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Abstract

Segmentation of time series of 3D cardiac images is clinically used for the assessment of the mechanical function of the left ven-

tricle. To take into account the 4D (3D + T) nature of those images, we propose to extend the deformable surface framework by

introducing time-dependent constraints. Thus, in addition to computing an internal force for enforcing the regularity of the deform-

able model, prior motion knowledge is introduced in the deformation process through either temporal smoothing or trajectory

constraints.

In this paper, deformable surfaces are represented as simplex meshes owing to their generality and their ability to compute mean

curvature at each vertex. The segmentation accuracy of this 4D deformable model is estimated on synthetic SPECT image sequences

for which a ground truth about the LV volume is known. Segmentation of non-synthetic SPECT and other modalities 4D images is

also discussed.

� 2004 Elsevier B.V. All rights reserved.
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1. Context

Medical image segmentation is a prerequisite for

many high-level tasks such as images analysis, compu-

ter-assisted diagnosis, geometric modeling of anatomical
structures, or the construction of bio-mechanical models

used for surgery simulation. However, image segmenta-

tion remains one of the open issues in medical image

analysis. Indeed, poor image quality, low contrast, pres-

ence of decoy structures and the complex nature of the

shape and appearance of some anatomical structures

may lead to a poor accuracy or robustness of image seg-

mentation algorithms.
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Among the large collection of existing segmentation

algorithms, approaches based on deformable surface

have been extensively studied (Frangi et al., 2001;

Montagnat et al., 2001) for the delineation of tridimen-

sional structures. The main incentive in using deforma-
ble models is the introduction of a priori knowledge

about the shape and appearance of the target structures.

Thus, they are mainly suited for segmenting structures

having a ‘‘typical’’ shape (i.e., for which one can per-

form statistical shape analysis) and that appear with a

low to medium contrast in images (since more direct

bottom-up techniques can apply otherwise). Further-

more, they offer an attractive solution for performing
automated or semi-automated segmentation of large

databases of images.

In this paper, we propose an extension of deformable

surfaces based segmentation to the case of time series of

3D medical images (in the remainder qualified as 4D
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images). We demonstrate the relevance of this approach

with a case study on the segmentation of cardiac images

although our technique is generic enough to be applica-

ble to other 4D image segmentation problems.
2. Previous work

2.1. Segmentation and tracking of cardiac images

The segmentation and tracking of the left ventricle

(LV) in 2D, 3D or 4D images have been the motivation

of many research works. We only consider in this section

those related to the segmentation of 4D images.
A recent survey (Frangi et al., 2001) shows the rele-

vance of deformable models approaches for LV segmen-

tation due to their ability to introduce prior knowledge.

Authors have based their models on different geometric

and physical representations, including spring-mass

models (Nastar and Ayache, 1996), triangle-based finite

element models (Park et al., 1996; McInerney and Terz-

opoulos, 1995), simplex meshes (Montagnat et al., 1999;
Gérard et al., 2002), tetrahedral finite element models

(Pham et al., 2001; Sermesant et al., 2002; Papademetris

et al., 2001), level sets (Charnoz et al., 2003; Paragios,

2002; Lin et al., 2002), 3D B-Spline deformation fields

(Bardinet et al., 1996; Chandrashekara et al., 2003)

and statistical shape and appearance models (Frangi

et al., 2002; Üzümcü et al., 2003).

When dealing with the processing of 4D cardiac
images, one has to solve two simultaneous problems: a

segmentation problem consisting in the delineation of

the LV in each image and a tracking problem consisting

in recovering the adequate trajectories of material

points. Both problems are naturally coupled which im-

plies that the LV segmentation should take into account

the fact that the LV is a moving structure and not a sta-

tic one.
The temporal dimension of cardiac imaging has been

neglected in many research work (Bardinet et al., 1996;

McInerney and Terzopoulos, 1995; Montagnat et al.,

1999) by resorting to a sequential segmentation of

images, the output of the previous instant serving as

the initial guess for the current instant. Those algo-

rithms are straightforward extensions of volumetric im-

age segmentation algorithms and require no additional
resource in terms of memory and computation. How-

ever, they generally lead to an underestimation of the

cardiac motion.

A weak level of temporal coherence can be intro-

duced by adding in the external energy a term enforcing

the temporal consistency of image intensity (Paragios,

2002) or isophote curvature (Benayoun and Ayache,

1998). More a priori knowledge about the LV motion
can be included by using principal component analysis

(Chandrashekara et al., 2003; Üzümcü et al., 2003), or
motion models built from the statistical analysis of

tagged MR imaging (Gérard et al., 2002) or from a pa-

tient-based electromechanical model (Sermesant et al.,

2002). Declerck et al. (1998), define a 4D planispheric

transformation taking into account the continuity, and

possibly the periodicity, of the time dimension.
In this paper, we propose a generic and versatile

extension of the deformable model framework for the

segmentation and tracking of 4D images. This extension

consists in the introduction of a temporal constraint

where a priori knowledge about the motion of the struc-

ture of interest can be specified in a weak or strong

manner.

2.2. Robustness issues

A common drawback of deformable models is their

lack of robustness linked with the local minima prob-

lem: the algorithm converges towards undesired shapes

that do not correspond to the global minimum of a func-

tional. In a nutshell, the number of local minima of a

functional defined on a deformable model is directly re-
lated to the number of Degrees Of Freedom (DOF) of

that model. To represent an object with enough details,

one may want to use a mesh representation with a high

number of vertices leading to a functional with many lo-

cal minima. This may cause the mesh evolution to very

sensitive to the presence of noise and outliers. In such

cases, it is necessary to control the extent of the mesh

deformation by eventually restricting its number of
DOF. Note that the model evolution is not only impor-

tant for robustness issues but also for enforcing the

homology at important anatomical points between the

template surface and the segmented one.

Several methods have been proposed in the literature

to control the extent of deformation in a deformable

model. Surface deformation methods can be classified

into parameterized deformations (Terzopoulos and Me-
taxas, 1991; Vemuri and Radisavljevic, 1993) and global

deformations (Besl and McKay, 1992; Bardinet et al.,

1996; Lötjönen et al., 1999). To improve this point, we

have introduced a coarse-to-fine deformation scheme

in (Montagnat and Delingette, 1998) that does not rely

on complex and computationally expensive stochastic

global minimization techniques: we start with the coarse

description with few DOF in order to achieve robustness
while a fine description using a large number of DOF is

used to achieve an accurate reconstruction. The exten-

sion of this approach to 4D deformable models is de-

scribed in Section 4.
3. Model description

Among the possible geometric representations of

deformable surfaces (see (McInerney and Terzopoulos,
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1996 or Montagnat et al., 2001) for a review of surface

geometric representations), we rely on a discrete surface

model called simplex mesh introduced by Delingette

(1999). Its main advantage is to achieve a stable compu-

tation of curvature-based internal forces.

Furthermore, its simple data structure leads to an effi-
cient computation of deformation and a limited memory

storage. This last point is specifically important in the

case of 4D deformable models, where n surface meshes

must be updated at each iteration.

3.1. Simplex mesh geometry

We briefly recall the main geometric notions defined
on simplex meshes. These notions are used in the defini-

tions of regularizing forces. A surface simplex mesh is

composed of a set of d vertices {pi}i 2 [0,d�1], each vertex

being connected to exactly three neighbors. Simplex

meshes are topologically dual to triangulations as illus-

trated on the left side of Fig. 1 showing a simplex mesh

(solid line) and its dual triangulation (dashed line). Geo-

metric quantities can be derived from basic geometric
reasoning. The right side of Fig. 1 diagrams a vertex pi
of a simplex mesh and its three neighbors, pnghj(i)

,

j 2 {1,2,3}. Let Pi be the plane defined by pi�s three

neighbors. We denote p?i the projection of pi on Pi

and ni the unit normal vector of Pi. We introduce the

circumscribed circle to triangle ðpngh1ðiÞ; pngh2ðiÞ; pngh3ðiÞÞ
with center ci and radius ri, and the circumscribed sphere

to vertices ðpi; pngh1ðiÞ; pngh2ðiÞ; pngh3ðiÞÞ with center oi and
radius Ri.

We call metric parameters the mass coordinates

e1i ; e2i ; and e3i ¼ 1� e1i � e2i of p?i with respect to pi�s
neighbors. They control the relative position of p?i in Pi:
ngh  (i)1
p

Fig. 1. Left: duality between simplex meshes and triangulat
p?i ¼
X3
j¼1

ejipnghjðiÞ:

The simplex angle ui 2 [�p,p] is defined by

sinðuiÞ ¼ ri
Ri
signððpngh1ðiÞ � piÞ � niÞ;

cosðuiÞ ¼ kci�oik
Ri

signððci � oiÞ � niÞ:

(

It controls the elevation of vertex pi above Pi. We define

a vertex discrete mean curvature as Hi ¼ sinðuiÞ
ri

; jHij ¼ 1
Ri
.

Under some assumptions, it can be shown (Delingette,

1994) that the discrete mean curvature at a vertex of a

mesh lying on a continuous and sufficiently differentia-

ble surface, converges towards the surface mean curva-

ture at that vertex position.
The vertex position pi is uniquely defined by its

three neighbors, its metric parameters and its simplex

angle:

pi ¼
X3
j¼1

ejipnghjðiÞ

 !
þ hðpnghjðiÞ; e

j
i ;uiÞni:

where

h ¼ ðr2i � d2
i Þ tanðuiÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ ðr2i � d2

i Þ tanðuiÞ
2

q
þ ri

;

� ¼
1 if juij < p

2

�1 if juij > p
2

�
; di ¼ kp?i cik: ð1Þ

It has been shown, in (Delingette, 1994), that a simplex

mesh shape is defined up to a similarity transformation

by the set of its metric parameters and simplex angles

fe1i ; e2i ;uigi.
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ions. Right: geometric definitions on a simplex mesh.
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3.2. 4D deformable models

Since a 4D image I is a discrete set of n volumetric

images defined at n different instants {It}t 2 [0,n�1], we

propose to define a 4D deformable surface as a set of

n 3D deformable surfaces fStgt2½0;n�1�. As illustrated in
Fig. 2, all n surface meshes St have the same topology,

i.e., there is a one to one correspondence between each

vertex of the n meshes. We can therefore use the nota-

tion pi,t to denote the position of vertex number i at time

t. We make a clear distinction between the time variable

t associated with the time label in the 4D image and the

time variable s corresponding to the synchronized evolu-

tion of all deformable surfaces from their initial shape to
their final shape. The t-evolution of a mesh corresponds

to motion observed in the time series of images (for in-

stance from diastole to systole for cardiac imaging)

while the s evolution corresponds to the minimization

of a global functional. Thus, each surface St evolves

in space but remains at its temporal position t (i.e., each

vertex position pi,t is changed in 3D space but t never

changes). We make the further hypothesis that the
topology of all meshes never changes during its s-evolu-
tion which is not in practice an important restriction.

The ordered set of vertices {pi,t}t 2 [0,n�1] represents

the trajectory of the vertex i along time. It is important

to note that the trajectory {pi,t}t of a vertex may not cor-

respond to the trajectory of physical points of the recov-

ered anatomical structures. Trajectories are used as a

mathematical support to compute temporal constraints
but they only provide an apparent motion which may
t 0 t 1 t 2 t 3

trajectory

Fig. 2. Example of a 4D simplex mesh: there is a one-to-one

correspondence between vertices over time t.

i,t−1
p

i,t−2
p

ϕi,t

n i,t

i,t
p

i,tt

b i,t

i,t
p

i,tε

Fig. 3. Trajectory
not be the true motion of material points (this is the clas-

sical aperture problem).

Fig. 3 illustrates the computation of geometric quan-

tities characterizing the trajectory of each vertex. From

a geometrical point of view, trajectory {pi,t}t represents

a discrete line in R3. Each vertex pi,t has two temporal
neighbors associated with the previous and following in-

stants, pi,t�1 and pi,t + 1. We consider that trajectories are

closed, i.e., pi,�1 = pi,n � 1 and pi,n = pi,0 when the motion

is known to be periodic (which is the case for cardiac

motion).

Let p?i;t denote the orthogonal projection of pi,t onto

segment [pi,t � 1,pi,t + 1]. The position of point pi,t rela-

tively to its temporal neighbors may be defined through
three geometric parameters:

� a metric parameter ei,t 2 [0,1] measuring the relative

position of p?i;t in [pi,t � 1,pi,t + 1] ðp?i;t ¼ ei;tpi;t�1þ
ð1� ei;tÞpi;tþ1Þ;

� an angle ui,t measuring the elevation of pi,t above the

segment [pi,t�1,pi,t + 1] in plane (pi,t�1,pi,t,pi,t + 1);

� an angle wi,t measuring the discrete torsion of the
trajectory.

Intuitively, ei,t, ui,t, and wi,t correspond to discrete arc

length, curvature, and torsion respectively. Let ti,t de-

note the discrete tangent, bi,t the binormal vector, and

ni,t the discrete normal to point pi,t, respectively:

ti;t ¼
pi;t�1pi;tþ1

kpi;t�1pi;tþ1k
; bi;t ¼

pi;tpi;tþ1 ^ pi;t�1pi;t
kpi;tpi;tþ1 ^ pi;t�1pi;tk

;

ni;t ¼ bi;t ^ ti;t:

The metric parameter, the elevation angle, and the tor-
sion angle are defined by

ei;t ¼
kp?i;tpi;tþ1k
kpi;t�1pi;tþ1k

;

ui;t ¼ ð dpi;tpi;tþ1; pi;t�1pi;tÞ;
wi;t such that ni ¼ cosðwi;tÞri;t þ sinðwi;tÞti;t ^ ri;t

with
p

i,t
p

r i,t

ψi,t

n i,t

t i,t

i,t+2

i,t+1
p

geometry.
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ri;t ¼
ti;t ^ ðpi;t�2pi;t�1 ^ pi;tþ1pi;tþ2Þ

kti;t ^ ðpi;t�2pi;t�1 ^ pi;tþ1pi;tþ2Þk
:

3.3. Law of motion

A deformable surface deforms under the combined

action of a regularization (or internal) term and a

data (or external) term enforcing the attraction of

the surface towards the apparent structure boundary
in the image. The regularization force is usually a geo-

metric regularity constraint imposing some level of

smoothness. To take into account, the time continuity

in the image sequence, an additional force, the tempo-

ral force is considered to enforce the temporal coher-

ence of the deformations across the time sequence t.

This temporal force is computed independently and

with a different formulation since the time dimension
t is very different from the spatial dimensions. Indeed,

the time dimension might be periodic (as for the car-

diac cycle), is discrete, and the sampling frequency in

time is usually very small compared to the spatial

sampling.

The law of motion governing the evolution of all

d · n vertices is based on a classical Newtonian (or sec-

ond-order evolution) framework resulting, in the follow-
ing set of equations:

mðiÞ
d2pi;t
ds2

þ c
dpi;t
ds

� aðiÞfintðpi;tÞ � dðiÞftimeðpi;tÞ

¼ bðiÞfextðpiÞ; ð2Þ

where m(i) is the ith vertex mass; c is the background

damping parameter; fint(pi,t) is the spatial regularizing

force; ftime(pi,t) is the temporal regularizing force;

fext(pi,t) is the data force; a(i), d(i), and b(i) are weights
controlling the spatial, temporal, and external terms.

Again, in this equation, s designates a temporal var-

iable controlling the evolution of a model from its ini-

tial shape toward its final shape. The discretization of

Eq. (2) using an fully explicit discretization scheme

leads to

psþDs
i;t ¼ psi;t þ ð1� cÞðpsi;t � ps�Ds

i;t Þ þ aifintðpsi;tÞ
þ diftimeðpsi;tÞ þ bifextðpsi;tÞ; ð3Þ

where ai, di and bi are force weights including the ver-

tex mass and the time step. The stability of this scheme

is guaranteed if ai, di, bi and c range inside ½0; 1
2
�; ½0; 1

2
�,

[0,1] and [0,1], respectively. In all our experiments, c is

set to a constant value c = 0.35 based on an empirical

study showing that it optimizes the convergence speed
in general. The a value is always set to 1 while the d
value is set to 0.1. The b parameter weights the influ-

ence of the external versus internal and temporal

forces. The a, b and d parameters have the same values

for all vertices.
4. Globally constrained deformations of the 4D model

In order to improve the robustness of the segmenta-

tion, we rely on a coarse-to-fine approach that combines

the deformable model scheme described above and the

ICP algorithm (Besl and McKay, 1992) extensively used
in registration frameworks. In (Montagnat and Delin-

gette, 1998), we have shown that this approach can

smoothly control the number of degrees of freedom

(DOF) of deformable surfaces in an efficient and simple

manner. We extend below the concept of globally con-

strained deformations to the case of 4D deformable

models.

The ICP algorithms iteratively estimates a global
transformation T and then applies that transformation

T on the current position of the mesh. The transforma-

tion T is determined by the minimization of a least-

square criterion that can be interpreted as the distance

between the expected mesh position and current esti-

mate of image boundary points. With the notations

introduced above, and based on (Montagnat and Delin-

gette, 1998) the optimal transformation T is computed
as

T ¼ arg min
T2T reg

Xn�1

t¼0

Xd�1

i¼0

T ðpi;tÞ � ðpi;t þ fextðpi;tÞÞ
�� ��2( )

;

ð4Þ

where {pi,t + fext(pi,t)}{i,t} is the current estimate of

boundary points and Treg is a given group of transfor-

mations with a small number of DOF. Most widely

used transformation groups are the groups of rigid

transformations (6 DOF), similarities (7 DOF) and af-
fine transformations (12 DOF). For these three trans-

formation groups, there exists a closed form solution

for solving equation (4) (see (Pennec, 1996) for details).

Note that to take into account of the whole time se-

quence, the global transformation is estimated using

all instants simultaneously. However, T is a transfor-

mation of R3 to avoid a distortion of the model in

the time dimension.
The iterative estimation and application of transfor-

mation T leads to the ICP-based global registration of

the initial template. To slowly increase the number of

DOF we propose to combine the ICP approach with

the local deformation scheme of equation (3), involving

all DOF. For this purpose, we introduce a global force

applied on vertex pi at time t defined as displacement

produced by the global registration:

fglobalðpi;tÞ ¼ T ðpi;tÞ � pi;t:

By weighting this force with a locality parameter

k 2 [0,1], we can propose a new evolution law suitable

for a coarse-to-fine deformation:
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psþDs
i;t ¼ psi;t þ ð1� cÞðpsi;t � ps�Ds

i;t Þ
þ ð1� kÞfglobalðpsi;tÞ þ kðaifintðpsi;tÞ
þ diftimeðpsi;tÞ þ bifextðpsi;tÞÞ: ð5Þ

When k = 0, the deformation is only global and the
model deforms according to the ICP framework (with

an additional inertia effect). Conversely, if k = 1, the

model deforms with its full number of DOF, i.e., with

a small correlation between vertex motion. Any interme-

diate value of k produces local deformations with a glo-

bal constraint, or globally constrained deformations.

The complete deformation process is based on a con-

tinuous evolution from global, to highly constrained, to
local deformations. This coarse-to-fine evolution im-

proves the model convergence similarly to the Graduated

Non-Convexity algorithm of Blake and Zisserman

(1987).
5. Spatial and temporal shape constraints

In this section, we detail the computation of internal

and temporal forces. Depending on the availability of a

prior shape, internal forces can impose a weak or strong

prior knowledge, as summarized in Table 1. When no

specific information is known about the shape of the

structure of interest, one usually uses basic geometric

assumptions such as curvature continuity to constraint

the deformable model shape. When the average shape
is available, then one can use this information to con-

strain the shape model to be close to that reference

shape.

We propose to extend this distinction between weak

and strong prior to the case of temporal forces. More

precisely if there is no information about the expected

motion of the structure, then it is possible to constrain

the vertex motion such as to minimize the kinetic energy
of the system (which is equivalent to perform temporal

position averaging). On the contrary if the expected mo-

tion is known then vertex trajectories can be constrained

to stay close to their reference shape.

5.1. Internal forces computation

Due to its discrete nature, the regularization of a sim-
plex mesh is not based on the evaluation of surface par-

tial derivatives but on the relative position of a vertex
Table 1

Spatial and temporal constraints depending on available priors

Spatial constraint Temporal constraint

Weak prior Curvature-based

shape smoothing

Temporal position averaging

Strong prior Shape constraint Trajectory constraint
with respect to its neighbors, i.e., in terms of metric

parameters and simplex angles. More precisely, each

vertex pi is attracted toward a position ~pi that locally

maximizes a smoothness criterion. Let ~eji ; ~ui and ~p?i de-

note the metric parameters, the simplex angle and the

projection of ~pi on Pi, respectively. The internal force
can be decomposed as the sum of a tangential and a nor-

mal component:

fintðpiÞ ¼ ð~p?i � p?i Þ þ ðhðpnghjðiÞ; e
j
i ;uiÞ

� hðpnghjðiÞ;~e
j
i ; ~uiÞÞni;

where h is defined in Eq. (1).

The tangential component of the internal force con-

trols the vertex spacing over the surface. To ensure uni-

formly spread vertices, metric parameters are set to

1=3 : ~e1i ¼ ~e2i ¼ ~e3i ¼ 1
3
. The normal component con-

strains the mean curvature of the surface through the

simplex angle. The definition of ~ui depends on the level
of geometric regularity to be enforced.

Let NsðiÞ be the set of all vertices connected to the

vertex of index i by a path of topological length less than

s edges. The scale parameter, s, defines the neighbor-

hood size over which the mesh is regularized. For med-

ical image segmentation we usually consider either a

(weak) smoothing constraint enforcing the C2 continuity

of the surface or a (strong) shape constraint:

� Smoothing (weak spatial) constraint.

To ensure that the vertex discrete mean curvature con-

verges toward the weighted average mean curvature of

its neighborhood, we set

~ui ¼ arcsin ri
X

j2NsðiÞ
eij

sinðujÞ
rj

 !
; with

X
j2NsðiÞ

eij ¼ 1:

This smoothness constraint is used when no anatomical

shape information is available. A mesh only submitted

to this constraint would converge toward a shape of
constant curvature: a sphere. Note that this constraint

does not entail any shrinking effect unlike the classical

snake smoothing forces (Delingette, 1999).

� Shape (strong spatial) constraint.

Let fu�
i gi be the set of simplex angles defining the refer-

ence shape of an anatomical structure. By setting
~ui ¼ u�

i , one constrains the shape of the deformable sur-

face to stay close to the reference shape. Furthermore,
this formulation can be extended to include a scale

parameter s to control the spatial extension of that

constraint.

5.2. Temporal forces computation

Temporal forces impose some level of spatial regular-
ity of the motion of each vertex. In other words, those
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forces constrain the geometric smoothness of vertex tra-

jectories. The formulation of temporal forces closely fol-

lows that of internal forces. More precisely, under the

action of this temporal force, a vertex pi,t is attracted to-

ward a point ~pi;t lying on an optimal trajectory:

ftimeðpi;tÞ ¼ ~pi;t � pi;t. Once again, we propose two formu-
lations of temporal forces:

� Smoothing (weak temporal) constraint.

A vertex at time t is attracted toward the centroid of its

two temporal neighbors: ~pi;t ¼
pi;t�1þpi;tþ1

2
. Applying this

force is equivalent to minimizing the kinetic energy of

the 4D model. Under the unique action of this force,

all vertex trajectories converge toward a straight line
(a single point if the motion is periodic).

� Trajectory (strong temporal) constraint.

When prior knowledge about the mesh motion is

known, we propose temporal forces that constrain the

shape of each vertex trajectory to closely resemble that

of its reference trajectory. To store those reference tra-

jectories, one could store the n vertex positions

{pi,t}t 2 [0,n�1] over time. However, this representation
would imply that the trajectory orientation and scale is

constant between images, which may not be the case. In-

stead, we choose to store the shape of the trajectory

(invariant up to a similarity transformation) as the set

of geometric parameters f~ei;t; ~ui;t;
~wi;tgði;tÞ corresponding

to the discrete arc-length, curvature and torsion, as de-

scribed in Section 3.2. The definition of the temporal

force is completed when specifying the computation of
the target point ~pi;t:

~pi;t ¼ ~ei;tpi;t�1 þ ð1� ~ei;tÞpi;tþ1

þ gðpi;t�1; pi;tþ1;~ei;t; ~ui;tÞðcosð~wi;tÞri;t
þ sinð~wi;tÞti;t ^ ri;tÞ:

where g ¼ kpi;t � p?i;tk is defined in Appendix A.
6. External forces computation

There exist in the literature many different expres-

sions for computing external forces in a deformable

model. A common approach is to combine a local

and a global boundary term based on the gradient

information (Delingette, 1999; Cohen et al., 1992)

to estimate the location of structures of interest. In

some cases, boundary-based external forces may not
be sufficient in which case one may use the grey-level

or textural description of the inner and/or outer re-

gion (Debreuve et al., 2001; Cocquerez and Philipp,

1995; Ronfard, 1994) to improve the boundary

detection.

In our case, we chose to compute the external force at

a vertex as a vector directed along the vertex normal and
proportional to the distance between the current vertex

position and the position of a boundary voxel. This

boundary voxel is searched along the vertex normal

direction and within a limited distance r from the cur-

rent vertex position. The range value r may be computed

as a fraction of the size of the structure to segment or as
a fraction of the image size. A line-scanning algorithm,

based on an extension of the Bresenham (1965) drawing

line algorithm in 3D, determines the set of voxels that

are visited along the normal direction. This algorithm

is applied with classical type of images where voxels

are cubic but also with images of cylindrical geometry

(where voxels are hexahedra) which occur when han-

dling tridimensional ultrasound images as in (Monta-
gnat et al., 2003).

The computation of boundary voxels depends on the

nature of the external force. We detail below two strat-

egies for finding those boundary voxels:

� Gradient-based force.

Those forces are well suited for the segmentation of

structures that appear with a high to medium contrast
in SPECT, CT, or MR images. The gradient informa-

tion (vector and norm) is computed from the source im-

age with standard differential operators. Based on the

previously described line scanning algorithm in the gra-

dient image, a voxel is considered to be a boundary

voxel if it corresponds to a high gradient value (above

a given threshold determined from the gradient histo-

gram). If the structure of interest appears to be brighter
or darker than surrounding structures, then the sign of

the dot product between the gradient vector at a voxel

and the normal direction at a vertex can be taken into

account to discard spurious boundary voxels. More

details are provided in (Delingette, 1999).

� Region-based force.

When dealing with low contrasted structures or when

handling US images subject to high speckle, the gradi-
ent-based criterion is not appropriate to find relevant

boundary points. In such cases, we combine region

and boundary information to improve the boundary

detection. In this formulation, a region is defined as

a sequence of consecutive voxels whose intensity be-

longs to a user-defined intensity range. We further re-

strict the definition by imposing that a region must

have a minimum number of voxels. The boundary
voxel are then found to be the voxels that are the

extremities of this region and whose gradient norm is

greater than a threshold. In practice, it is sufficient to

define a single region corresponding either to the struc-

ture to segment or to the neighboring structure. Fur-

thermore, when the image is strongly anisotropic, we

perform a trilinear interpolation of intensities for a bet-

ter approximation of the true intensity profiles. Also, in
case of highly texture images. it is possible to perform

an anisotropic filtering (Weickert, 1998) of the intensity
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profile leading to a smoothing of the profile except at

parts of high gradient.
7. Application to cardiac images segmentation

The assessment of the cardiac function is important

for the understanding and the early diagnosis of heart

pathologies. In this section, we illustrate the concept

of 4D deformable models with the segmentation of the

myocardium and the LV chamber from 4D cardiac ima-

gery. Based on volume estimation of the LV chamber

along the cardiac cycle, the Ejection Fraction (EF) can
be computed. The EF is an important clinical parameter

measuring the ratio of blood ejected between the End of

Diastole (ED: end of filling phase of the myocardium)

and the End of Systole (ES: end of ejection phase).

The ejection fraction value is typically 70 ± 10% on

healthy patients but is known to decrease significantly

in the presence of some cardiac pathologies (Davis

et al., 1993). Other quantitative parameters of cardiac
dynamic could be extracted such as the septum wall

thickness or the displacement of myocardium points.

7.1. Model measurements accuracy

The validation of segmentation outcome is a complex

issue in medical imaging due to the lack of ground truth

measurements for most applications (Bae et al., 1993;
Bello and Colchester, 1998). To assess the accuracy of

our segmentation algorithm, we propose to segment

synthetic SPECT images generated by the NCAT simu-

lator of Segars et al. (1999). NCAT images are produced

by simulation of SPECT physics on a realistic spline-

based dynamic heart phantom. The simulator produces

gray level images and outputs multiple information

about the observed objects, including the volume of each
structure. The NCAT simulator produces realistic

images in terms of geometry and physiology, although

they tend to be more sharp and less noisy than real

images.

For our case study, the left ventricle appear with a

high intensity, while surrounding structures appear with
Fig. 4. Left: Four simulated SPECT images; Right: simplex meshes of th
a lower contrast. 10 image sequences have been gener-

ated simulating different heart shapes by changing the

heart scale and the ratio parameters. Images of the torso

generated by the simulator are cropped around the LV

area, resulting in volumes of 42 · 46 · 30 isotropic vox-

els (0.31253 cm3). Each sequence is composed of 8
frames covering one heart cycle. Fig. 4 shows 4 images

(middle slice at the end of diastole) randomly selected

out of the 10 simulated sequences. On the same figure

are shown the associated meshes representing the LV

myocardium (at the end of diastole) and the LV cham-

ber (at the end of systole) extracted from these 4 images

with our segmentation algorithm.

The segmentation algorithm is based on the deforma-
tion of 4D simplex meshes in a coarse to fine manner as

previously described. We use two additional set of 4D

images to test what is the best sequence of deformation

stages (from global to local) and what are the best values

of locality parameter (k), the external force weight (b),
the surface rigidity (s), and the force computation range

(r) for each stage. Once this manual tuning is done, we

use the same sequence with the same parameter values
for the segmentation of the 10 simulated 4D images. Ta-

ble 2 shows the value of the algorithm parameters dur-

ing each deformation stage. The deformation of the

4D simplex mesh is first highly constrained (rigid, simi-

larity and finally affine registration is performed) with

strong influence of external forces. A deformation se-

quence terminates when the 4D mesh does not move sig-

nificantly between two iterations. After the affine
registration, the mesh is close enough to the myocar-

dium boundaries to start a globally constrained defor-

mation with a lower influence of external forces.

Fig. 5 displays quantitative results. On the left, the

diagram shows the LV myocardium volume (dashed

lines) and the LV chamber volume (solid line) in the sec-

ond image sequence. In each case, the thick line corre-

sponds to the ground truth (the volume given by the
simulator) and the thin line corresponds to the estimated

volume of the deformed 4D model. It can be seen that,

as expected, the myocardium volume has a very small

variation during the heart cycle, while the LV chamber

contracts significantly. From the LV chamber volume

curve, the EF can be computed. On the right of Fig. 5
e LV myocardium at ED (top) and the LV chamber ES (bottom).



Table 2

The parameters associated with the five distinct stages of the segmentation algorithm

Deformation stage Constraint k b r s # of iterations

Global deformation Rigid 0 1 8 25

Global deformation Similarity 0 1 6 15

Global deformation Affine 0 1 3 90

Strongly constrained Affine 0.2 0.1 2 5 30

Weakly constrained Affine 0.5 0.1 2 3 20
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Fig. 5. Left: Volume of LV myocardium and chamber on sequence 2. Right: Mean error (in % of volume) in measuring the LV myocardium volume,

the LV chamber volume, and the EF.
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are displayed the average errors (expressed in % of the

true volume) of the reconstructed volumes compared

to the ground truth for the 10 simulated images. The

volumes are averaged over the 8 instants and the error
bars represent standard deviation around the means.

The plain line shows the error (in %) of the computed

ejection fraction compared to the ground truth.

This experience shows that the myocardium segmen-

tation is fairly accurate on such good quality images.

Over the 10 simulated images, the maximum error is be-

low 4%. The LV chamber segmentation shows a more

significant variation from the ground truth. This is be-
cause the definition of the LV chamber is geometrically

ill-posed. Indeed we lack boundary information at the

base of the left chamber boundary in SPECT images.

In this case, it is the model shape constraints that pre-

vent the leakage of the mesh in the region of the cham-

ber base. Another alternative for estimating the LV

chamber could have been to compute the volume en-

closed by the LV myocardium after ‘‘closing’’ the ventri-
cle at the base level.

Anyway, errors are quite consistent over a given se-

quence (the error variance is quite low although the

absolute error can reach 17% in the worst case). It re-

sults in an accurate measurement of the EF (4.7% in

the worst case, which is low compared to pathological

variations of the EF).
In addition to volume measurements, Fig. 6 shows

the local distance between the recovered myocardium

surfaces and the reference surfaces extracted by isosur-

face computation from the original NCAT images.
The distances are computed using the M.E.S.H. soft-

ware (Measuring Error between Surfaces using the Haus-

dorff distance) developed at EPFL by Aspert et al.

(2002). This tool measures the asymmetric distance be-

tween two discrete surfaces (triangular meshes) using

the Hausdorff distance. It provides the maximum, mean

and root-mean-square (RMS) errors between two given

surfaces. Left of Fig. 6 displays an example of surface
comparison for the 3rd frame of image 7 in our experi-

ments (the worst case). The colors displayed on the myo-

cardium surface are related to the distance between the

surface recovered by the segmentation algorithm and

the reference surface as computed by MESH. Darker

values correspond to highest distances (up to 3.5 voxels

in this case) and brighter values correspond to lowest

distances. The maximum error are concentrated at the
border of the base and at the apex where the mesh cur-

vature is maximum and the smoothing constraint tends

to bias the shape recovery. The diagram on the right of

Fig. 6 shows the average distance (plain line with error

bars corresponding to minimum and maximum dis-

tances) and the RMS distance (dashed line) between

the recovered models and the reference surfaces



Fig. 6. Top: color distance map. Bottom: mean and RMS distance between the recovered surface and an isosurface extracted from the NCAT source

images.
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provided to the NCAT simulator for each of the 10

sequences studied. For each sequence, the 4 values dis-
played (minimum, maximum, mean and RMS distance)

have been averaged over the 8 time frames. This figures

shows that the average distance is always lower than a

voxel with local maxima around 3 voxels. The recovered

surfaces are therefore mostly located close to the refer-

ence surfaces up to a subvoxel distance. Thus, the model

accuracy is demonstrated both in local (inter-surface

distances) and global (volume) measures.

7.2. Non-synthetic image segmentation

We have segmented SPECT images having a resolu-

tion of 643 voxels (2 · 2 · 2 mm voxels). SPECT se-

quences are covering one heart cycle over 8 time

frames similarly to simulated images. The 4D cup-

shaped LV myocardium model built for simulated
images and shown on top of Fig. 8 is also used for seg-

menting those images. It consists of 500 vertices which is
well suited to the representation of the LV in low reso-

lution SPECT images.
We have processed a SPECT image database pro-

vided by Professor Goris from Stanford Medical

School. We compared images of 5 healthy patients with

normal endocardium blood perfusion and one patho-

logical patient with an abnormal perfusion due to

ischemic zones.

Due to the high contrast of the LV in SPECT images,

gradient forces are chosen as external forces. The 4D
model is roughly initialized in a given reference position.

Rigid followed by similarity registration are first per-

formed to compensate for the differences in location

and size between patients. Globally constrained defor-

mations based on affine transformation are then ap-

plied. By progressively increasing the locality factor

and lowering the external forces range, local deforma-

tions only affect a restricted neighborhood. Table 3
shows the different stages and the set of parameters used

for each stage.



Table 3

Deformation stage k Constraint b d s r # of

iterations

Global deformation 0 Rigid 1 5 35

Global deformation 0 Similarity 1 5 15

Strongly constrained 0.2 Affine 0.1 0.2 5 4 20

Weakly constrained 0.5 Affine 0.1 0.2 3 2 20

Local deformation 0.7 Affine 0.1 0.1 2 2 20
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The segmentation of a pathological case is performed

in the same way than healthy cases. Due to the poor

perfusion of the myocardium in some pathologies the

image contrast is much lower and the contours are

weaker. The model rigidity then becomes critical for a
Fig. 7. 4D model deformed with (left) an

Fig. 8. Myocardium 4D models. From top to bottom: reference model obta

case (bottom).
proper reconstruction of the heart boundaries. Fig. 7

shows the intersection of the deformed 4D model with

4 short axis slices of the pathological patient SPECT im-

age. This figures compare the segmentation outcome

with (left figure) and without (right figure) temporal

constraints. Clearly segmentation errors are larger with-
out temporal constraints (see the endocardium in slice

26 at time 2, or the epicardium at slice 32 time 4 for

instance).

Fig. 8 shows a frontal view of the 4D models. The fig-

ure shows the reference model (top), a healthy patient

model (center) and the pathological patient model (bot-

tom). The deformed models in 4D show a much more

regular aspect than the reference model obtained by
3D segmentation. The periodic nature of the motion
d without (right) time constraints.

ined by 3D segmentation (top), healthy case (center), and pathological
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clearly appears between the first and the last instant for

the 4D deformed models (center and bottom line). Also

the difference in the motion amplitude between healthy

and pathological cases clearly appears on the recon-
structed surfaces.

7.3. Other modalities

The model presented so far is not modality-specific

and can be used for different 3D image sequences seg-

mentation. We have experimented this 4D deformable

model for the segmentation of Magnetic Resonance
(MR) and Ultrasound (US) images. Cardiac MR

images have a very high in-slice resolution. However,

the third dimension resolution is much lower (256 ·
256 · 9 for a voxel size of the order of 0.5 · 0.5 · 8

mm). 4D echocardiographic images are acquired with

a rotative probe leading to a low spatial resolution

(256 · 256 · 9, with a 20� angle between consecutive

slices) and a high in-slice resolution (0.5 · 0.5 mm).
The US image sequences are composed of 8 time points

covering only the systole while the MR (13 time points)

sequences cover the complete heart cycle. In these image

sequences, the internal wall of the LV is reconstructed

by a closed surface representing the internal blood

volume.

The deformation process had to be adapted to each

image modality. MR images offer a high contrast and
two deformation stages (one affine registration followed

by a local affinely constrained deformation) were suffi-

cient to correctly segment the sequences starting from

a 4D ellipsoid roughly centered on the LV. External

forces are computed using the image gradient. The

speckle appearing in ultrasound images and the lack of

beam reflection on boundaries tangent to the ultrasound

rays make the segmentation process more difficult. In a
first registration stage, the gradient information is suffi-

cient to steer the model since it is strongly constrained.

After registration, the model locally deforms with an af-

fine global constraint. Local deformations guided by re-

gion based forces with a restricted range and a weak

surface rigidity are taking place in the final stage of

the segmentation. Due to the approximate shape of

the model a temporal smoothing constraint is used.
Although preliminary results are promising, we were
not able to quantify the influence of temporal con-

straints due to the lack of ground truth segmentation.
8. Conclusion

In this paper, we have extended the deformable

model framework to tackle the segmentation of 4D

images by introducing temporal regularizing constraints

in addition to spatial regularizing constraints. Weak or

strong priors can be introduced about the motion of

the model. With weak prior the vertex trajectories are
smoothed by temporal averaging whereas with strong

prior, the vertex trajectories are constrained to stay close

to given reference trajectories. Those temporal forces

tend to improve the segmentation of 4D medical images

by improving its robustness against noise and outliers.

The segmentation accuracy was evaluated on simu-

lated SPECT images for which a ground truth (organ

surfaces and volumes) is known. We have shown a
sub-voxel accuracy in the segmentation of the LV sur-

face and LV chamber volume which is sufficient for clin-

ical assessment of the cardiac function. Application of

the 4D segmentation algorithm to non-synthetic

SPECT, MR and US images have shown the versatility

of our approach.

To increase the accuracy of the segmentation for a gi-

ven image modality, it is possible to specify different set
of parameters (rigidity, locality) at different parts of the

mesh, for instance near the base of the LV or the apex of

the endocardium where high curvature points makes the

surface deformation more difficult to control. For image

modalities like MR or US, more sophisticated external

force definition based on the matching of intensity pro-

files (Cootes et al., 1995) or blocks (Sermesant et al.,

2003) can also significantly improve the detection of im-
age boundaries.

Moreover, the segmentation robustness can also be

strengthened, especially when dealing with patient with

strong pathologies, by relying on statistical shape

appearance modeling for firing alarms when the current

shape and image model is far from the expected one (Pit-

iot et al., 2003). In such case, one can decide to start

again the segmentation based on a different initial model
or with different set of parameters.
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Appendix A

Thisappendixdetails the computationof temporal forces

with prior motion knowledge as defined in section 5.2.

The position pi,t of a vertex is related to the position of

its temporal neighbors and the three parameters ei,t, ui,t,

and wi,t by

pi;t ¼ ei;tpi;t�1 þ ð1� ei;tÞpi;tþ1

þ gðpi;t�1; pi;tþ1; ei;t;ui;tÞðcosðwi;tÞri;t
þ sinðwi;tÞti;t ^ ri;tÞ;

where g ¼ kpi;t � p?i;tk is the height of pi,t above segment

[pi,t�1,pi,t + 1] (refer to Fig. 3 for an illustration of the

geometric parameters composing a trajectory).

The height g is estimated differently in the three cases

shown in Fig. 9 representing a local projection of the

trajectory in plane (pi,t�1,pi,t,pi,t + 1). In each case, the
elevation angle is defined differently.

Let us define the following angles: hþ ¼ \p?i;tpi;tpi;tþ1

and h� ¼ \pi;t�1pi;tp
?
i;t.

� First case: ei,t>1

The elevation angle equals to ui,t = p � h + , thus

tanðui;tÞ ¼ � tanðhþÞ

¼ �
kp?i;t � pi;tþ1k

g
¼ �

jei;tjkpi;tþ1 � pi;t�1k
g

leading to

gðei;t;ui;t; pi;tþ1; pi;t�1Þ ¼
�ei;tkpi;tþ1 � pi;t�1k

tanðui;tÞ
:

� Second case: 0 6 ei,t 6 1

In that case, the equality ui,t = p � h+ � h� leads to

� tanðui;tÞ ¼ tanðhþ þ h�Þ ¼ tanðhþÞ þ tanðh�Þ
1� tanðhþÞ tanðh�Þ

¼
kpi;tþ1 � pi;t�1kg

g2 þ kp?i;t � pi;t�1kkp?i;t � pi;tþ1k
:

This equation admits two values for g:

g ¼
kpi;tþ1 � pi;t�1k
2 tanðui;tÞ

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ei;tð1� ei;tÞtan2ðui;tÞ

q� �
:

One of those two solutions is always negative and the

other one, the only acceptable, is always positive. If

ui;t <
p
2
, the first term of g is positive and the second
one has to be positive as well. Else, the second term

has to be negative:
gðe1i;t;ui;t; pi;tþ1; pi;t�1Þ

¼
kpi;tþ1 � pi;t�1k
2 tanðui;tÞ

�1þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e1i;te

2
i;ttan

2ðui;tÞ
q� �

where

� ¼
þ1 if ui;t <

p
2
;

�1 else

�
� Third case: ei,t<0

The elevation angle is such that ui,t = p�h�, thus

tanðui;tÞ ¼ � tanðh�Þ ¼ �
kp?i;t � pi;t�1k

g

¼ �
j1� ei;tjkpi;tþ1 � pi;t�1k

g

leading to

gðei;t;ui;t; pi;tþ1; pi;t�1Þ ¼
ðei;t � 1Þkpi;tþ1 � pi;t�1k

tanðui;tÞ
:
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