Image Segmentation based on Deformable Models

Segmentation d'Images

Approches Basées Voxels

Approches Basées Modèles

Méthodes Région ou Frontière

Image

Segmentation Région

Segmentation Frontière

Deux Méthodes de Segmentation

Description de 2 méthodes de segmentation :

•Basée Voxel : Seuillage /Classification

•Basée Modèle :Modèles déformables 3D et 4D

	Thresholding /Classification	Deformable Models	Markov Random Field
Shape Information	None	Important	local
Intensity Information	Essential	Important	Important
Boundary/Region	Region	Boundary	Region

Pas d'algorithme universel de segmentation

Un algorithme donné a un domaine d'application limité Exemple : Modèles déformables

Principe de la segmentation par modèle déformable

Définition de l'énergie :

$$E = E_{\rm int} + E_{\rm ext}$$

E_{int} mesure la régularité de la courbe/surface

E_{ext} mesure la distance du contour/surface à la frontière de l'objet à contourer

Position du problème : minimiser E

Surface Representation for Deformable models

Why Choose Simplex Mesh?

Against parametric surfaces

- It does not require any global parameterization of the surface
- ... but does not provide interpolation of differential parameters

Against triangulation

- Easy method to control the spread of vertices (with metric parameters)
- Can easily implement shape memory regularisation
- Can smooth without any shrinkage
 - ... but no planar faces for visualisation

Against level-sets

- Handle surfaces with borders
- Store a-priori information at vertices, faces, zones
- Regularization with global constraint and no shrinkage
- ... but difficult to handle change of topology (self intersections) and highly curved surfaces

$$\sigma(\mathbf{P}_{i}) = \underbrace{(\epsilon_{1i}^{\star} - \epsilon_{1i})\mathbf{P}_{N_{1}(i)} + (\epsilon_{2i}^{\star} - \epsilon_{2i})\mathbf{P}_{N_{2}(i)} + (\epsilon_{3i}^{\star} - \epsilon_{3i})\mathbf{P}_{N_{3}(i)} + (L(r_{i},\phi_{i}^{\star},\epsilon_{1i}^{\star},\epsilon_{2i}^{\star},\epsilon_{3i}^{\star}) - L(r_{i},\phi_{i},\epsilon_{1i},\epsilon_{2i},\epsilon_{3i}))\mathbf{n}_{i}}_{\mathbf{Choice of } \mathcal{E}_{i}^{*} \text{ controls vertex spacing}}$$

$$\sigma(\mathbf{P}_{i}) = (\epsilon_{1i}^{\star} - \epsilon_{1i})\mathbf{P}_{N_{1}(i)} + (\epsilon_{2i}^{\star} - \epsilon_{2i})\mathbf{P}_{N_{2}(i)} + (\epsilon_{3i}^{\star} - \epsilon_{3i})\mathbf{P}_{N_{3}(i)} + \frac{[L(r_{i},\phi_{i}^{\star},\epsilon_{1i}^{\star},\epsilon_{2i}^{\star},\epsilon_{3i}^{\star}) - L(r_{i},\phi_{i},\epsilon_{1i},\epsilon_{2i},\epsilon_{3i})]\mathbf{n}}{Choice of \phi_{i}^{\star} controls shape}$$
C1 : Orientation continuity constraint $\phi_{i}^{\star} = 0$

$$\sigma(\mathbf{P}_{i}) = (\epsilon_{1i}^{\star} - \epsilon_{1i})\mathbf{P}_{N_{1}(i)} + (\epsilon_{2i}^{\star} - \epsilon_{2i})\mathbf{P}_{N_{2}(i)} + (\epsilon_{3i}^{\star} - \epsilon_{3i})\mathbf{P}_{N_{3}(i)} + \left[L(r_{i},\phi_{i}^{\star},\epsilon_{1i}^{\star},\epsilon_{2i}^{\star},\epsilon_{3i}^{\star}) - L(r_{i},\phi_{i},\epsilon_{1i},\epsilon_{2i},\epsilon_{3i})\right]\mathbf{n}_{i}$$

Choice of ϕ_{i}^{*} controls shape

C2 : Curvature continuity constraint

$$\phi_i^* = \sum_{j \in Ngh(i)} \phi_j / Size(Ngh(i))$$

$$\begin{split} \sigma(\mathbf{P}_{i}) &= (\epsilon_{1i}^{\star} - \epsilon_{1i})\mathbf{P}_{N_{1}(i)} + (\epsilon_{2i}^{\star} - \epsilon_{2i})\mathbf{P}_{N_{2}(i)} + (\epsilon_{3i}^{\star} - \epsilon_{3i})\mathbf{P}_{N_{3}(i)} + \\ & \left[L(r_{i}, \phi_{i}^{\star}, \epsilon_{1i}^{\star}, \epsilon_{2i}^{\star}, \epsilon_{3i}^{\star}) - L(r_{i}, \phi_{i}, \epsilon_{1i}, \epsilon_{2i}, \epsilon_{3i}) \right) \mathbf{n}_{i} \end{split}$$
Choice of ϕ_{i}^{*} controls shape

Shape constraint :

$$\boldsymbol{\phi}_i^* = \boldsymbol{\phi}_i^0$$

- •Regularization of space curves
- Continuity between shape curves and surfaces

Topology Control

•Authorize topology control of planar curves

- Use grid approximation
- Merge or push edges
- Handles open curves

Grid approximation

Cell by cell detection

Topology control

Examples Real time: 3,3 s

Real time: 0,42 s

Some Contributions around Image Segmentation

Definition of External Forces Globally Constrained Deformations Initialization Rule-based segmentation 3D+T Deformable models

External Force

Use explicit Newtonian PDE

Normal internal force = displacement $m_{i}\frac{d^{2}\mathbf{p}_{i}}{dt^{2}} = -\gamma_{i}\frac{d\mathbf{p}_{i}}{dt} + \alpha\left(L(r_{i},d_{i},\phi_{i}^{*}) - L(r_{i},d_{i},\phi_{i})\right)\mathbf{n}_{i} + \alpha\left(L(r_{i},d_{i},\phi_{i})\right)\mathbf{n}_{i} + \alpha\left(L(r_$ $\alpha \left[\varepsilon_{1i}^{*} - \varepsilon_{1i} \right] P_{N_{1}(i)} + \alpha \left[\varepsilon_{2i}^{*} - \varepsilon_{2i} \right] P_{N_{2}(i)} + \alpha \left[\varepsilon_{3i}^{*} - \varepsilon_{3i} \right] P_{N_{3}(i)} + f_{\text{ext}}(\mathbf{p}_{i})$ Tangential internal force = displacement = displacement $f_{\text{ext}}(\mathbf{p}_{i}) = \left(\left(\text{Closest}(\mathbf{p}_{i}) - \mathbf{p}_{i} \right) \cdot \mathbf{n}_{i} \right) \mathbf{n}_{i}$

Estimation of closest boundary point Générique

• Based on intensity and gradient

Specific

Estimation of closest boundary point Generic

- Based on intensity and gradient
- Based on region forces

Echocardiographic Images

Time of computation: 28 s

Estimation of closest boundary point Generic

- Based on intensity and gradient
- Based on region forces
- Based on correlation of intensity profiles

Specific

External Force

Estimation of closest boundary point Generic

- Based on intensity and gradient
- Based on region forces
- Based on correlation of intensity profiles
- Based on correlation of intensity block

External Force

Estimation of closest boundary point Generic

- Based on intensity and gradient
- Based on region forces
- Based on correlation of intensity profiles
- Based on correlation of intensity block
- Based on texture classification from training set
 - Linear classifier
 - SVM

Specific

- Neural Nets

Globally Constrained Deformation

Propose a coarse to fine deformation approach in order to avoid the local minima effect

Decrease dependence on initial position

NRIA

Globally Constrained Deformation

Globally Constrained Deformation

Application to liver segmentation

Computation time : 2 mn 12 s Extraction of Couinaud Segments

From a reference shape

Courtesy of Univ. Hamburg

From a reference shape

From a statistical mean shape

Foie 4

Foie 12

Foie 8

From a reference shape

From a statistical mean shape

Foie 4

Foie 12

Foie 8

From a reference shape
From a statistical mean shape
From a set of unstructured points
From a digital atlas

reference MRI with manual delineations

input MRI with initial templates

Segmentation system

Rules

- static rules [selection]
 - lateral ventricles

high contrast \Rightarrow good texture map \Rightarrow increase texture weight

large variability \Rightarrow no shape constraint

- corpus callosum
 - non-intersection with ventricles \Rightarrow distance constraint
- hippocampus

poorly defined \Rightarrow increased shape constraint

Segmentation system

Rules

- dynamic rules
 - coarse to fine gradient
 - coarse gradient: guarantee deformation
 - fine gradient: increase accuracy
 - increase locality

Meta-rules (feedback rules)

leakage prevention

Segmentation results

Qualitative segmentation

T1-weighted MRI, 1mm³ resolution

– complete segmentation system(constraints, rules, meta-rule)

 \rightarrow adequate results

3D+T deformable models

3D+T Deformable Models

Add temporal regularizing force

$$m_{i} \frac{d^{2} \mathbf{p}_{i,t}}{dt^{2}} = -\gamma_{i} \frac{d\mathbf{p}_{i,t}}{dt} + f_{int} (\mathbf{p}_{i,t}) + f_{ext} (\mathbf{p}_{i,t}) + f_{time} (\mathbf{p}_{i,t})$$
Perturbation locale
$$\mathbf{\tilde{p}}_{i,t} = \frac{\mathbf{p}_{i,t+1} + \mathbf{p}_{i,t-1}}{2}$$

$$\mathbf{\tilde{p}}_{i,t} = \frac{\mathbf{p}_{i,t+1} + \mathbf{p}_{i,t-1}}{2}$$

$$\mathbf{T} = \mathbf{T} = \mathbf{T} + \mathbf$$

3D+T Deformable Models

Validated on a synthetic time series of SPECT images Extended with trajectory constraint Included with the globally constrained deformation Application with 4D echocardiography

3D+T Deformable Models

