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Abstract. In this paper we present a new method for fully automatic
left ventricle segmentation from 4D cardiac MR datasets. To deal with
the diverse dataset, we propose a machine learning approach using two
layers of spatio-temporal decision forests with almost no assumptions
on the data nor explicitly specifying the segmentation rules. We intro-
duce 4D spatio-temporal features to classi�cation with decision forests
and propose a method for context aware MR intensity standardization
and image alignment. The second layer is then used for the �nal image
segmentation. We present our �rst results on the STACOM LV Segmen-
tation Challenge 2011 validation datasets.

1 Introduction

The left ventricle plays a fundamental role in circulation of oxygenated blood
to the body. To assess its function, several indicators are often calculated in
clinical practice. Many of these are based on ventricular volume and mass mea-
surements at reference cardiac phases. To calculate these an accurate delineation
of the myocardium and the cavity is necessary. To remove the bias and variance
of manual segmentation, and obtain reproducible measurements, an automatic
segmentation technique is desirable.

Compared to computed tomography (CT), cardiac magnetic resonance imag-
ing (cMRI) o�ers superior temporal resolution, soft tissue contrast, no ionizing
radiation, and a vast �exibility in image acquisition characteristics. As a dis-
advantage, cMRI scans often yield signi�cantly lower resolution in the plane
orthogonal to the plane of acquisition, the images can su�er from magnetic �eld
inhomogeneities and respiration artifacts can manifest as slice shifts. Moreover,
the lack of standard units (compared to the Houns�eld scale in CT) makes it
di�cult to directly apply most of the intensity based segmentation techniques.

Motivated by the success of Lempitsky et al. [1] in myocardium segmentation
from 3D ultrasound sequences in near real time and Geremia et al.[2] for multiple
sclerosis lesion segmentation, we propose a fully automated voxel-wise segmen-
tation method based on decision forests (DF) with no assumptions on shape,
appearance, motion (except for periodicity and temporal ordering) or knowl-
edge about the cardiac phase of the images in the sequence. The left ventricle
segmentation problem is de�ned as the classi�cation of voxels into myocardium
and background.
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Instead of robustly registering to an atlas [3], building a model [4] or running
a highly specialized segmentation algorithm we leave the learning algorithm to
automatically decide the relevant features for solving the segmentation problem
using the provided ground-truth only. In principle, any pathology can be learnt
once a similar example is represented within the training dataset. The previously
used decision forests [1][2] rely on features that work best when image intensi-
ties and orientations are very similar. To tackle the highly variable dataset, we
propose a layered learning approach, where the output of each layer serves a dif-
ferent purpose. The �rst layer is used to prepare the data for a more semantically
meaningful and accurate segmentation task in the second layer.

The main contributions of this paper are: a method to use decision forests
to solve the MR intensity standardization problem (Section 3.1) and, similarly,
perform a context sensitive rigid registration (Section 3.2) to align all images to
a reference pose. We also suggest a way to introduce temporal dimension into
the currently used 3D random features (Section 2.2). Using the intensity stan-
dardized and pose normalized images, which we add spatial information to, we
then train a second forest layer (Section 4). This helps the trees to automatically
build their own latent shape representation.

Dataset. STACOM 2011 LV segmentation challenge data [5] were divided into
two sets. Training set (100 3D+t short axis (SA) volumes with manually delin-
eated myocardia at each cardiac phase) and validations sets ( 5 × 20 3D+t SA
volumes with no delineation provided).

This dataset clearly shows the anatomical variability of heart shape and
appearance and some of the main issues of cMRI mentioned above.

2 Layered spatio-temporal decision forests

Decision forests are an ensemble supervised learning method consisting of a set
of binary decision trees. The training set contains a set of feature measurements
and associated labels (myocardium/background) for each of the voxels in the
set.

The trees are built in a top-down fashion, from the root, down to the leaves.
At each node, local features and a randomly sampled subset of context-rich fea-
tures are considered for feature selection. Random sampling of the features leads
to increased inter-node and inter-tree variability and improved generalization.
Each feature θ can be regarded as a binary decision (in our case τl < θ < τh)
that splits the original set into two disjoint subsets. The trees then select the
most discriminative features for each split such that the information gain is max-
imized. The data division then recursively continues until a signi�cant part of
the voxels at the node belongs to a single class or no signi�cant information gain
can be obtained by further splitting. The node then becomes a leaf. The aver-
aged class distributions of all the leaves in the forest reached by the voxel then
represent the posterior probabilities of it belonging to either the myocardium or
the background. See Geremia et al. [2] for more details.
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2.1 Strategy to learn from spatio-temporal data

In our approach, we serially train two layers of decision forests, each with the
aim to learn to segment, but using slightly modi�ed training data and features.
Training with all the 3D+t data was not feasible within the time limits of the
challenge, therefore a reduced strategy was designed. This strategy is repeated
for each tree:

1. Select a random subset of k 4D volumes from the whole training set
2. Randomly choose a reference 3D frame Ic for each selected 4D volume
3. Select two frames Ic−o, Ic+o with a �xed o�set o on both sides from the

reference cardiac image Ic (with periodic wrapping at sequence boundaries)
4. Train the tree using a set of k triplets (Ic, Ic−o, Ic+o )

To reduce the computational time, the size of the subset for each tree was
set to k = 15, and only one �xed o�set o = 4 is currently used. The choice of o
was made such that the motion between the selected frames is signi�cant even
when more stable cardiac phases (end systole or end diastole) are selected as the
reference frame and that almost a half of the cardiac cycle could be covered.

2.2 Features

We use several features families to generate the random feature pool operating
on the triplets of frames. Their overview can be seen on Figure 2.2).
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Fig. 1. Illustration of image based features extracted from the images. a) Local features
(3×3×3 box average S around the source voxel in the current frame Ic) [2]. b) Context
rich features [2] measuring the di�erence between source box average S and the sum
of remote region averages R1 and R2. c) Components x,y,z of voxel coordinates as
features[1]. d) Spatio-temporal context rich features with the current frame as the
source image and o�set frame Ic±o as the remote. e) Spatio-temporal context rich
features with one of the o�set frames as the source image and the other as remote.
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Local features. Proposed in [2] as an average of intensities in the vicinity of
the tested voxel to deal with noise in magnetic resonance imaging:

θlocIc (x) = θlocIc ([x, y, z]) =

x′≤x+1∑
x′=x−1

y′≤y+1∑
y′=y−1

z′≤z+1∑
z′=z−1

Ic([x′, y′, z′]) (1)

Although these features are not intensity invariant, they can still quite well reject
some highly improbable intensities.

Context rich features. De�ned also in [2], for multichannel MR acquisitions
as a di�erence between the local source image intensity IS and box averages of
remote regions in image IR:

θCRIS ,IR(x) = IS(x)− 1

V ol(R1)

∑
x'∈R1

IR(x')− 1

V ol(R2)

∑
x'∈R2

IR(x') (2)

The 3D regions R1 and R2 are randomly sampled in a large neighborhood around
the origin voxel. These capture strong contrast changes and long-range intensity
relationships. In our case we de�ne context-rich features as θCRIc,Ic(x).

Spatio-temporal context rich features. The domain of the moving heart can
be coarsely extracted by just thresholding the temporal di�erence magnitude of
the image. We propose to exploit this wealth of information and extend the pre-
vious context-rich features into the temporal domain by comparing the "current"
3D frame Ic and another frame o�set from c by ±o. The temporal context-rich
features can be de�ned as θTCR1

Ic = θCRIc,Ic+o(x) and θTCR1
Ic = θCRIc,Ic−o(x).

Similarly, we measure the di�erences between the symmetrically o�set frames
contained in the triplet as θTCR2

Ic (x) = θCRIc+o,Ic−o(x) and θTCR2
Ic (x) = θCRIc−o,Ic+o(x).

These spatio-temporal features can be seen as an approximation of a temporal
di�erentiation around the center frame. Note that we use both +o and −o to
keep some symmetry of the remote region distribution.

Voxel coordinates. Finally, as in [1], we can insert absolute voxel coordinates:
θXC (x) = xx, θ

Y
C (x) = xy, θ

Z
C(x) = xz into the feature pool. However, not until

these coordinates have a strong anatomical meaning. This happens later, in the
second forest layer when the images are reoriented into the standard pose.

2.3 Data preprocessing

To use fast evaluation of previously de�ned features based on integral images [6],
it is necessary to have consistent spacing. Therefore, all the volumes were resam-
pled to one of the most common spatial spacings in the dataset (1.56, 1.56, 7.42mm)
and temporal sequence length (20 frames).

Intensity ranges of the images were all linearly rescaled to a �xed range.
Similarly to Nyúl et al. [7], we clamp intensities beyond the 99.8 percentile as
they usually do not convey much useful information.
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3 First layer: Decision forests for image intensity

standardization and position normalization

Following the above mentioned training subset selection strategy we can train
the �rst layer of the forests. This is done directly on the images after intensity
rescaling i.e. images are brought into the same intensity range but have their
original poses. Although short axis scans are often acquired close to a position
where the ventricular ring is centered, slice orientation is chosen manually during
the acquisition, and precise alignment cannot be guaranteed. Therefore we skip
the usage of absolute voxel coordinate features at this step.

Fig. 2. Short (top) and long (bottom) axis views of the posterior probabilities after
the �rst layer. Brighter value means higher probability.

Several authors (e.g. [3]) have proposed to use Haar like features to detect the
heart and crop the heart region. Images can be then registered using the cropped
volumes. This removes the in�uence of background structures and improves the
success rate for the registration. However, an extraction of the cropped region
will not be necessary to perform a robust registration in our case. We train the
�rst layer of the forests on a rather general scenario, to end up with at least
a very rough classi�cation performance (see Figure 2). As we show in the next
two sections, using the rough posterior probability map of a tissue belonging to
a ventricle this performance can be already good enough for ventricle detection,
intensity standardization and alignment onto a reference orientation without any
prior knowledge of the data apart from the ground-truth.

3.1 Intensity standardization

MR intensity value di�erences of the same tissue are signi�cant not only between
scanners and acquisition protocols [8] but also for the same follow-up patients
[7]. Therefore good intensity standardization is crucial for any intensity based
segmentation algorithm. The variance in median intensities of the myocardia
between di�erent cases in the STACOM training set is quite large. There is
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no unique mode and the distribution is fairly spread in the whole intensity
range (0, 65535). Median myocardial intensities span range (1954, 36430), with
standard deviation of 5956 and inter-quantile range 7663). This is a serious
problem for any intensity based segmentation method.

Many of the intensity standardization algorithms [9] used today are based on
the methods of Nyúl et al. [7][10] and the alignment of histogram based land-
marks (e.g. modes, percentiles or statistics of homogeneous connected regions)
by rescaling image intensities with a piecewise linear mapping. Many of these
methods do work reasonably well for brain images where the white matter is
clearly the most dominant tissue. In cMRI, the largest homogeneous regions
would most of the time belong to the lungs, liver or cavities, rather than the
myocardium.

However, from the rough image �rst layer classi�cation we already obtain
some information about the strength of the belief in the foreground and back-
ground object. We propose to remap the source image intensities by a piecewise
linear function such that the weighted median (as median is more robust to out-
liers than the mean) M c

source of the images is transformed to a reference value
Mref . The weighted median is de�ned as follows:

M c
source = arg min

µ

∑
x∈Ic

w(x).|Ic(x)− µ| (3)

Where x is the voxel iterator and w(x) are the weights (�rst layer posterior prob-
abilities). We avoid sorting all volume intensities by approximating the weighted
median with the weighted version of the P 2 algorithm [11][12]. This algorithm
dynamically approximates the cumulative probability density function with a
piece-wise quadratic polynomial by adjusting positions of just �ve markers as
the weighted samples are streamed in. Each of these markers are associated with
their position, percentile and an intensity value corresponding to that percentile.
The positions are updated such that they correspond to the sum of weights of
samples whose intensity value is smaller than the value the markers hold.

3.2 Orientation normalization

In the approach of Lempitsky et al. [1] voxel absolute coordinates are used as
features directly. This choice cannot be justi�ed without aligning the images onto
a reference pose. Moreover, features we use for classi�cation are not rotation
invariant. Therefore if all the volumes could be registered to have the same
orientation, the classi�cation would certainly bene�t from it. The interpatient
cardiac registration is generally a di�cult problem due to the high variability in
the thoracic cage. Shi et al. [3] do �rst learning based heart detection and then
apply a locally a�ne registration method which they claim to be robust for large
di�erences.

A robust learning based linear inter-patient organ registration was proposed
by Konukoglu et al.[13]. Here, each organ is represented with a smooth proba-
bility map �t to the bounding boxes obtained as a result of a regression forest.
Then, registration of these probability maps is performed.
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This sigmoid representation is however rather limiting since it disregards the
orientation that we would like to correct for. Without any assumptions on the
shape of the distribution, we propose to rigidly align the myocardium enhanced
�rst layer posterior probability maps instead. For this step we propose to use a
fast and robust rigid block matching registration technique [14]. The reference
we used was chosen randomly among the images where the apex was at least
partially closed. A better choice of the reference, is currently out of scope of this
paper. However, an algorithm similar to Hoogendoorn et al.[15] or a generative
technique similar to [16] could be used.

To reduce the computational time, only probability maps of frames from the
middle of the sequence are used to estimate the intensity and pose transforma-
tions. The same transformations are then applied for all the frames and ground
truths in the sequence which will be needed to train the second layer.

4 Second layer: Learning to segment with the shape

4.1 Using voxel coordinates

Once the images are registered to a reference volume, the voxel coordinates
start to encode spatial relationships with respect to the reference coordinate
frame and the coordinate features can be now included in training of the second
decision forest layer. Moreover, if the intensity standardization step succeeds,
the intensities have more tissue speci�c meaning (at least for the myocardium).

Thanks to the incorporation of coordinate based features, the tree can com-
pletely automatically learn its own latent representation of the possible set of
shapes, regularize the classi�cation, and help to remove objects far away from
the ventricle. However, this step strongly relies on the success of the previous
registration step. Currently, only one reference image is used. Registration to
multiple targets should therefore improve robustness and alleviate this problem.

4.2 Transforming the volumes back

After the classi�cation is done in the reference space, the posterior probability
maps can be transformed back to the original reference frame and resampled
accordingly. This shows the advantage of a soft classi�cation technique where
the �nal binary mask is obtained by thresholding the transformed non-integer
posterior map, thus avoiding some of the interpolation artifacts.

5 Results

Here we show the preliminary results of our method. The forest parameters for
the �rst layer were �xed as follows: 20 trees with depth 20 each. To train each
tree, 15 triplets of frames were randomly selected from di�erent volumes of the
training set (91 volumes in total). For the second layer: 27 trees each with depth
20. For each tree 12 triplets were randomly selected from di�erent volumes of
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Fig. 3. Short (top) and long (bottom) axis views on the posterior probabilities after
the second layer and segmentation results (isocontour of the probability map at 0.5).

the training set (91 volumes in total). This leads to usage of only 8% triplets
from the whole training set. Hence, there is a vast reserve in utilisation of the
training data and setting optimal forest sizes. These parameters were chosen
rather empirically to �t into the time limits of the challenge.

The following results were obtained after blind evaluation of our classi�ca-
tions on 90 previously unseen test volumes i.e. 25415 slices from the validation
dataset by the STACOM LV segmentation workshop organisers (See Table 1).

In most of the cases, the algorithm was able to correctly identify the left
ventricle myocardium (with median speci�city of 0.81). This was possible with-
out the need to explicitly de�ne the segmentation rules and problem speci�c
assumptions (e.g. circularity of the myocardium or cavity contrast). It was also
not neccessary to include additional information into the training set (e.g. mitral
valve plane position or manual segmentation of a frame in the sequence) nor to
rely on a robust non-rigid registration technique.

All the measures were calculated per-slice. This way of calculating the mea-
sures caused some of them (speci�city, accuracy and NPV) to reach high values
but also to have less explicative power since the number of the background
voxels (TN) dominates the expression. Some of these measures (sensitivity and
PPV) strongly penalize any voxel misclassi�cations in the apical and basal areas
where the slices contain only very few true myocardial voxels. Performance of
our algorithm is currently rather mediocre at basal and apical slices (with me-
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dian speci�city as low as 0.23 at the apex). This is partly due to limited feature
evaluation at image borders and the pose standardization step, where voxels at
boundaries can get transformed out of the classi�ed volume. The poor perfor-
mance at these regions results in increased variance of the measures and helps
to explain the signi�cant di�erences between mean and the median values of the
measures.

sensitivity speci�city accuracy PPV NPV dice jaccard
TP

TP+FN
TN

FP+TN
TP+TN
P+N

TP
TP+FP

TN
TN+FN

2|A∩B|
|A|+|B|

|A∩B|
|A∪B|

mean 0.6857 0.9897 0.9861 0.4791 0.9962 0.5045 0.3730

median 0.8099 0.9907 0.9875 0.5234 0.9978 0.5995 0.4281

σ 0.3137 0.0077 0.0077 0.2069 0.0046 0.2571 0.2098

Table 1. Statistics on the per-slice measures of our segmentation results on 90 volumes
from the validation dataset calculated from the entire slices with no region of interest
speci�ed. The basal and apical slices contribute to the large di�erences between the
mean and median values and also contribute to the higher variance.

Compared to the state of the art algorithms for left ventricle segmentation,
slightly lower segmentation performance was achieved. It should be noted that
the classi�cation is run independently for each voxel. No smoothness, connectiv-
ity nor temporal consistency constraints are enforced to demonstrate the perfor-
mance of the pure machine learning approach. Therefore, isolated segmentation
islets or holes in the resulting binary segmentation can occur as a result of mis-
classi�cation. However, thanks to the coordinate features, most of the voxels far
from the myocardium are usually well discarded and also the solution becomes
more regular as a result of the latent cardiac shape model built by the forests.
In the soft classi�cation, the holes are represented as a drop in the segmentation
con�dence but rarely fall to zero. This information could be easily considered in
a subsequent postprocessing step to further improve the segmentation. However,
adding these was not the goal of this paper.

6 Conclusions

We aimed to present a fully automatic machine learning based algorithm for left
ventricle segmentation with no explicit de�nition of task speci�c segmentation
rules, model creation, user interaction nor post-processing. The algorithm learnt
to automatically select the most discriminative features for the task using the
ground-truth only. The only assumptions we make is that the motion of the ob-
ject to be segmented is periodic for the construction of frame triplets and that
the tissue intensity mapping between two di�erent cases can be roughly approx-
imated by a piecewise linear function. We also introduced a machine learning
based intensity standardization method that allows to do tissue speci�c remap-
ping of intensities and obtain a more CT like behaviour.
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Fig. 4. a) Automatically calculated volume curve from patient DET0026701 during a
single cardiac cycle with detected end systole (ES) and end diastole (ED) frames at
the volume maximum and minimum respectively. b) Long axis crosssection through
the binarized segmentations at ED and ES.

Finally, using a curvature-based iterative hole �lling algorithm [17] on the
binarized segmentation, we could automatically calculate volumetric measure-
ments and detect the main cardiac phases as the volume curve extremas (see
Figure 4).
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