the high
resistivity whereas the domain of healthy myocytes is modelled with anisotropic
diffusion term with normal cardiac tissue conductivity (dhealthy).

�
∂tu = div

�
(k dcollagen Mcollagen + (1− k) dhealthy Mhealthy)∇u

�
+ (1− k) F (u, z)

∂tz = G(u, z)
(6.1)

where u is the normalised transmembrane potential variable, and z is the gating vari-
able which makes the currents gate open and close, thus depicting the depolarisation
and repolarisation phase. F , G represents the reaction term of the EP model. The
diffusion scaling term dcollagen << dhealthy, representing the slow conductivity in the
collagen network. The anisotropy is represented by the diffusion tensor M. The col-
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Figure 6.7: Simulation of the adapted MS model for fibrosis on a 3D tissue slab (c)
with Necrotic (N) (k = 1, fully fibrotic), Diffuse (D) (k = 0.8, 80% fibrotic), Patchy
(P) (k = 0.6, 60% fibrotic) and Healthy (H) (k < 0.4, 40% or less fibrotic) domains.
Synthetically disorganised fibres for fibrotic regions (d). Activation times (e) and
resulting CV maps (f), (f) shows the decrease in CV for fibrotic regions (k >= 0.6),
it also shows a patchy texture of CV for the P domain. Definition of the various
fibrotic domains (scaling of k value) with LE-CMR intensity for the scar and PIZ
areas (a) & (b), for in-vivo clinical datasets.

lagen network domain is represented as isotropic Mcollagen = diag(1, 1, 1),and the
healthy myocytes domain has anisotropy represented with Mhealthy = diag(1, ρ, ρ),
where ρ the anisotropy ratio between longitudinal and transverse diffusion.

The term k represents the ratio of collagen network and healthy myocytes present
in the tissue. It gives a quantification of the fibrosis present in the tissue. k = 1

represents a fully fibrotic tissue, thus a necrotic core. k = 0.9 ∼ 0.7 represents a
diffuse fibrotic tissue. k = 0.6 ∼ 0.4 represents a patchy fibrotic tissue. k < 0.4 ∼ 0

represents a healthy tissue with low and no fibrosis respectively. A simulation of
the proposed adapted monodomain MS model on a 3D tissue slab with the pres-
ence of different fibrotic domains is shown in Fig. 6.7. CV maps resulting from the
simulations show the heterogeneity and the texture of fibrosis present in the macro-
scopic simulation (Fig. 6.7(f)). Definition of these domains for an in-vivo clinical
dataset is done using the LE-CMR voxel intensity profiles in the scar and PIZ areas.
The intensity profile is normalised, with 0 representing the healthy domain and 1
representing the necrotic core (see Fig. 6.7(c) & Fig. 6.7(d)).
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2.2 Functional Heterogeneity

Heterogeneity in tissue composition and autonomic innervations in the peri-infarct
regions may create areas of aberrant conduction, refractoriness heterogeneity and ec-
topic foci that could generate the substrate for lethal re-entrant arrhythmias [CW91].

Figure 6.8: Various electrophysiological contributors to anisotropic re-entry in my-
ocardial infarction. Image taken from [DBVR06]

Various functional heterogeneities present in the peri-infarct tissue causing is-
chemic VT are listed in Fig. 6.8 [CW91, WFE+01, PK95, JG96, CF04, CR95].
Fig. 6.9 shows the influence of the spatial heterogeneity of APD restitution in a re-
entry induction with S1-S2 pacing protocol. It demonstrates the presence of steeper
APD restitution slopes amidst of less steep or shallow APD restitution slopes, this
can cause a re-entry formation due to the difference in APD. For modelling as-
pects, such patient-specific heterogeneities in the peri-infarct regions can be derived
indirectly from the heterogeneous parameter maps, using electrophysiology model
personalisation, as explained in Chapter 4. Heterogeneous parameter maps esti-
mated from patient data include: Tissue conductivity maps, Maximum APD maps,
APD restitution maps and Minimum diastolic interval maps. Such maps qualita-
tively reveal areas with a risk of VT (black ellipse representing PIZ in Fig. 6.10).
But this is also highly dependent on the pacing location, thus in order to really



88 Chapter 6. Personalised Ventricular Tachycardia Modelling

Figure 6.9: Induction of a re-entry on a 2D tissue slab to S1-S2 pacing, with APD
restitution heterogeneity. Dotted grey lines enclose the region with Steep2 restitu-
tion, elsewhere the region has Steep1 restitution. Image taken from [NBS+06]

assess this risk we simulate VT-Stim procedures with various pacing locations, as
explained in section 3.1. The contributions of these maps to the various functional
heterogeneities present in ischemic VT are as follows:

Increased tissue anisotropy: This is mainly due to the presence of healthy
long strands within a pool of collagen network. This induces a narrow stream of
highly anisotropic wave propagation through the healthy long strands, which seems
highly anisotropic in the PIZ, when viewed macroscopically. This feature is modelled
structurally as explained in section 2.1.

Slowed conduction: A combination of healthy myocytes and highly electro-
physiologically resistive collagen network, leads to slowed conduction in the PIZ.
This feature is modelled using personalised tissue conductivity maps (Fig. 6.10(a)).

Refractoriness heterogeneity: Presence of unhealthy myocytes, with altered
electrophysiology channels in the PIZ, could lead to such refractoriness heterogene-
ity [KSGH08, YFRM05, ART07, NBS+06]. This feature is modelled using person-
alised APD and CV restitution maps and minimum DI maps.

Ectopic complexes: These could be present mainly due to Early After De-
polarizations (EADs) and Later After Depolarizations (LADs) developed through
channel alterations [NMLBY07]. However, these are more significant during acute
ischemia. For chronic ischemia modelled here, we take into account this phenomenon
through maximum APD maps and minimum DI maps.

In order to better interpret these parameter maps, we also estimate the steady-
state APD maps for different heart rates (Fig. 6.10) on the personalised data of a
scarred patient derived from Chapter 4. We can observe that these maps are quite
homogeneous for slow heart rates (< 100 bpm), but its heterogeneity particularly
in PIZ, increases with heart rates (100−150 bpm). Eventually it reaches a kind of
plateau where it is then quite homogeneous (> 200 bpm).
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3 Modelling of Clinical VT-Stimulation Protocol

3.1 VT Induction

Programmed ventricular stimulation or VT-Stim is a clinical study (protocol) used to
induce VT, in order to localise ablation sites (exit points) with entrainment mapping.
It consists of a number of rapid stimuli usually followed by extra stimuli, and is
usually introduced at two ventricular sites (RVA and RV-outflow tract (RVOT)),
using various cycle lengths (CL), with varying coupling intervals [MKDB+91]. With
entrainment mapping, electrophysiology signals are measured in the endocardium as
to visualise the activation patterns. This protocol is tested directly on the patient,
without any planning, to collect information about the VT and to plan the RF
ablation lines.

During this protocol, the controllable inputs by electrophysiologists are (1) stim-
ulus (strength, duration, type of current, number and rate of basic stimuli, number
and interval of premature stimuli), (2) stimulation site, (3) mode of stimulation
(unipolar or bipolar), and (4) inter-electrode distance [WBS85]. A snapshot of the
documented VT stimulation study protocol employed at KCL, London is shown in
Appendix D Fig. D.1.

The limitations of this protocol, which could eventually cause low success rate
of ablation therapy are:

1. It can fail or become unfeasible, when VT is not inducible, intolerable, unstable
or unmappable and recurrent. In such cases, substrate mapping consisting in
detecting regions of low extracellular potentials, is used to guide the ablation
therapy. This procedure sacrifices a huge amount of healthy tissue around the
scars, which is unnecessary and can prove to reduce the myocardial strength,
thus decreasing the LV output and LV ejection fraction [SSM+01].

2. It has a limited coverage around the stimulation catheter. Thus can fail to
reproduce all possible VT mechanisms in the clinics, which are present in the
patient’s heart [SSM+01].

3. The ablation sites localised with such protocol and entrainment mapping is
also limited to the endocardial surface, and can fail to locate exit points with
wider isthmuses, and with deeper myocardial and epicardial locations of the
isthmuses [NRAA+10]

In silico simulations of such VT-stim protocols on patient-specific model offer
much more flexibility, as the model can be paced from any location and at any pacing
rate, which would not be possible in practice. Personalised VT-Stim simulations can
override the clinical limitations, and can help locate and plan all optimum ablation
lines in silico before the ablation therapy.
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3.2 VT-Stim Modelling

A patient-specific electrophysiological model derived from MR and electroanatom-
ical data as described before in Chapter 4 & 5, could then be used to simulate a
variety of clinically proven VT-Stim protocols in silico. This is done in order to test
VT inducibility for various pacing locations and to locate exit points for ablation.
The specifications of various clinical protocols simulated are shown in Table C.4.

Synthetic Simulations A first case of simulation of the S1-S2 protocol in silico
was performed on the patient’s ventricular and scar geometry, but electrophysiology
model parameters were synthetically set (i.e. low conductivity and more refractori-
ness (steep APD restitution slopes) in region between scars (isthmus)) as shown in
Fig. 6.11, and detailed in [RCS+10].

Figure 6.11: DT isochrones for simulated S1-S2 VT-Stim protocol on patients ven-
tricle and scar geometry. Synthetic electrophysiology parameter set were used here
with steep RC slopes and low CV in isthmus compared to flat RC slopes and high CV
in the rest of myocardium. S1 stimulus shows a normal propagation and S2 shows a
unidirectional block created in the isthmus due to APD heterogeneity, which leads
to VT induction.

Personalised Simulations We then used the personalised 3D electrophysiolog-
ical model to simulate various protocols as described in Table C.4 in Appendix C.
The VT-Stim simulation using conventional RVA & RVOT on this patient did not
induce any VT. This is in agreement with the clinical data on this patient who did
not have any VT episode. However we could induce VT using various other pacing
sites and pacing protocols. For simplicity, we demonstrate the results of an over-
drive pacing protocol for a pacing location within PIZ, in Fig. 6.13 with protocol as
described in Table C.3 in Appendix C. Few snapshots of the video on personalised
induced VT simulation are presented in Fig. 6.12 demonstrating the re-entry wave.
More snapshots on the simulation is given in Table D.3 & D.4 in Appendix D. Ap-
pendix D Table D.3 & D.4 shows the simulation results of various pacing protocols
with successful VT inductions.
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Figure 6.12: Induced VT in the personalised model. At the 7th cycle of the pacing
overdrive, some areas in the isthmus have the previous S1 wave-back touching the
wave-front of the next S1 wave, thus creating an uni-directional block. A monomor-
phic sustained VT then develops.

4 VT Risk Stratification

VT risk is defined or quantified as a vulnerability measure of the patient’s heart to
induce ischemic VT. Patient-specific VT risk assessment is performed by simulation
of various VT-Stim protocols (Appendix C Table C.4) on personalised electrophys-
iology model, and deriving VT inducibility and exit point maps. The risk measure
is indirectly inferred from these maps. Appendix D Table D.5 shows such maps for
different pacing sites and protocols

VT inducibilty maps These maps (Fig. 6.14) show the pacing locations in the
heart, which were successful in inducing VT for a given protocol. In pre-ablation
therapy, these maps can provide a vulnerability measure of patient’s heart towards
induction of VT, thus providing a patient-specific VT risk. During post-ablation

Figure 6.13: DT isochrones for simulated VT-Stim protocol for over-drive pacing
using the personalised electrophysiology parameters, with pacing near the scars
(shown by arrow) at 400 ms cycle length (≈ 150 bpm). (a) shows normal propagation
(b) & (c) show increase in heterogeneity in conduction near the isthmus after 7 cycles
due to APD and refractoriness heterogeneity (black ellipse) and (d) no pacing and
induced VT of 250 ms cycle length (≈ 240 bpm) with an exit point (shown by a
star).
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Figure 6.14: All possible locations (red) for VT inducibility for different protocols
and generation of self sustained VTs. They lie mostly near the RV apex and PIZ.

Figure 6.15: First two figures show the main re-entry pattern geodesic path of
highest conduction velocity traced for a VT re-entry. The last figure on right shows
all possible VT re-entry mechanisms present in the personalised model.

therapy, these maps can be of potential interest in careful placement of ICD/CRT
leads to avoid inducing VT.

VT re-entry patterns These maps (Fig. 6.15) track the re-entry paths, as the
geodesic path of highest conduction velocity along the re-entry isochrones. This
path is related to the VT cycle length, and shows in silico the main re-entry pattern
or path for ischemic VT, which could be of potential use in guiding the ablation
lines. In silico VT-Stim modelling helps model different possible VT-mechanisms
present in the patient, which could all be visualised using such VT re-entry patterns.

VT exit point maps These maps (Fig. 6.16) locate all the possible exit points
estimated for various protocols and pacing locations. The exit points are defined
as the points having earliest activation times in the re-entry isochrones. For a
given protocol, various pacing locations may lead to detection of various exit points,
with some of them having more probability of occurrence as shown in Appendix D
Table D.5. For RF ablation procedure, only those points with higher likelihood of
occurrence are used.
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Figure 6.16: First figure shows the extraction of an exit point (red coloured region)
for a particular VT re-entry. The next two figures show all the possible exit points
for VT re-entries with an occurrence rate for different VT-Stim protocols.

5 Conclusion

In this work, we illustrated the main macroscopic characteristics of an ischemic
VT. These include the structural and functional heterogeneity of the tissue near the
scars i.e. peri-infarct zones (PIZ). PIZ are crucial in the initiation and sustainment
of ischemic VT. Macroscopic structural heterogeneity was achieved with: 1) The
incorporation of a decrease in fibre organisations in PIZ was performed by using a
mixture of anisotropic and isotropic propagation, the ratio of which was controlled
by the percentage of patchiness in the fibrotic tissue. 2) The fibrosis was modelled
for its macroscopic behaviour using multi-domain models, which included healthy
myocytes and collagen network. As a first approximation, the collagen network was
modelled by an isotropic diffusion term with low conductivity, to account for the high
resistivity whereas the domain of healthy myocytes was modelled with anisotropic
diffusion term with normal cardiac tissue conductivity.

Macroscopic functional heterogeneity was achieved from the patient-specific tis-
sue heterogeneities estimated (CV, APD, CV & APD restitution) using the proposed
coupled personalisation framework. Later, we demonstrated the simulation of an in
silico VT stimulation study using the personalised and adapted MS model, to quan-
tify VT risk in silico, in terms of VT inducibilty maps, VT re-entry patterns and
VT exit point maps (potential RF ablation targets).
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A rule-based modelling approach for radio-frequency (RF) ablation lesions based
on state of the art studies is proposed. This approach is carried out due to the lack of
patient’s imaging data on RF ablation lesions. Furthermore, the acute and chronic
effects of the RFA lesions are simulated. The chronic RFA lesions were then used in
the in silico VT stimulation study, as a post ablation protocol to assist in estimating
the success of RFA lesions in silico.

1 Radio-frequency Ablation: Concepts & Modelling

In radio-frequency (RF) ablation procedure, RF alternating current is usually ad-
ministered with a continuous sinusoidal unmodulated waveform of 300 - 1000 kHz
and allows the generation of well-circumscribed myocardial lesions. The most im-
portant mechanism of myocardial necrosis induction is based on the conversion of
electrical energy into heat within the myocardial tissue. The extent of the tissue
damage depends on the following:

• The duration of RF energy application
• The temperature in the resistive heating zone
• The RF power delivery
• The catheter contact force against the tissue

However, at a certain energy level electrode overheating may occur leading to co-
agulum formation and charring on the tip electrode accompanied by a rapid increase
in electrical impedance that in turn leads to a loss in effective myocardial heating. To
prevent overheating at the electrode-tissue interface, temperature-controlled energy
application systems have been developed. A thermistor or thermocouple embedded
in the tip of the ablation catheter allows temperature monitoring at the electrode-
tissue interface during energy application. Maximal RF energy (usually 50W) is
delivered until the preselected target temperature has been reached and thereafter
automatically titrated down to maintain the target temperature. The extent of
lesion formation not only depends on RF duration and power but also on non-
measurable variables like electrode-tissue contact and orientation (perpendicular vs
parallel to the tissue) and external cooling by the circulating blood flow. By using
cooled-tip catheters the temperature at the electrode-tissue interface can actively
be cooled down and thus allowing higher currents [NE06]. A photograph of such
catheter tip is shown in Fig. 7.1(b).

During minimally invasive RFA intervention, various catheters are introduced
into the right heart via the femoral veins. Trans-septal puncture in the atria allows
access to the left heart. Besides the ablation catheter (Fig. 7.1(a), 7.1(b), 7.1(d)),
circular mapping catheters (Fig. 7.1(c)), multi-electrode basket catheters for contact
or non-contact measurements as well as multi-electrode mapping and coronary sinus
catheters may be used by the clinician.
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(a) Image from [NE06].
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Figure 7.1: Photographs of catheter tips used during RFA procedure.

1.1 Types of Ablation

Various possibilities to introduce lesions into the myocardium are known and used
in clinical practice:

• Surgical Maze III procedure [CJSB95]
• Radio-frequency ablation
• Cryoablation [AUR+03]
• Ultrasound ablation
• Laser ablation
• Microwave ablation [vBBS+04]
In this thesis, we concentrate on RFA, as it is currently the most commonly

used ablation technique in clinical practice. Instead of applying ablation lesions,
some patients can and must be treated pharmacologically for their cardiac arrhyth-
mias. Pharmacological treatment is often also accompanying the ablation therapy.
For simplicity, we neglect the pharmacological influences on the patients. Further
information about the complete therapy cycle can be found in a clinical review by
Natale et al. [NRAA+10] and Lin & Marchlinski [LM03] for RFA of VT patients.
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1.2 RF Ablation of VT

Implantable cardioverter defibrillators (ICDs) have become the mainstay of therapy
for such patients; however, ICDs do not prevent the occurrence of these arrhythmias,
and poorly tolerated recurrent high-voltage cardioversions or defibrillation shocks
can result [MZC+00]. Because of the limitations of device therapy and inefficacy and
poor tolerance of drug therapy, ablative therapy has become an important additional
tool in the treatment of such VTs. Natale et al. [NRAA+10] provides an extensive
international consensus on the state of the art for ablation of ventricular tachycardia
and fibrillation. Lin & Marchlinski [LM03] provides a review on advances in ablation
therapy for cardiac arrhythmias. The ablation strategies applied depend on the
different forms of VT.

1.2.1 Ablation of stable VT

In selected patients with recurrent VT, which is inducible and hemodynamically
stable and therefore mappable, radio-frequency catheter ablation has proven rea-
sonably effective. A number of reports have documented the long-term success rate
of radio-frequency ablation of VT to be greater than 70%, with serious complications
in fewer than 2% of patients [SMD+97]. Multiple criteria have been used to guide
ablation of hemodynamically stable VT and are frequently used in combination to
optimise results [ESHP+99]. These criteria include the following:

• Presence of pre-systolic electrogram activity recorded during VT
• Evidence for concealed entrainment with pacing during VT
• A return cycle length equal to the VT cycle length
• A stimulus to QRS during pacing that is equal to the electrogram to QRS

during VT.
Entrainment is the continuous resetting of the tachycardia by a drive train of stimuli
and implies the presence of an excitable gap within the re-entrant circuit. Entrain-
ment can occur during pacing at sites that are either within or outside the re-entry
circuit, and entrainment alone does not indicate the location of the pacing site rel-
ative to the re-entry circuit. The phenomenon of concealed entrainment has been
shown to identify a zone of slow conduction within the circuit of the VT [SFS+97].

The success rate with limited lesion delivery reported by various groups using
the described mapping and entrainment criteria ranges from 50% to 90%, with a
20% to 40% late recurrence rate [SMD+97, MHK+93]. Limitations to entrainment
mapping include the presence of a wide isthmus, a deeper anatomic location of the
recorded isthmus, or dense fibrosis and calcification preventing adequate lesion size.

1.2.2 Ablation of unstable VT

In patients with hemodynamically intolerable, unstable and unmappable VT, ap-
plicability of catheter ablative therapy using standard mapping and focal ablation
techniques is very limited. The reasons are the presence of multiple and changing
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VT morphologies with catheter manipulation or pacing protocols, and the nonin-
ducibility of the VT.

An ablation strategy that incorporates techniques that identify important anatomic
targets is critical for widening the applicability of catheter ablative therapy for such
VTs. Catheter-based mapping and surgical mapping in such VTs have confirmed the
site of origin of most VT to be localised to the transition from the dense scar to the
normal endocardium, the so-called border zone. A systematic approach proposed
and used [SSM+01, LM03] to ablate unmappable VTs has the following steps:

1. Analysis of 12-lead electrocardiogram (ECG) for all induced and spontaneous
VTs to regionalise an endocardial area of interest to perform more detailed
pace-mapping

2. Generation of a detailed sinus rhythm voltage map to identify the location and
extent of the border zone and define all aspects of the endocardial anatomy

3. Perform pace-mapping to target the border zone adjacent to the area of dense
scar with the starting point of our pace-mapping attempts based on the 12-lead
ECG analysis

4. Localizing the site of the closest pace maps with 12 out of 12-lead ECG match
determined and tagged along the edge of the border zone and dense scar

5. Generation of linear ablation lesions created by applying a series of point
lesions, with the lesions extending from the edge of normal myocardium (i.e.,
signal voltage amplitude > 2mV) or an anatomic barrier like the mitral valve
across the border zone and 1 to 2 cm into the area of dense scarring (amplitude
< 0.5mV)

In this thesis, we concentrate on RFA therapy planning for the described two
forms of VTs, by providing patient-specific VT re-entry circuits and maps of exit
points (optimum ablation targets), through in silico simulations of clinical pace-
mapping protocol on patient-specific heart models. We model the acute and chronic
effect of RFA lesions, to predict the acute and chronic VT inducibility risk, which
could be interpreted as acute success and long-term success.

1.3 Lesion Formation

RFA lesion size in myocardium is influenced by many parameters such as delivered
RF power, electrode length, electrode orientation, blood flow and tissue contact
[Eic03]. We concentrate on modelling the state of RFA lesions after the ablation, it is
necessary to understand the factors influencing RFA lesion formation as these build
the basis for temporal post-ablation lesion behaviour. The following relationships
are reported in literature:

• Linear relationship between temperature and lesion depth [Hai93, NDH94,
Hai08]. Fig. 7.2a) shows the data from [Hai08].

• Linear relationship between applied current and lesion depth [Hai08].
Fig. 7.2b) shows the data from [Hai08].

• Linear relationship between electrode radius and lesion depth [Hai93,
NE06]. Fig. 7.2c) shows the data from [Hai93].
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CHAPTER 2 Biophysics and pathophysiology of lesion formation by transcatheter radiofrequency ablation
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pathways. Smaller lesions limit the likelihood of collateral
damage and enhance the safety of the procedure. If the
lesion is too small, however, there may be insufficient 
tissue injury to incorporate all of the arrhythmogenic com-
ponents and eliminate the arrhythmia. In particular, abla-
tion of some types of arrhythmia, such as atrial flutter and
ventricular tachycardia, depends on successful ablation 
of wide and deep areas of myocardium. Thus, the goal of
many ablation systems has been to increase the depth and
volume of RF lesions, but to do so in a controlled fashion.
Since high source temperatures and high power ampli-
tudes should result in large lesions, one might conclude
that in order to maximize the lesion size, maximum power
should always be applied during catheter ablation. How-
ever, there is an upper limit to the magnitude of RF power
that can be safely and effectively applied. As long as tissue
temperatures do not exceed 100 °C, ablation proceeds
unimpeded. If the electrode–tissue interface temperature
reaches this threshold, however, blood at the surface
begins to boil. This produces an adherent collection of
denatured blood proteins that is referred to as coagulum.
The coagulum accumulates on the electrode surface,
resulting in less electrode surface area being available 
for conduction, and the local power density increases.
Increasing power density results in more heating, more
coagulum, and progressively less available conducting
electrode surface area. Within a second, most of the elec-
trode is covered with coagulum, and a sudden rapid rise

in electrical impedance ensues, preventing effective RF
delivery from that point forward (Fig. 2.5) [15]. It is 
then necessary to remove the electrode from the patient
and scrape the coagulum from the electrode before resum-
ing ablation. In the worst case, coagulum can embolize
from the catheter tip, leading to adverse consequences if

Figure 2.4 Comparison of the depths 
of radiofrequency ablation lesions created 
in vitro with (A) the electrode–tissue interface
temperature, (B) current, (C) power, and (D)
energy. In this controlled setting with minimal
convective cooling, the best indicator of lesion
formation was the measured temperature.
(Reproduced with permission from [1].)

Figure 2.5 An example of simultaneous measurements of electrode tip
temperature and impedance during radiofrequency catheter ablation in
vivo. As the temperature approaches and then exceeds 100 °C, a sudden
rise in electrical impedance is observed.
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Figure 7.2: Factors influencing RFA lesion size. For details see text. Images from
[Hai93, Hai08, NDH94].

• Linear relationship between power and lesion depth [WHRdM89, Hai93,
Hai08]. Fig. 7.2d) shows the data from [Hai08].

• Linear relationship between delivered energy and lesion depth [Hai08].
Fig. 7.2e) shows the data from [Hai08].

• Logarithmic relationship between application time and lesion width &
depth which reaches steady state after approximately 45-60 seconds [WHRdM89,
Hai91, NDH94]. Fig. 7.2f) shows the data from [NDH94].

• Linear relationship between contact force and lesion width [Hai91, TDF+10].

As mentioned before, lesion formation in the myocardium is mostly due to a
heating of myocardial tissue by radio-frequency current (hyperthermia). The my-
ocardium needs to be heated above 50◦C in order to become necrotic [NLWH93,
NDH94]. Recently Wood et al. found this threshold to be 60◦C [WGL+11].

If new RFA lesions are placed in areas of previous scars, an increased impedance
between catheter tip and myocardium and decreased tissue temperatures can be
observed [CVT+01]. Nevertheless, lesion formation is not affected by underlying scar
as long as electrode size, tissue contact and temperature are controlled [KDP+06].

In the following sections we provide more detailed information about the heat
transfer processes, the alterations in cardiac electrophysiology during tissue heating
and the morphology of acute lesions. Although the process of lesion creation is not
subject of modelling here, its understanding is essential to model post-ablation RFA
lesion electrophysiology, morphology and temporal behaviour.
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(a) [Hai93]. (b) [TWC+00].

Figure 7.3: Schematics of the thermodynamic processes during RFA.

Figure 7.4: Tissue heating with regular and cooled-tip catheters. Image from
[Hai08].

1.3.1 Heat Transfer Processes

During RFA, various heat transfer processes take place in the region of the catheter
tip and myocardium. The desired effect is that the catheter tip exchanges heat
conductively with the myocardium. Resistive heating of myocardial tissue is only
effective for distances less than 2 mm from the catheter tip [NE06]. Additionally,
a resistive heating of blood and tissue near the catheter tip is taking place. The
catheter as well as the endocardial myocardium is cooled by convective heat loss
to the circulating blood pool. Additional heat loss is observed in areas with large
coronary arteries [Hai93, TWC+00]. The processes are depicted in Fig. 7.3. When
tissue is overheated, charring may occur. This may build up an insulating endo-
cardial layer, preventing a deep extent of the lesion. A greater transmural extent
of the lesion can be achieved by active and controlled tip cooling using cooled-tip
catheters [Hai08] (Fig. 7.4).

1.3.2 Electrophysiology during Hyperthermia

The electrophysiological properties of myocardial cells change under hyperthermia.
These effects are reversible with falling temperature and are thus not subject for
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model integration.
During the process of heating, tissue conductance is increased by 2% per degree

Celsius [TWC+00]. Wood and Fuller report an increase in conduction velocity
during hyperthermia, most likely caused by cell shrinkage and / or changes in cell-
to-cell coupling [WF02].

Haines reports an increased automaticity in cardiac cells which are heated around
50◦C in contrast to cells at 45◦C [Hai08]. Nath et al. state a sigmoidal rela-
tionship between tissue temperature and cell membrane depolarization [NLWH93,
NDH94]. Nath et al. also report changes in action potential morphology and dura-
tion [NLWH93]. Additionally, they show three stages of excitability of myocardial
cells during hyperthermia. The median temperature associated with normal ex-
citability (44.0◦C) is significantly lower than the median temperature associated
with reversible loss of excitability (48.0◦C) and irreversible loss of excitability and
tissue injury (50.5◦C) [NLWH93, NDH94].

1.3.3 Acute Lesion Morphology

Fig. 7.5 shows some macroscopic images of ablation lesions. Nath et al. and McRury
& Haines both describe RFA lesion to have two border zones (each 3 mm radius)
in the acute phase after RFA [NDH94, NWK+94, MH96]. Nath et al. revealed a
reduced blood flow in these border zones due to micro vascular injury [NWK+94]. In
contrast to these findings, Ndrepepa and Estner describe only two zones: A necrotic
core and a haemorrhagic border zone [NE06]. The latter is caused by disruption of
endothelial cells and erythrocyte passage. Their findings are based on experiments
from Hindricks et al. [HHG+89]. They also describe spots of haemorrhage in the
necrotic zone.

The shape of the lesions is caused by the thermal processes during RFA (Sec-
tion 1.3.1). Circulating blood in the chamber cools the endocardial surface and thus
prevents a great endocardial extent of hyperthermia. This cooling process has only
very limited transmural extent and thus, the lesion extent at the endocardial surface
is less than in the mid-myocardial region. Epicardially, the scar is narrower than in
the centre, because the resistive heating from RFA is also decreasing with distance.
Additionally, coronary vessels at the epicardial surface form another heat sink.

The acute lesion is covered endocardially with a fibrinous layer [NE06]. Volume
loss in ablated tissue may lead to an impressed endocardial scar surface [NE06].
In excised tissue, lesions have a pale white colour, due to the local denaturation
of myoglobin [NE06]. Overheating of tissue directly underneath the electrode tip
may lead to small areas of vaporization of tissue. There are also hints, that if the
myocardial wall is very thin, an inflammatory swelling might occur epicardially. We
tried to illustrate schematically an idealised shape of acute RFA lesion in Fig. 7.6.
We thereby chose to include as much known information about acute RFA lesions as
possible. So the schematic drawing reflects the most complex possibility to model a
RFA lesion. Depending on the purpose of a simulation, the morphology of the lesion
can be simplified in the model. E. g. to model the chronic state of a lesion, border
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(a) [NWK+94]. (b) [MH96].

(c) [NWK+94]. (d) [MH96].

(e) [NTR+10].

Figure 7.5: Microscopic images and schematic drawings of ablation lesions.
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Figure 7.6: Schematic drawing of an RFA lesion.

zones, fibrinous layer and inflammatory swelling could be neglected. Additionally,
for some simulation types, it is not necessary to include non-myocardial tissue into
the model, as it does not influence excitation propagation under certain assumptions,
e. g. rule-based excitation propagation. For VT simulations, inflammatory swelling
of the myocardial wall can be neglected, as the left ventricular wall is so thick that
inflammatory swelling might not play a significant role.

1.4 Lesion Size

The size of a RFA lesion is depending on its location in the heart and the time
passed since the ablation process.

1.4.1 Acute effect

Saul et al. report width of acute lesions of 5.9±2.5 mm (ventricle) [SHP+94]. Sim-
ilar sizes were found by Wood & Fuller in the ventricles (5.4±0.48 mm) [WF02].
A stronger difference in size can be observed in lesion depth, which varies from
2.8±0.7 mm [WF02] to 4.2±2.0 mm [SHP+94] for the ventricles [SHP+94].

1.4.2 Chronic effect

Most of the studies agree that lesions grow after successful ablation of the my-
ocardium. Lesion width in the ventricles increased to 7.2±1.0 mm after 22 days
[WF02] and to 7.4±2.5 mm after one month [SHP+94]. Lesion depth in the ven-
tricles increased as well to 3.3±0.4 mm and to 4.5±1.9 mm after 22 days and one
month, respectively.

The growth of RFA lesions has been described by Nath et al. [NDH94] and van
Brakel et al. [vBBS+04]. Van Brakel especially reported, that transmurality of RFA
lesion increases over time [vBBS+04].
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(a)
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Figure 7.7: (a) Ablation lesion in myocardium, Gomorri’s trichrome staining. Lesion
looks blue and unaffected tissue is red. Image taken from [TGB+03]. (b) Cardiac
RFA lesion, showing three zones: N = normal myocardium, CB = borderline zone
of contraction band necrosis, CN = zone of coagulation necrosis. H & E staining,
bar is 200 µ. Image taken from [ADW+05]

1.5 Lesion Characteristics & Modelling

RFA impacts the ventricular myocardial tissues in various ways. Fig. 7.7(a) shows a
cardiac RFA lesion, post ablation. The lesion (marked "Abl"), consists of necrotic
cells. Necrosis is found in roughly two zones, as can be seen in Fig. 7.7(b). The
zone that was nearest to the electrode shows coagulation necrosis (marked "CN"),
in which the cell structure is totally disrupted. It can be recognised by a loss of cell
definition, separation of the fibres by oedema, extravascular red blood cells, and loss
of nuclei and cross-striations [TGB+03]. Around this zone of coagulation necrosis,
a border zone with partial necrosis exists (marked "CB"). In this zone, the cross
striations and sarcolemma are partially preserved. This zone is sometimes hard to
distinguish, but is important to recognise, as recovery of the cells might undo the
electric isolation.

Normal (N), CB and CN are modelled as the three main compartments of the
RF ablation model. In a short term, the necrotic tissue (CN) is surrounded by
inflammatory tissue and oedema. These tissue types might remain conductive, but
conduction slowing might occur. In a long term, it is possible to model ablation
lesions as non-conducting myocardial tissue (CN), maybe surrounded by CB with
diffuse fibrotic tissue.

1.5.1 Electrophysiology

Wood & Fuller [WF02] have stated the acute and chronic electrophysiological changes
in and around the RF lesions. For the acute effect, they have shown significant reduc-
tion in APD50 (41% less), APD90 (19% less), APDmax (16% less), and conduction
time (from 16 ± 3 msec to 13 ± 4 msec) in the border zone surrounding the necrotic
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core, post ablation. For the chronic effect, these electrophysiological changes were
resolved within 22 ± 13 days of lesion formation. These studies were similar to the
findings of Wu et al [WFCT99]. Ge et al. found similarly that APD, AP amplitude,
resting potential and dV/dt is decreased in a radius of up to 8 mm around acute
lesions [GSGK95].

Thus, for modelling the acute effect of RFA lesions, we chose to have a slowed
conduction and shorter APD in the border zone, mainly comprising of inflammatory
tissue and oedema. On the other hand, for modelling the chronic effect, we chose to
have a healthy action potential morphology in the border zone, along with diffuse
fibrosis.

1.5.2 Fibre Orientation

Ndrepepa and Estner state that tissue under the effect of RF current loses its nor-
mal fibre orientation [NE06]. They do not state how fibre structure changes. The
necrotic tissue is considered to be non-conductive. The border zone tissue is assumed
to have slowed conduction during the acute effect of RFA and normal in chronic RFA.
The border zone tissue is assumed to have fibre structure changes, similar to peri-
infarct regions (Fig. 6.4) but with a texture of diffuse fibrosis (Fig. 6.4E) (to have
less arrhythmogenic substrate, as compared to patchy fibrosis (Fig. 6.4D) found in
peri-infarct regions). On a macroscopic level, the diffuse fibrosis is assumed to have
rather isotropic conduction properties.

In contrast to detailed electrophysiological modelling, the change in fibre struc-
ture might impact active and passive mechanical properties of the myocardium, thus
it is probably necessary to be considered in future mechanical simulations.

2 Radiofrequency Ablation on VT patients

2.1 Simulation of Radiofrequency Ablation

In this work, we focus only on modelling the state of RFA lesions post ablation
therapy, and not during the therapy. A rule-based modelling approach of RFA
lesions post ablation therapy was applied, due to the lack of imaging data post RF
ablations, due to an ICD implantation. As discussed in section 1.4, we used the lesion
size as described in the literature, to model the acute and chronic effects of RFA
therapy. Fig. 7.8 shows acute and chronic RFA lesions created on a cardiac tissue
slab, along with the different compartments of the model. The loss in normal fibre
orientations were also modelled synthetically by generating random fibre orientations
in the necrotic core and border zones, as shown in Fig. 7.9.

2.2 Short Term Effect of RF Ablation

Fig. 7.8(top row) & Fig. 7.9(a) were used to model the acute effects of RFA lesions.
The necrotic core was modelled as electrophysiologically inactive, with no conduc-
tion at all. The border zones were considered to have slower conduction and shorter
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Figure 7.8: Cardiac tissue slab preparation to evaluate RF ablation simulations for
acute (top row) and chronic effects (bottom row). Acute effects show a necrotic core
(grey) with a borderzone (dark red) corresponding to inflammation and a borderzone
(green) corresponding to the gradient of damaged tissue from necrosis to healthy
tissue. Chronic effects show an increase of the necrotic core size (black) with a bor-
derzone (green) having diffuse texture tissue, which represents the gradient between
necrosis and healthy tissue.

APD morphology, due to reasons as described in section 1.5.1. The diffuse fibrosis
was modelled macroscopically, with a mixture of 20% anisotropic and 80% isotropic
propagation (as detailed in section 2.1.1 Eq. 6.1 with k = 0.8). In order to study
those effects in details, we simulated such behaviour on a cardiac tissue slab and
the results are shown in Fig. 7.10(a). For patient-specific RF ablation simulations
after the data acquisition, only those exit points, which had high occurrence rate
are chosen as ablation targets, to have a robust approach. Fig. 6.16 shows such
locations for a patient data.

The VT-Stim modelling is then re-simulated on the personalised electrophysio-
logical model, after embedding of the acute RFA lesions. This derives a new VT
risk, in terms of VT inducibility maps. If VT is still induced, also after the formation
of RFA lesions, new exit points are mapped and modelled with acute RFA lesions,
until no VT is inducible with all protocols as described in table C.4.

Finally, all the exit points mapped during this process are marked as potential
exit points for planning of RFA therapy.
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(a) Acute effect (b) Chronic effect

Figure 7.9: Synthetic disorganisation of myocardial fibres in border zones (dark red
and green) and necrotic core (black) for electrophysiology simulations with RFA
lesions. For fibre colours refer Fig. 6.4.

(a) Acute effect (b) Chronic effect

Figure 7.10: Simulation of acute & chronic effects for RFA lesions on a cardiac tissue
slab.

2.3 Long Term Effect of RF Ablation

Fig. 7.8(bottom row) & Fig. 7.9(b) were used to model the chronic effects of RFA
lesions. The necrotic core was again considered to be electrophysiologically inac-
tive, but with an increase in its size due to the findings described in section 1.4.
The border zones were decreased in size, with the recovery of healthy electrophys-
iological behaviour, in the presence of diffuse fibrosis, with reasons as explained in
section 1.5. These effects were studied on the cardiac tissue slab with results shown
in Fig. 7.10(b).

After data acquisition, VT-Stim modelling is performed on the personalised
electrophysiological model with embedding of chronic RFA lesions, as shown in
Fig. 7.11. One of its potential use is to assess the VT recurrence rate after the RFA
therapy.
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Figure 7.11: (middle & right) Placement of chronic RFA lesions (in red) planned
with in silico VT-Stim study for the personalised clinical data. One of the re-entry
map studied for RFA planning (left), others are shown in Appendix D in Table D.5.

3 Conclusion

In this work,we proposed a rule based modelling approach for RF ablation lesions
based on the state of the art studies. This approach was carried out due to the lack
of patient’s imaging data, on RF ablation lesions. As the patients had a pacemaker
implanted at the end of the ablation procedure. This rule based modelling approach
also incorporated the acute and chronic effects of the RFA lesions. The chronic
RFA lesions were then used in the in silico simulation of VT stimulation study post
ablation therapy to assist in estimating the success of RFA lesions in silico and
locating the potential RFA targets.
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Background – Steep and shallow action potential duration (APD) restitution
curves as well as varying conduction velocity (CV) have been shown to facilitate
wave-break and ventricular arrhythmias. However the influence of the spatial het-
erogeneity of APD restitution and CV at the heart scale on the onset of ischemic
ventricular tachycardia (VT) in patients is unknown.

Objective – Using a combined modelling and clinical approach, our objectives were
to: (1) determine the patient-specific spatial heterogeneity of APD restitution and
CV over the left ventricular (LV) endocardium, (2) correlate this heterogeneity with
the observed VT exit points, and (3) to use a model to predict the exit points and
the VT circuits based on the given spatial heterogeneities, and compare with clinical
observations.

Methods – We studied 6 cardiac patients, 4 with ischemic heart disease (IHD) and
2 with dilated cardiomyopathy (DCM). An electrophysiological study was performed
on each patient with a non-contact electro-anatomical mapping system. The even-
tual scars were segmented from a high resolution late gadolinium enhanced cardiac
magnetic resonance imaging (LGE-CMR). Two of the IHD patients were mapped
during a complete VT stimulation study. A simplified biophysical monodomain ac-
tion potential model was personalised to the patient’s anatomy (including scars and
peri-infarct areas) to estimate the spatial heterogeneities, and used for VT prediction
using an in silico VT stimulation study with Wellen’s protocol.

Results – Spatial heterogeneity of the maximum APD restitution slopes was higher
for IHD cases than DCM cases. Distribution of the maximum APD for the restitu-
tion curves was less heterogeneous for all cases, thus proved to be less discriminative.
Exit points were observed to lie in the regions with low conductivity, steeper restitu-
tion slope and higher maximum APD islands.

Conclusions – Patient-specific spatial heterogeneity of APD restitution and CV
seem to be good indicators for the locations of crucial entry/exit points of VT circuits.
The personalised in silico VT-Stim model was sufficient to predict the macroscopic
characteristics of the VT circuits and the entry/exit point locations as observed in
the clinical data, along with some additional clinically unobserved entry/exit points.

1 Introduction

Radio-frequency (RF) ablation therapy are increasingly being used to treat drug
resistant ventricular arrhythmia, especially those related to ischaemic cardiomyopa-
thy to provide a curative therapy. These procedures can be very effective but still
have unsatisfactory success rates widely ranging from 50−90%, with a 20−40% late
recurrence rate, due to a lack of clinical consensus on the optimum RF ablation
strategy [ASAG09]. There is a need for identifying those at high risk of developing
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ventricular arrhythmia as well as a need for substantial guidance in designing the
optimum ablation strategy [SKS+93].

Computational modelling of cardiac arrhythmogenesis and arrhythmia mainte-
nance using such models has made a significant contribution to the understanding
of the underlying mechanisms [CW91, WFE+01, PK95, JG96, CF04, CR95]. These
studies have shown a host of factors involved in the onset of arrhythmia with wave
fragmentation and spiral wave breakups, taking into account of real ventricular ge-
ometry [TT09], tissue heterogeneity in repolarisation [KSGH08, PCV+11] and APD
restitution [YFRM05, ART07] and CV restitution [BG02]. A combined clinical
study and synthetic modelling of APD restitution was shown in [NBS+06]. In this
paper, we studied these properties for clinical datasets and evaluated how these
properties are involved in the induction of ventricular tachycardia in ischaemic car-
diomyopathy.

To introduce models directly into clinical practice, and to personalise with pa-
tients data, we used a coupled personalisation framework [RCS+11], which is fast
and combines the benefits of an Eikonal (EK) model [SCMV+05] with those of a sim-
plified biophysical model, the Mitchell-Schaeffer (MS) model [MS03], as explained
in Chapter 4.

Model personalisation is performed to estimate patient-specific APD restitution
and CV heterogeneity. This heterogeneity is then correlated with clinically observed
exit points. The resulting personalised 3D MS model is then used to simulate a clin-
ical VT-Stimulation (VT-Stim) study to predict the VT isochrones and exit points
which are then compared with clinically observed VT. The spatial heterogeneity of
the observed exit points sites during the sustained VT are characterised and cor-
related with the electrophysiology characteristics such as APD restitution and CV
heterogeneity at the region.

2 Methods

2.1 Clinical Study: Patient Recruitment and Pacing Protocol

We studied 6 cardiac patients, n=4 with Ischemic Heart Disease (IHD) & n=2 with
Dilated Cardio-Myopathy (DCM). Two cases (IHD_1 & IHD_2) had undergone an
invasive programmed ventricular stimulation (chronic ischemia patients; LV ejection
fraction ≤ 45 %), while the other cases had simultaneous non-contact mapping of
the LV during multi-site pacing. The study protocol was reviewed and approved
by local institution’s ethics committee. Written consent was obtained before the
study. Pre-op, the patients were scanned with MRI for cine-MR (function), 3D
SSFP (anatomy), LE MR (scar imaging) and tagged MR (motion).

Pacing was performed from the RV apex and a standard Wellen’s protocol was
applied during the VT stimulation study, a multi-array catheter (MEA) was posi-
tioned within the LV for electro-anatomical non-contact mapping (EnSite Velocity,
St. Jude Medical, USA). Patient 1 had induced sustained monomorphic VT (SMVT)
with a cycle length of 275 ms at stage 11 (500ms S1, with S2 and S3 just above
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VERP) of the Wellen’s protocol. While patient 2 had SMVT with a cycle length of
245 ms at stage 4 (600ms S1, with S2 at 360 ms), as shown in Fig. 8.3, Fig. 8.4 &
Fig. 8.5.

Unipolar electrograms recorded from the MEA were filtered with a Band Pass
filter (BPF) (High Pass filter cutoff (HPFc): 10 Hz and Low Pass filter cutoff
(LPFc): 30 Hz) for prominent QRS detection referred as Vdep henceforth, and with
BPF (HPFc: 0.5 Hz and LPFc: 30 Hz) for T-Wave detection referred as Vrep

henceforth, from the electrophysiological recorder (EnSite Velocity, St Jude Medical,
USA) and exported for offline analysis.

Figure 8.1: (left) High Resolution LE MRI, (middle) whole heart model segmented
from 3D SSFP MRI with scars in violet and PIZ in grey, (right) EnSite study with
low amplitude scars highlighted. Top row is for IHD_1 and bottom for IHD_2

2.2 Data Analysis

2.2.1 Anatomical Data

Cardiac magnetic resonance imaging (CMR) data of the cardiac structure were ac-
quired on a 1.5T scanner (Philips Healthcare, Best, Netherland). 3-dimensional
(3D) anatomical data were acquired with high-resolution late-gadolinium enhance-
ment (LGE) CMR (1.3x1.3x2.6) for scar characterization. A 3D model of the whole
heart was obtained after segmentation of the structural images. The LV myocar-
dial scar distribution was segmented using signal intensity (SI) based analysis from
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the high-resolution 3D LGE-CMR images. Using the full width at half maximum
(FWHM) method [KFFK09] all pixels with SI values up to half of the maximum
SI were automatically characterised as scar core. Pixels with signal intensity higher
than 2 standard-deviation above the SI from the manually selected remote healthy
myocardium and below that identified as scar core were automatically assigned as
being the grey zone, regions where there is a mixture of scars and healthy my-
ocardium, i.e. infarct border zone [KFFK09]. A volumetric ventricular model of
the heart was then derived incorporating the information of scars and peri-infarct
areas, as illustrated in Fig. 8.1.

2.2.2 Electrical Mapping Data

The depolarisation times were detected within the QRS window and were derived
from the zero crossings of the Laplacian of the measured unipolar electrograms Vdep.
The surface Laplacian of electrograms gave good results even in the case of multiple
deflections and allowed detection of local activation without the interference from
far-field activities [CWSdG+00]. The repolarisation times were detected within the
ST window for the Vrep signals, and were derived using the "alternative method" as
compared to the standard Wyatt method, as explained previously in [NBS+06].

The Activation Recovery Interval (ARI) is an established surrogate measure for
APD and APD restitution [YFRM05]. Steady-state ARI restitution curves were
estimated at steady state rate during sinus rhythm and right ventricular pacing
frequencies (600, 500 & 400 ms).

2.3 VT Modelling Study: Personalisation and Pacing Protocol

A 3D simplified biophysical monodomain action potential MS model was person-
alised to the patient’s electrophysiology mapping data, to estimate the hidden prop-
erties of the cardiac tissue and to predict VT isochrones.

Cardiac tissue conductivity is a crucial feature for the detection of conduction
pathologies. The Apparent Conductivity (AC) of the tissue was estimated using
a coupled personalisation framework, which combines the merits of a fast Eikonal
(EK) model [SCMV+05] with those of a simplified biophysical model [MS03, FK98].
More details on this method can be found in [RCS+11] and chapter 4. The con-
ductivity parameter estimated within the scar and peri-infarct tissue was spatially
graded with the normalised spatial intensity distribution seen from the LGE-CMR.
The computed gradation was inversely proportional to the normalised intensity dis-
tribution, i.e. the higher the signal intensity seen on LGE-CMR images, the lower
the tissue conductivity, thus representing scar.

APD restitution is an electrophysiological property of the cardiac tissue and
defines the adaptation of APD as a function of the heart rate. Its slope has a
heterogeneous spatial distribution, which plays a crucial role in arrhythmogene-
sis [CF04, NBS+06, CBC+11]. The APD restitution curve (APD-RC) defines the
relationship between the diastolic interval (DI) of one cardiac cycle and the APD
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Figure 8.2: Sustained induced VT cycles observed for IHD_1 (top) (cycle length:
275 ms) and IHD_2 (bottom) (cycle length: 245 ms). (left) Induced VT isochrones
with exit points (red) in correlation with scars (white) and PIZ (grey). (right) LV
bullseye representation of VT isochrones.

of the subsequent cardiac cycle. The slope of these RCs is controlled by a model
parameter τopen of MS model and depicts the APD heterogeneity present at multi-
ple heart rates. APD-RC for MS model is explicitly derived as previously described
[MS03],

APDn+1 = f(DIn) = τclose ln





1− (1− hmin)e

−DIn
τopen

hmin





(8.1)

where hmin = 4 (τin/τout) and n is the cycle number. The maximum value of
APD is also explicitly derived as APDmax = τclose ln (1/hmin).

APD-RC was fitted to the steady-state ARI versus DI points derived from the
mapping data, for various pacing frequencies, using a non-linear constrained Active-
Set Algorithm based optimisation of parameters τopen and τclose. A single APD-
RC was fitted for each measured point from the MEA. Minimum DI (DImin) (the
minimum non-refractory DI) can also be computed explicitly from the estimated
parameter values (Fig. 4.7c) using Eq. 4.9 as described in chapter 4.

For simplicity and allowing comparison of results with previous findings [YFRM05,
NBS+06], a standard restitution curve for steady-state ARI versus DI was also fitted
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Figure 8.5: Change of depolarisation time isochrones and APD maps with dynamic
pacing. Boxes highlight the regions showing an increase in APD heterogeneity for
the cycles following pacing S1 & S2, thus possessing an increased vulnerability of
inducing VT.
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using a least-squares fit to the mono-exponential function (EXP-RC):

ARI = ARISS − ae
−DI/b (8.2)

where the ARISS (maximum APD), a and b are the parameters of the fit. The
maximum value of the slope from the fitted EXP-RC curves, is then computed
explicitly from the derivative of EXP-RCs using a fixed DImin (100 ms), the results
of which are shown in Fig. 8.8(b). The slope is also computed analytically for
comparison with [NBS+06] and is given by:

Smax = (a/b)e
−DImin/b (8.3)

where Smax is the maximum slope for EXP-RC curves. Previously estimated DImin

using Eq. 4.9 were used here. The results are shown in Fig. 8.8(d).
Next, the personalised model was used to predict VT circuits, using an in silico

programmed ventricular stimulation (VT-Stim) study from RV apex with Wellen’s
protocol. Each stage of the VT-Stim was simulated in parallel on a cluster of
computers, and tested for induced VT. Simulated induced VT cycle isochrones were
computed to locate the earliest activation times site, which corresponded to the exit
point of the re-entrant VT circuit. As these are the areas which fire abnormally at
higher pacing sites, due to the local trapping of the signal.

The model was also tested for simulated VT-Stim study with pacing at different
sites in RV. All the exit points identified from induced SMVT from the simulated
VT-Stim study, were then correlated with the spatial heterogeneities of the CV,
APD restitution and the scar and peri-infarct tissue distribution.

3 Results

3.1 Estimation of the patient-specific spatial heterogeneities

Fig. 8.6 shows the spatial heterogeneities of the tissue conductivity and APD resti-
tution property, estimated for the ischaemic heart disease (IHD) and non-ischaemic
dilated cardiomyopathy (DCM) patient groups. For study subjects, IHD_1 and
IHD_2, the clinically observed exit points are also overlaid on the maps (transpar-
ent white dots).

IHD_1 shows most of the spatial heterogeneity of the maximum slopes and
maximum APDs for the APD-RC present in and around the scar regions, where the
tissue conductivity represented by the parameter AC had also low values (Fig. 8.6).
The same observation is noted for IHD_2.

The clinically observed exit points during induced SMVT for IHD_1 & IHD_2,
lied in the regions with higher maximum APD and higher maximum restitution
slope compared to the surrounding tissue as seen from the Fig. 8.6. The tissue
conductivity in the exit point regions were low. Low conduction velocity along
with steeper restitution slope and higher maximum APD as an island amidst of

64 nodes of IBM e325 dual-Opterons 246, 2Ghz



3. Results 123

Figure 8.6: Patient-specific APD-RCs, LV bulls eye representation of the spatial dis-
tribution of the maximum restitution slope and maximum APD for APD-RCs, and
parameter AC. Scars (black contours), and peri-infract areas (white contours) are
also overlaid for some cases, along with clinically observed exit points (transparent
white dots).
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Figure 8.7: Spatial heterogeneity of maximum restitution slope (a & b, e & f),
maximum APD (c & g) for APD-RCs and CV (d & h) , for exit point regions. They
lie in the isolated islands of maximum restitution slope, with a larger maximum
APD for APD-RCs, and on the borders of AC maps. Top row: IHD_1, Bottom
row: IHD_2. For colour scale, refer Fig. 8.6.

lower maximum APDs, were some of the main properties observed for the exit point
regions, as shown in Fig. 8.7.

The other ischaemic cases (IHD_3 & IHD_4) had left bundle branch block
(LBBB) on resting electrocardiogram and were potential candidates for cardiac
resynchronisation therapy (CRT). They showed comparatively lower heterogeneity
for the maximum APD-RC slope and maximum APD as seen in Fig. 8.6. IHD_4
case had scars present on the posterior LV wall, which is also reflected in the spatial
distribution of AC values. Whereas IHD_3 had scars present on the anterior LV
wall. IHD_3 also showed higher heterogeneity of the maximum APD-RC slope and
maximum APD on the anterior side, where the scars were present.

DCM cases showed less heterogeneity for the maximum restitution slope and
maximum APD, compared to the IHD cases (Fig. 8.6). DCM cases had LBBB and
did show the presence of low tissue conductivity near the septal areas.

3.2 Correlation of the spatial heterogeneities: Inter-patients

Fig. 8.8 shows the inter-patient variability of the maximum restitution slope and
the maximum APD for IHD and DCM cases. The overlaid horizontal grey line in
the Fig. 8.8 shows the values observed for literature values of the model parame-
ters [MS03], representing the healthy cardiac tissue.

The spatial heterogeneity of the maximum APD-RC slope as well as EXP-RC
slope (explicit slope with fixed DImin) proved to be the most discriminative feature to
distinguish between the IHD and DCM subjects, as shown in Fig. 8.6 & Fig. 8.8(b).
The IHD subjects clearly showed a higher spatial heterogeneity of maximum APD-
RC & explicit EXP-RC slope, than the DCM subjects. IHD_3 also showed the
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Figure 8.8: Box plots of spatial heterogeneity of the maximum APD (a & c) for
APD-RCs and maximum restitution slope (b & d) for EXP-RCs (slopes calculated
explicitly using fixed DImin), for the different IHD and DCM cases. (c & d) show
the values for the exit points in grey dots, over the box plots of the whole LV, for
maximum APD (c) for APD-RCs and maximum restitution slope (d) for EXP-RCs
(slopes calculated analytically using Eq. 8.3 with previously estimated DImin). Exit
points are seen to have steeper (higher) restitution slope (mostly > 1.2) (d) but
heterogeneous APD values (c)

highest spatial heterogeneity of the explicit EXP-RC slope compared to the other
IHD cases. This may be due to the patchy distribution in the scar regions on the
anterior side compared with other IHD subjects in whom the scar distribution is
more confluent. DCM cases had comparatively more homogeneous distribution of
the maximum APD-RC slope as also seen in Fig. 8.6

IHD subjects had comparatively higher mean maximum APD than DCM sub-
jects. The spatial distribution of the maximum APD value did not prove to be
as discriminative as that of maximum APD-RC & explicit EXP-RC slope, however
more spatial heterogeneity was observed for both IHD_1 and IHD_2, both of whom
had positive clinical VT-Stim study.
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3.3 Induced VT: Clinical observations vs. Model predictions

The clinical protocol of VT-Stim study performed on the study subjects IHD_1
and IHD_2 was simulated in silico on the personalised 3D monodomain action
potential model, incorporating information both from patient’s anatomy and scar
core distribution, grey zone/peri-infarct zone distribution, along with the mapped
LV electrophysiology data

The protocol was simulated with the same RV apex pacing location with Wellen’s
protocol. VT was induced at stage 7 of the Wellen’s protocol (Paced driving-train
S1 at 400 ms, sensed first extra stimulus S2 at 200 ms and sensed 2nd extra stimulus
S3 at 100 ms). The model also predicted different VT circuits with different pacing
conditions, which are mentioned in details in the next section.

Personalised model of IHD_1 did predict a sustained VT re-entry circuit with
an activation pattern, which was macroscopically similar to the clinically observed
one, initiating from the LV lateral wall, spreading anteriorly and then return to
the lateral wall via the posterior wall as seen in Fig. 8.9. The cycle lengths of the
re-entrant VT matched between the model predicted and the clinically observed
(clinical: 275 ms model predicted: 260 ms for IHD_1 & clinical: 245 ms model
predicted: 250 ms for IHD_2). The exit points observed clinically also did match
well with the predicted ones.

The model enabled the prediction of a 3-dimensional VT circuit as opposed to the
2-dimensional VT activation pattern observed by the MEA by taking into account
of the geometric information gathered from CMR such as scar distribution and LV
myocardial thickness. This gave additional insights to the wave propagation within
the myocardium, with the given spatial distribution of the scars and the peri-infarct
areas. This is seen as the red geodesic path computed in the myocardium from the
predicted VT isochrones. This path shows the main VT circuit/loop to be broken
in order to successfully terminate VT. The points with the latest activation time
around the scars were also computed, these points are clinically termed as entry-
points. As a case of ischemic VT, the wave is believed to be trapped within the scars
and peri-infarct zone, between the entry and exit points. This trapped wave circuit
is estimated in 3D from the predicted VT isochrones, and this incorporates the
scar and peri-infarct heterogeneity details from the LE-MR. The results are shown
in Fig. 8.10. The estimated trapped path surrounds the scar core and lies within
the PIZ and healthy tissue. This gives us insights on how transmural the isthmus
representing the trapped path is? Successful VT termination through ablation is
achieved when this trapped path is successfully broken with ablation lesions.

Personalised IHD_1 model also predicted a spiral point as observed on the an-
terior side from Fig. 8.9. The spiral tip computed within the myocardium is shown
by a blue path in Fig. 8.9. The spiral tip was developed due to the slowing down of
the wave at higher pacing rates in the low conductivity region observed by the LV
EP mapping data on the anterior side as seen in Fig. 8.6.

Personalised model of IHD_2 VT-stim model also predicted a positive VT-stim
study with re-entrant VT induced at Stage of the Wellen’s protocol. This again
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correlated with the clinically observed VT circuit. However the direction of the
activation pattern during the predicted re-entrant VT is reversed from that ob-
served clinically. Wave directions in ischemic VTs is highly dependent on the wave
dynamics and inter-wave collisions, the most significant factors contributing in the
sustainability of re-entrant VT are the electroanatomical properties at the entry and
exit points. The exit points predicted for this case did match with the clinical ones.
The main VT circuit in the myocardium computed from the geodesic path of the
predicted VT isochrones is shown in red in Fig. 8.9.

This case also had a lower conductivity distribution compared to IHD_1, as seen
in Fig 8.6. Thus this case went into fibrillation soon after the development of VT.
Also the patient was given a shock during the clinical VT-Stim study to terminate
VT, which was slowly developing into VF

From the model predictions of IHD_2 case, we could see that lower conduc-
tivity distribution along with heterogeneous spatial distribution of the maximum
restitution slope and maximum APD of APD-RC were associated with higher risk
of degeneration to VF. However more studies are needed to support this hypothesis.

3.4 VT & Exit point predictions

In silico personalised models offer much more flexibility than the clinical VT-Stim
procedure, as the model can simulate any combination of paced stimuli from different
locations, with varying pacing rate which may not be feasible in clinical practice. We
tested this by simulating the VT-Stim studies from different points of the heart. We
compared the electro-anatomical characteristics of the pacing sites in those simulated
studies which induced sustained VT and those failed to induce sustained VT. This
analysis gave us some insights to whether pacing from a particular site with certain
electro-anatomical properties such as the surrounding heterogeneity in restitution
and conductivity were more likely to induce VT.

Fig. 8.11 shows the various sustained VT isochrones predicted with the person-
alised model for various pacing locations in the RV. Predicted exit points locations
correlate very well with the scar and PIZ distribution. Most of the exit points lied
on the boundary of scars for IHD_1 case, and within the islands of the scar for
IHD_2 case. IHD_1 case also had some exit points lying in the healthy tissue re-
gions on the free wall region, due to presence of higher maximum restitution slope
as seen from Fig. 8.11. These predicted exit points could be potential targets for
ablation. However for more robustness, we could also grade these predictions with
the occurrence probability, induced VT cycle lengths and duration of sustained VT.

For both cases these exit points also correlate well with the heterogeneity of
maximum restitution slopes of APD-RC, and mostly lie in the islands of higher
maximum slope. as shown in Fig. 8.11 and Fig. 8.6.
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Figure 8.9: Predicted VT isochrones (c,d,e) with the personalised VT-Stim model in
comparison with clinical data (a,b) for IHD_1, same for IHD_2 in the second row.
(k) The geodesic path of the sustained VT circuit in the myocardium representing
the VT loop in red (pointed by red arrow), and the spiral tip computed in blue
(pointed by blue arrow), fr IHD_1. (l) same for IHD_2

4 Discussion

4.1 Tissue conductivity & APD restitution slope heterogeneity

Non-contact EP mapping of the left ventricle allowed characterization the global LV
APD restitution and tissue conductivity properties for the IHD and DCM patients
in the study. Regional scars were observed in IHD patients on LGE-CMR whereas it
was not observed in DCM patients. DCM patients had lower spatial heterogeneity
of APD restitution as compared to IHD cases, thus showing the presence of scars
altering the cardiac restitution properties, thus making it pro-arrhythmic. Our
findings did match with those found in [YFRM05, NBS+06]. Also apex to base
gradients of the heterogeneity were not consistent within the findings. IHD cases
had islands of steeper restitution slope present amidst of shallow slopes, which is
one the factors to prove pro-arrhythmic.
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Figure 8.10: Estimation of the 3D myocardial geodesic path (white schematic path
in a & b) between the entry and exit points, taking into account myocardial scar and
PIZ heterogeneity. (c & d) shows the 3D estimated path from the simulations for
IHD_2, along with LE CMR. White contours are for the segmented myocardium,
green contours are for the scar core and PIZ. Red line represents the path in plane of
LE CMR slice, which clearly shows the action potential wave path which is trapped
between PIZ and scar core. Colours on the 3D path show the activation time (Blue:
late activation, entry point and Red: early activation, exit point). (e) shows the 3D
trapped path surrounding the scar core (solid structure) and (f) shows it to be lying
within PIZ & between the scar core and PIZ (wired structure).
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Figure 8.11: LV bulls eye representation of various model predicted sustained VT
isochrones for different pacing sites, with exit points overlaid (transparent white
dots). (right) Location of predicted exit points (green) in correlation with scar and
PIZ heterogeneity. (top) IHD_2 & (bottom) IHD_1. For Bull’s eye nomenclature
please refer Fig. 3.4.

4.2 Data Limitations & Model personalisation

As only LV endocardial mapping data were used in this paper, there were several
data limitations for model personalisation, few of which are: (i) Lack of estimation
of local RV and transmural spatial distributions of conductivity and restitution prop-
erties. A global estimation of the tissue conductivity was done using body surface
ECG waveforms as explained before. (ii) As non-contact mapping data was used,
the CV estimation of the fast conducting regions, on the inverse mapped estimates
of the EnSite LV surface areas was unreliable. Thus CV restitution heterogeneity
could not be estimated. However this heterogeneity could also play a role in the
initiation of VT. (iii) Usage of Non-Contact Mapping (NCM) data and EP and MR
fusion errors. Although NCM data do have an advantage of measuring temporal EP
data with more spatial acquisition (surface) than the contact mapping data (point),
the NCM data can be challenging for local depolarisation and repolarisation time
estimations. Also uncertainty on the data can be added due to the difficult registra-
tion between the EnSite LV surface and the MR-derived LV surface (Fig. 8.5). (iv)

IHD_1 and IHD_2 cases had undergone a clinical VT-Stim study thus had sufficient
number (3-4) of steady state ARI & DI measurements for each of the S1 overdrive
pacing frequency, to fit APD-RCs. However for the other cases which underwent
CRT, only two heart rates were used for fitting APD RCs. Thus an assumption
was made by considering the sinus rhythm APD, as a constraint on the maximum
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value of APD RCs controlled by the model parameter τclose, while the paced mode
APD was used to adjust the RC slope controlled by the parameter τopen. However,
more measurements for frequencies in the slope region (region between minimum DI
and maximum value of APD on APD RC) could have depicted the RC slope more
accurately. (v) ARI data was used as an APD surrogate to fit the APD-RCs, us-
ing unipolar extracellular potentials. This could under-estimate the underlying real
APD restitution heterogeneity. (vi) Mono-exponential RCs provided an accurate fit
to the vast majority of the data, however when the model APD-RC was fitted with
non-linear optimisation. The model parameter range was constrained to have more
physiological values. This had some misfits leading to few errors on APD-RC fitting
(mean)

4.3 VT Model Predictions & Simplifications

In order to have a clinically relevant model for personalisation with patient-specific
data and VT risk assessment, the MS model used had several simplifications, few of
which are, (i) No actual Purkinje network modelling. Exact locations of these Purk-
inje network extremities are ambiguous and inextractable from the patients data,
although they could play a crucial role in arrhythmogenesis [BGR+06, SSW+04].
However, a high conductivity endocardial region was obtained, which may be in-
ferred as depicting the underlying Purkinje network with personalisation (Fig 8.6).
A local estimation of endocardial restitution properties (Fig 8.6) also helped po-
tentially depict the abnormalities in the Purkinje network around scars, leading to
arrhythmia generation. (ii) Use of an atlas-based cardiac fibre model. Extraction
of true in vivo cardiac fibre orientations is the subject of ongoing research and in-
cluding them would give more accuracy to the VT-Stim predictions and inducibility
maps. Finally, orthotropic anisotropy could change the model behaviour, but ac-
quiring patient-specific data on cardiac laminar sheets seems even more challenging.
(iii) Model complexity was reduced in the VT prediction, due to the absence of all
ionic currents in details. However the model exhibits the main macroscopic proper-
ties of the tissue (conductivity, APD and CV restitution) all of which play a role in
the initiation of VT, as shown in Fig. 8.9.

5 Conclusion

Patient-specific spatial heterogeneity of the maximum restitution slope for APD-RCs
are good indicators in distinguishing IHD patients from DCM cases. Exit points
are present in regions with low conductivity, steeper restitution slope and higher
maximum APD islands. Simplified MS model after personalisation, was sufficient
to predict macroscopic VT circuits and exit point locations. The personalised model
was able to predict other potential clinically unobserved exit points. This opens up
possibilities of evaluating the role of patient-specific models in the clinics to provide
aid in planning and delivery of RF ablation.
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In this thesis, we proposed a novel macroscopic personalisation framework for
3D cardiac electrophysiology models to the state of the art clinical electrophysiology
mapping (contact and non-contact) data. The framework estimated the apparent
tissue conductivity, tissue APD and the APD & CV restitution properties from
the data. We then demonstrated the ability of the personalised EP model, with
patient-specific tissue heterogeneities to simulate patient-specific ischemic VT, with
the simulation of an in silico VT stimulation study. We also proposed a rule based
RF ablation modelling approach to simulate acute and chronic effects of RF ablation.
Last, we demonstrated and validated the predictive power of the model for ischemic
VT patterns, with in vivo clinical data.

In this chapter, we summarise the contributions of each chapter & discuss the
perspectives of the work presented in this thesis.

1 Contributions

Building personalised EP models using ex vivo data

This work was performed to propose a novel method for estimating volumetric model
parameters from surface data with single and multiple pacing frequencies. The
macroscopic features to which the 3D EP model was personalised to, were the tissue
conductivity (estimated from the action potential wave CV), tissue APD and APD
& CV restitution. This framework estimated all the model parameters making the
model heart-specific. Also due to the high spatial and temporal resolution of the
ex vivo optical data, we evaluated the sensitivity of the personalisation to different
pacing scenarios and demonstrated it’s robustness. The volumetric predictive power
of the model for paced action potential waves under different epi- and endocardial
pacing scenarios was also tested. This work was published in [RPD+11, RPD+10,
RSP+09a, RSP+09b]
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Building personalised EP models using in vivo non-contact mapping
data

In this work, we extended the proposed personalisation framework to a coupled
model personalisation framework, for a fast estimation of the hidden parameters
of the tissue such as conductivity and APD restitution to enable clinical use. The
personalisation algorithm coupled a simple eikonal model to a simplified biophysical
MS model, thus combining the benefits of both models. Here we demonstrated a
coarse-to-fine approach (multi-resolution) for personalisation, where we could use a
personalised simpler model to initialise the personalisation of more complex model.
The personalised MS model is then planned to predict patient-specific VT, with
the estimated patient-specific tissue heterogeneities. These results are then demon-
strated on a first cohort of clinical cases in chapters 6 & 8. This work was published
in [RCS+11, RCS+10].

Building personalised EP models using in vivo contact mapping
data

This work showed the application of the proposed coupled personalisation frame-
work to the in vivo contact mapping data. As the study was performed on an alive
infarcted porcine heart, imaging the cardiac fibre orientations with DT-MRI after
sacrifice was feasible. The cardiac fibre orientations were incorporated inside the
model personalisation for a more accurate tissue conductivity estimation (especially
in the regions around scars). We also tested the influence of mapping details on the
model personalisation algorithm. We found that personalisation using epicardial
mapping gave a conductivity estimation closest to the one obtained with person-
alisation using both endocardial and epicardial mapping, and also showed a low
prediction error. On the other hand, the personalisation with endocardial mapping
had an important deviation from the estimated distribution obtained with both
endocardial & epicardial mapping. It also had an important prediction error on
the epicardial surface. Thus, within this experimental setting, epicardial mapping
proved to be a sufficient acquisition to reproduce a tissue conductivity distribution,
closer to the one estimated using both endocardial and epicardial mapping. This
was also the case when the personalisation was done on similar data from a clinical
case [KRC+11]. However such finding has to be tested on other configurations, for
different healthy and pathological cases. This work was published in [RSDA11].

Personalised Ventricular Tachycardia modelling

In this work, we illustrated the main macroscopic characteristics of an ischemic
VT. These include the structural and functional heterogeneity of the tissue near
the scars i.e. peri-infarct zones (PIZ). PIZ are crucial in the initiation and sustain-
ment of ischemic VT. Macroscopic structural heterogeneity was achieved as follows.
The incorporation of a decrease in fibre organisations in PIZ was done, by using a
mixture of anisotropic and isotropic propagation, the ratio of which was controlled



1. Contributions 137

by the percentage of patchiness in the fibrotic tissue. The fibrosis was modelled
for its macroscopic behaviour using multi-domain models, which included healthy
myocytes and collagen network. The collagen network was modelled by an isotropic
diffusion term with low conductivity, to account for the high resistivity whereas the
domain of healthy myocytes is modelled with anisotropic diffusion term with normal
cardiac tissue conductivity. Macroscopic functional heterogeneity was achieved from
the patient-specific tissue heterogeneities estimated (CV, APD, CV & APD resti-
tution) using the proposed coupled personalisation framework. Later, we demon-
strated the simulation of an in silico VT stimulation study using the personalised
and adapted MS model, to quantify VT risk in silico, in terms of VT inducibilty
maps, VT re-entry patterns and VT exit point maps (potential RF ablation targets).
This work was published in [RCS+11] & euHeart project deliverable [RDS+11].

Modelling Radio-Frequency Ablation

This work proposed a rule based modelling approach for RF ablation lesions based
on the state of the art studies. This approach was carried out due to the lack
of patient’s imaging data, on RF ablation lesions, as the patients had a pacemaker
implanted at the end of the ablation procedure. This rule based modelling approach
also incorporated the acute and chronic effects of the RFA lesions. The chronic
RFA lesions were then used in the in silico simulation of VT stimulation study
post ablation therapy to assist in estimating the success of RFA lesions in silico
and locating the potential RFA targets. This work was reported in euHeart project
deliverable [RDS+11]

Planning of RF Ablation lines using in vivo data

In this work, the aim was two-fold. Firstly, we studied the role of spatial heterogene-
ity of cardiac tissue properties such as conduction and APD restitution in ischemic
VT patients who underwent the clinical VT Stimulation study with non-contact
mapping of LV. Patient-specific spatial heterogeneity of the maximum restitution
slope for APDRCs were found to be good indicators in distinguishing IHD patients
from DCM cases. Exit points were present in regions with low conductivity, steeper
restitution slope and higher maximum APD islands. Personalised MS model was
sufficient to predict macroscopic VT circuits and exit point locations, based on the
observed spatial heterogeneities. Secondly, the personalised model was used for in
silico simulation of VT stimulation study and was able to predict other potential
clinically unobserved exit points. This opens up possibilities of evaluating the role
of patient-specific models in the clinics to provide aid in planning and delivery of
RF ablation. This work will be published in [RCD+12].
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2 Perspectives

2.1 Methodological perspectives

Model complexity for Ventricular Tachycardia Choosing appropriate model
complexity and completeness for a given application is crucial. We chose to use
the MS model [MS03] (derived from FK model [FK98]) to simulate ischemic VT
electrophysiology, as it had the essential components playing a role in the genesis
of ischemic VT such as CV, APD and their respective restitutions. The estimated
spatial heterogeneity of these parameters were the key factors in VT induction. As
demonstrated in Chapter 8, we were able to reproduce the macroscopic VT circuits
as observed in the clinical data, along with the same exit points as observed clinically.

However, there is a need to evaluate the model complexity required to model
accurately the dynamics of VT over various cycles, as this could play a crucial role
in VT sustainment and termination. This needs personalisation of more complex
models from the sparse in vivo clinical data.

Multi-resolution personalisation of models More complex & complete mod-
els are known to have a strong impact on the tractability [GNK05] and on the
parameters identifiability [FN09] from clinical data. A fast coupled personalisa-
tion framework was introduced for the first time, including the multi-resolution
coarse-to-fine approach, to personalise complex & more complete models with sim-
pler models [RCS+10, RCS+11]. The framework was used on clinical interventional
datasets with non contact mapping. The results obtained were very encouraging.
The estimated conductivity and APD restitution parameters were able to distin-
guish between the healthy areas and the pathological ones (scar and isthmus). This
shows a potential impact on personalising more complete models to sparse clinical
data for much better understanding of the wave dynamics. A first step towards this
was achieved by personalising TNNP model using coupled personalisation frame-
work with MS model, to ex vivo data [CSL+11]. The results were very encouraging
and helped built more complete personalised ventricular models.

This coarse-to-fine approach can be directly applied to personalise most of the
parameters of more complete models, such as [FK98] & [BOCF08]. This model
coupling is corroborated with the fact, that models [BOCF08], & [FK98] & [MS03]
belong to a family of Fenton-Karma models.

Computational cost reduction Complex & complete models are also compu-
tationally quite expensive, thus they are restricted to the research world for un-
derstanding complex cardiac phenomenons. In order to translate those models
to the clinical world for application on patients, there is a huge need to make
models as real-time as possible. With the current computational power, this can
be achieved by either designing sophisticated algorithms to reduce (adaptivity in
space and time, operator splitting, lookup tables) [VBLP09] or parallelise compu-
tations [PDR+06, BCF+09] or by making complex models simpler and approxi-
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mate [BWZ+02]. The other solution is increase the computational power by using
graphics processing units (GPU) [VBLP09]. However it is still lacking substantial
progress to be realistic to come into clinics. Thus, there is a need to make sim-
ulations as real-time as possible to have models predict virtual in silico scenarios
directly during the clinical interventional procedure.

In this thesis, we showed the compatibility and versatility of our model person-
alisation framework to various clinical mapping data and showed promising results
on the prediction of macroscopic wave dynamics for pacing and arrhythmogenesis.
And as MS model is a simplified biophysical model with less number of variables
to compute, it is possible to achieve real-time or close to real-time simulations with
this model with GPU implementations. A step towards this is being taken at our
laboratory at INRIA Sophia Antipolis, to make use of in silico models in clinics

Uncertainty with in vivo clinical data Acquisition of in vivo clinical cardiac
EP mapping data has many errors sources few of which are registration, interpola-
tion, catheter sliding, catheter movement with breathing and cardiac motion. These
errors are different in magnitude, for different electroanatomic mapping sources.
Non-contact mapping (NCM) is believed to have additional inverse mapping errors
against contact mapping, but offers an advantage of higher spatial acquisition for
each cycle mapped, for e.g. whole LV is mapped during one beat and several of such
cycles can be mapped during the study. A great advantage of NCM can be seen
in Fig 8.3 & 8.4, where the whole VT stimulation study was mapped with NCM.
On the other side, contact mapping (CM) offers the advantage of more accuracy on
the mapped signal locations than NCM, but at the expense of low spatial coverage
than NCM for a single beat. i.e for CM, signals are recorded just over few points
of the catheter at a time instant, and the catheter is needed to be moved over the
heart surface again to have the whole area mapped. CM gathers data for different
heart cycles over the different spatial recording points and then synchronises the
QRS waves to derive the activation maps. CM shows a great potential of reliability
in the location of the signal, apart from the registration errors. Thus CM can be
used for recording activities in the areas of deceased heart tissue. CM is also proved
to have lower far-field effect on the recording signals, than NCM. Thus based on
patients study requirements, different mapping techniques are used., as shown in
Table 2.1.

However, such errors should be taken into account during model personalisation.
In the proposed work, we do consider the registration errors between the catheter
gathered points and the MR derived surface, as a penalty factor in the tissue con-
ductivity estimation, as described in chapter 5, However this approach gives a more
deterministic parameter map, whereas a probabilistic tissue conductivity map, as
described in [KRC+11] with a confidence interval based on the uncertainty in map-
ping technique, can additionally guide the clinicians in the decision taking.
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2.2 Short-term & Mid-term clinical perspectives

Potential clinical impacts from the findings Based on the various studies
performed during this work, we suggest following potential clinical impacts of the
immediate findings.

As volumetric predictive power of the model for paced wave dynamics under
different pacing scenarios was studied extensively and demonstrated promising pre-
diction results [RPD+11], this shows the efficiency of using such personalised models
for planning in vivo clinical CRT studies, for wave predictions under various pacing
protocols.

The proposed personalisation framework was applied extensively to various map-
ping datasets (optical [RPD+11], contact [RSDA11] & non-contact mapping [RCS+11]).
This shows compatibility and versatility of the framework in clinical routines.

In [RSDA11], we revealed the sufficiency of the epicardial mapping compared
to endocardial mapping (usually performed) for the model personalisation, to cap-
ture sinus rhythm wave dynamics. This was also corroborated using probabilistic
model personalisation with CM clinical data in [KRC+11]. This suggests sufficiency
of non-invasive ECGI derived on the epicardium from BSP mapping, for model
personalisation and better model predictions. This directs us towards non-invasive
model personalisation.

In [RCD+12] we demonstrated that model personalisation provides patient-
specific spatial heterogeneity maps, which can already help locate the potential
exit points, the main targets for RF ablation. Also the model was able to be used to
predict the other potential clinically unobserved exit points, when paced from other
sites in the heart.

Potential clinical application In silico simulation of VT stimulation study with
3D patient-specific models (incorporating the information from MR anatomy, scar
& PIZ anatomy and EP mapping data), was demonstrated in [RCD+12]. This
approach leads us to study more clear insights on the patient’s VT substrates in
silico. And also proves to be a beneficial clinical tool for VT stratification and RF
ablation planning. Study on modelling chronic RFA lesions with in silico VT-stim
study is demonstrated in this thesis. This study can provide a tool for evaluating the
success of the RFA therapy in post ablation weeks. However the main bottleneck
to this integration is the computational complexity of the model, which needs to be
addressed first.

Another potential application of the proposed in silico VT-Stim tool, would
be to provide patient-specific optimal placement of ICD catheter leads to avoid
tachycardia inducibility and provide quick cease of arrhythmia with anti-tachycardia
pacing, without needing a shock to cease it. This could be achieved by looking at
patient-specific inducibility maps (Fig 6.14) and avoiding those areas for catheter
placements for ICD.



2. Perspectives 141

2.3 Long-term clinical perspectives

Intra-operative model-based guidance in EP mapping systems As dis-
cussed in this work, estimated spatial heterogeneity maps from model personali-
sation can help locate potential vulnerable areas of VT. Thus it could prove to
be beneficial to derive such maps during the mapping procedure simultaneously in
the EP Cath lab. This would need integration of the model in the mapping sys-
tem, which could be personalised with a dynamic optimisation algorithm such as
Kalman filter [WB95], that increases in accuracy with more mapping cycles acqui-
sition during the EP study. The personalised model can then be used directly in
the Cath lab to predict different virtual scenarios during the interventional therapy
on a simulation software and help taking decisions. Another potential use of the
model could be to provide EP model based interpolation of wave isochrones, in the
non-mappable areas such as the myocardium. Such interpolation would take into
account the patient-specific anatomy, scars and PIZ, along with a prior information
(atlas based) on cardiac fibre orientations.

Pre-operative non-invasive VT risk stratification VT risk stratification in
terms of VT inducibility maps, re-entry and exit maps, can be an efficient clinical
tool in planning a patient-specific RF ablation therapy. In this work we used clinical
data comprising of anatomical imaging, scar imaging and electrophysiology study
data. We built models incorporating all this information together, along with atlas
based fibre orientations to come up with a patient-specific sinus rhythm and VT
simulations, and consecutively plan the RFA therapy in silico. We also were able
to demonstrate the VT re-entry validation against clinical datasets. All this study
proves that it is possible to use models in clinics to guide the planning and decision
taking before the actual RFA operation procedure being carried out on the patient.
However the main drawback in this approach was using invasive EP study data for
RFA planning, such data is hard to accumulate before the RFA procedure. Thus
there is a need to use all non-invasive data possible for RFA planning.

Based on this work, we can categorise the main data required to personalise
an EP model to predict VT into 3 sets: 1) Anatomical data, 2) Scar data and 3)
Electrophysiology data. Thus for a non-invasive VT risk stratification, the way to
approach prediction of VT would be in the following two ways:

1) Body surface mapping based. Recently, [Rud10, WCZ+11, WSD+07] have
demonstrated the clinical use of ECGI with epicardial activation patterns. This
technique is still undergoing clinical study, and doesn’t generate epicardial repolar-
isation patterns and APD maps. In our clinical VT stimulation studies acquired at
KCL, UK and presented in this work, we did acquire a simultaneous BSPM and non-
contact mapping data in collaboration with IBT, Germany. The synchronisation of
this data for a VT cycle is shown in Appendix D Table D.7 & Table D.8. This al-
lowed us to estimate the correlation between the two invasive and non-invasive data.
However we need to design an efficient algorithm for inverse map the non-invasive
data along with APDs and their restitution heterogeneities, as they play a crucial
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role in ischemic VT as discussed in Chapter 8. This data could then be used to
personalise the model and perform in silico VT-Stim studies.

2) Image based. This approach can be again divided in two ways: Purely anatom-
ical and scar imaging based, where we could use a high resolution LE CMR imaging
to predict the potential isthmuses within the myocardium [PDARG+11]. The pre-
diction can be done by looking at the intensity profiles along the scar and PIZ areas
within the myocardium, this could derive maps such as Fig 6.7(a) & Fig 6.7(b). Such
maps can reveal small islands of healthy tissue present amidst of scar regions, which
are potential candidates of VT re-entry trapped paths based on a priori information
and clinical understanding of VT schematics. Such trapped paths are also revealed
with VT-Stim modelling as shown in Fig 8.10. The second approach would be to
use machine learning on the relationship between EP signals (electrograms recorded
by CM or NCM) and MRI intensity profiles acquired from previous invasive clinical
studies and use it to predict the potential EP fractionation maps and heterogeneity
maps of APD, CV and their restitution. This machine learning requires training
on a lot of datasets to have more accurate predictions, and is our on going work
with Bordeaux University Hospital. These heterogeneity maps can then be used for
VT-Stim simulation to study the VT dynamics.

In this PhD, we explored how the close integration of mathematics, computer
science and medicine into model-based approaches can leverage on the important
progress made in imaging of the human body in order to provide tools for challenging
cardiac interventions.
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Appendix A

Quantitative Comparison of Two
Cardiac Electrophysiology Models

In order to translate the important modelling work into clinical tools, the selection
of the best model for a given application is crucial. In this paper, we quantita-
tively compare personalisation of two different cardiac electrophysiology models on
the same dataset, in order to help such a selection. One is a phenomenological model,
the Aliev-Panfilov model (1996), and the other one is a simplified ionic model, the
Mitchell-Schaeffer model (2003). In the preliminary steps of model personalisation,
we optimise the forward problem with the determination of an optimum time inte-
gration scheme for each model, which could result in stable and accurate simulations
without the use of unnecessary expensive high temporal and spatial resolutions. Next,
we personalise the two models by optimising their respective parameters, to match
the depolarisation and repolarisation maps obtained ex-vivo from optical imaging of
large porcine healthy heart. Last, we compare the personalisation results of the two
different models.

Based on: [RSD+09] J. Relan, M. Sermesant, H. Delingette, M. Pop, GA Wright,
and N. Ayache. Quantitative comparison of two cardiac electrophysiology models
using personalisation to optical and MR data. In Biomedical Imaging: From Nano
to Macro, 2009. ISBI’09. IEEE International Symposium on, pages 1027–1030.
IEEE, 2009.
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Appendix B

Time Integration schemes &
Spatial and Temporal resolution
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1 Time integration

A variety of explicit, semi-implicit and implicit schemes categorised as first, second
and third order schemes have been evaluated for cardiac bidomain model [EB08].
Here we implemented and evaluated these schemes for monodomain MS model in
terms of solution accuracy, stability, and computational time. Monodomain MS
model can be written in a generic way as,

�
∂tu = D(u) + F (u, z)

∂tz = G(u, z)
(B.1)

where D represents the diffusion term and F , G represents the reaction term of the
model and n is the current iteration number. The different schemes were imple-
mented as follows:

1.1 First Order Schemes

Explicit Euler is given as:
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Crank-Nicolson (CN) is given as:
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Forward-Backward Euler is given as:
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Implicit-Explicit (IMEX) is given as:
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Backward Euler (Implicit) is given as:
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1.2 Second Order Schemes

Second-order Backward Differentiation Formula (SBDF) is given as:
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Crank-Nicolson Adams-Bashforth (CNAB) is given as:
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Modified Crank-Nicolson Adams-Bashforth (MCNAB) is given as:
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Implicit Gear is given as:
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1.3 Third Order Schemes

Third order SBDF is given as:
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Figure B.1: Transmembrane potential u wave for MS model and zoom (dashed
box), temporally integrated with different schemes, on h = 1.5mm, δt = 1ms in
comparison with reference (abscissa: normalised potential vs time (s)).

2 Choosing optimum spatial & temporal resolutions

A reference solution approximately representing the exact solution of the model
is computed using finer 3D mesh resolution (mean edge length of tetrahedra) δx

and temporal resolution δt (δx = 0.13mm and δt = 10
−6

s), with implicit scheme.
Stability of a given time integration scheme is determined by varying the model
parameter controlling the wave speed, and observing the solution for oscillations,
for a range of δx and δt. Second order schemes are observed to be more stable
at higher wave speed and large time steps. Whereas accuracy is determined with
constant model parameters and by computing the wave speed error (as shown in
Figure B.1, similar for MS model) with respect to the reference solution for a range
of δx and δt. And we observe that for small δx and small δt, all time integration
schemes are comparable, for small δx and large δt higher than first order schemes
provide relative wave speed error < 1% and for large δx the wave speed error is
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high irrespective of time integration scheme used. Computational time (2.16 GHz,
dual core, 2.0 GiB) of one time step for explicit and semi-implicit schemes are
comparable and is relative to the mesh size (for ≈ 247250 number of tetrahedra)
≈ 1s and for fully implicit schemes ≈ 1s for small δt to ≈ 3s for large δt. From all of
this analysis, we determine an optimum δx, time integration scheme and δt for the
model. By optimum value, we mean the largest possible value for which the relative
error < 10%. For MS model the optimum time integration scheme was MCNAB
(second order) (see Equation B.8) with δt = 0.1ms, and optimum δx ≈ 1.0−1.5mm

with one time step computation time ≈ 1s.



Appendix C

Model specifications and
performance

In this thesis, the MS model personalisations were performed on a volumetric tetra-
hedral mesh of a 2 valve or 4 valve bi-ventricular anatomy with a Mean Edge Length
(MEL) of 1.0 mm and ≈ 65547 number of tetrahedrons. The model parameters,
simulation, personalisation, VT induction specifications and VT-Stim protocol used
are detailed in Table C.1, C.2, C.3 & C.4 respectively, unless they are specified in
the chapters.
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Appendix D

Figure Glossary

This appendix provides a glossary of figures containing snapshots of EP person-
alisation, prediction, VT simulation & VT data movies. It also shows snapshots
of a movie on synchronisation of the minimal invasive non-contact mapping data
& non-invasive BSPM during VT, a work done in collaboration with KCL, Lon-
don and IBT, Germany. It also provides figures on various VT re-entry patterns
inducible with various VT-Stim simulations at different pacing sites with different
pacing protocols.
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1 EP model personalisation to ex-vivo optical data

Without & with personalisation in comparison with data
55ms

88ms

133ms

288ms

421ms

Table D.1: Simulation of MS model without personalisation (left) and with person-
alisation (right) for 1B-LV-Epi-r pacing, in comparison with optical data (middle).
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2 EP model prediction to various pacing locations

Prediction to LV-Epi Prediction to RV-Endo
40ms

77ms

329ms

395ms

477ms

Table D.2: Prediction of MS model after personalisation, for 1A-LV-Epi-l (left) &
1D-RV-Endo pacings (right), in comparison with optical data.
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3 VT induction after personalisation

overdrive pacing with 150 bpm in PIZ
3ms (1st S1) 75ms (1st S1)

354ms (1st S1) 435 ms (1st S1)

828ms (2nd S1) 1104ms (2nd S1)

1302ms (3rd S1, capture of sinus rhythm) 1419ms (3rd S1)

1617ms (4th S1) 1815ms (4th S1)

Table D.3: VT-stim modelling using personalised electrophysiological model. (red -
depolarised & blue - repolarised)
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overdrive pacing with 150 bpm in PIZ
2013ms (4th S1) 2052ms (5th S1, uni-directional block)

2289ms (5th S1) 2445ms (induced VT)

2604ms (induced VT) 2841ms (induced VT)

2958ms (induced VT) 3156ms (induced VT)

Table D.4: VT-stim modelling using personalised electrophysiological model (con-
tinued from table D.3). (red - depolarised & blue - repolarised)
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4 in-silico RFA planning after personalisation

in-silico VT prediction: Sustained monomorphic
Inducibility maps Re-entry patterns Exit points

in-silico VT prediction: Non-Sustained & Self-terminatingRe-entry patterns Exit points Inducibility Maps 

!   VT-Stim modeling with self-terminating VTs 

Re-entry patterns Exit points Inducibility Maps 

!   VT-Stim modeling with self-terminating VTs 

Table D.5: in-silico VT-stim modelling predictions for various protocols (over-drive,
S1-S2, S1-S2-S3-S4, etc) & various pacing locations using personalised electrophys-
iological model. Inducibility maps: pacing locations with successful induction of
VT, Re-entry patterns: isochrones for predicted VT re-entry circuits & Exit points:
points triggering the VT circuits (potential RFA targets)
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5 Induced VT circuit from clinical data

Activation Wavefront (red) for Induced VT phase
0ms 25ms

55ms 80 ms

100ms 130ms

155ms 180ms

270ms 275ms

Table D.6: Propagation of the activation wavefront in red showing the VT circuit
in time, for the induced VT phase observed in the clinical data (IHD_1) during a
clinical VT stimulation study.
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6 Integration of BSPM - Ensite Mapping

Simultaneous BSPM - Ensite Mapping during Induced VT phase
0ms 20ms

40ms 60ms

80ms 100ms

120ms 140ms

Table D.7: Integration of the simultaneous intra-cardiac electro-anatomical mapping
and measured BSPM, for the induced VT phase. Work in collaboration with IBT
Germany & KCL London.
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Simultaneous BSPM - Ensite Mapping during Induced VT phase
160ms 180ms

200ms 220ms

240ms 260ms

270ms 276ms

Table D.8: Integration of the simultaneous intra-cardiac electro-anatomical mapping
and measured BSPM, for the induced VT phase. Work in collaboration with IBT
Germany & KCL London.
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7 Clinical VT-Stim protocol

Figure D.1: Wellens protocol, the pacing protocol used for VT-Stim study at KCL,
London.
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