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Abstract� Regularization o�ers a powerful framework for signal recon�
struction by enforcing weak constraints through the use of stabilizers�
Stabilizers are functionals measuring the degree of smoothness of a sur�
face� The nature of those functionals constrains the properties of the
reconstructed signal� In this paper� we �rst analyze the invariance of
stabilizers with respect to size� transformation and their ability to con�
trol scale at which the smoothness is evaluated� Tikhonov stabilizers are
widely used in computer vision� even though they do not incorporate
any notion of scale and may result in serious shape distortion� We �rst
introduce an extension of Tikhonov stabilizers that o�ers natural scale
control of regularity� We then introduce the intrinsic stabilizers for pla�
nar curves that apply smoothness constraints on the curvature pro�le
instead of the parameter space�

� Introduction

Most tasks in computer vision can be described as inferring geometric and phys	
ical properties of three dimensional objects from two dimensional images� A
characteristic of those inverse problems is their ill�posed nature�PT���� Assump	
tions about the scene� such as smoothness or shape must be made to retain the
�best� solution within the range of prior knowledge� Regularization transforms
an ill	posed problem into a well	posed minimization problem by constraining the
solution to belong to a set of allowed functions� If the problem is formalized as
A� � d� where A is an operator describing the image formation process and d
is a function describing the data extracted from the image� then the regularized
problem consists in minimizing a functional of the form�BTT����

E
�� � � � S
�� �D
�� � �kP�k�� � kA� � dk�� 
��

kP�k�� evaluates the smoothness of the solution � and is called a stabilizing
functional or stabilizers� kA� � dk�� evaluates the distance between the solution
to the data� The regularizing parameter � weights the relative importance of
smoothness with respect to the closeness of �t�

Variational principles involving smoothness constraints are widely used in
computer vision ranging from surface reconstruction�BK���� segmentation with
active contours�KWT��� and surfaces�DHI��b�� Geometric modeling primitives
such as splines under tension �Sch���� Beta	Spline�BT��� proposed in computer	
aided	design are derived from variational principles similar to the interpolation
approach of regularization�

In this paper� we �rst analyze the di�erent smoothness measures with regard
to �ve criteria of invariance� Then� we extend the notion of stabilizing functionals
to di�erential stabilizers by transforming the variational principle of equation

�� into the problem of solving a di�erential equation� Finally� we propose a
generalization of Tikhonov stabilizers that provides both spatial control of the
smoothness constraint and intrinsic shape formulation�



� Smoothness Measures

��� Invariance

We have retained �ve criteria that characterize the notion of smoothness as it is
generally conceived for the human perception of shape�

� Invariance with rigid motion� For all isometries T � a smoothnessmeasure
S
�� should verify� S
T�� � S
���

� Invariance with size� The smoothness of an object is independent on how
far the viewer is from the object� assuming an in�nite perceptual resolution�
Therefore� a smoothness measure should verify� S
l�� � S
����l � IR�

� Invariance with respect to parameterization� Shape is clearly indepen	
dent of the way a curve or surface is described but relies only on its intrinsic
geometric parameters�We would therefore expect for every mappingM from
�w � IRd� 
d � � or ��� to �u � IRd� that S
�
u�� � S
�
M
w����

� Dependance with inner�scale� Smoothness is clearly relative to the scale
at which it is considered� A sensible smoothness measure should therefore
be a function of scale�

� Sphere Invariance� This criterion states that circles and spheres should
be among the curves or surfaces of least energy� Besides that spheres en	
close the notion of ideal shape� this criterion ensures natural deformations
against external constraints� For instance� if a stabilizer does not accept cir	
cles as optimum� the approximating spline minimizing equation � would be
a circle� generally of smaller radius� Consequently� the spline will tend to
consistently deform toward its center of curvature� especially where the cur	
vature is high� This smoothing distortion is known as the �shrinking e�ect��
Several methods have been proposed to overcome this undesirable e�ect of
linear smoothing� Lowe�Low��� and Oliensis�Oli��� studied algorithms for
compensating the shrinkage entailed by Gaussian smoothing�

��� Quadratic Smoothness Measure

Most regularized problems in computer vision� are based on a quadratic smooth	
ness measure� The �rst advantage of quadratic measures is that functional anal	
ysis provides a solid theoretical framework for studying convexity� stability and
convergence� The corresponding Euler	Lagrange equation is a quasi	linear dif	
ferential equations and in the particular case of the interpolation and approx	
imation surface reconstruction problem� the analytical form of solutions are
known explicitly� Let S
�� �

R
IRd


P���du be a quadratic functional over a

set of multidimensional function � � IRd �� IRp� P is a linear� symmetric� and
translation invariant operator and therefore the functional may be written as
S
�� �

R
IRd

j�p
s�j�j��
s�j�ds where ��
s� is the Fourier transform of �
u�� The
measure S
�� can be interpreted as the power signal of the transformed signal
in the frequency domain� When P is a high pass �lter� and under unrestrictive
conditions� S
�� is a semi	norm over a well	de�ned class of functions F � with a
�nite dimensional null space�GJP����

Tikhonov and Arsenin�TA��� used the qth	order weighted Sobolev semi	
norms restricted on Sobolev spaces as a stabilizing functional for regularizing



an ill	posed problem� The qth	order weighted multivariate formulation general	
ized by Duchon�Duc��� writes as�

S
�� �

qX
m��

Z
IRd

wm
u�
dX

j������jd�m

m�

j�� � � � jd�

�
�m�
u�

�uj�� � � � �ujdd

��

du 
��

where wm
u�are non negative functions that control the non	homogeneity or the
continuity of the surface�

��� Harmonic Functions

Curves of surfaces minimizing the Tikhonov stabilizers are harmonic or iterated
harmonic functions� Harmonic functions correspond to the �most conservative�
interpolation possible in terms of parameterization� Harmonic functions have the
unique property that the value at the center of a ball in the parameter space is
equal to the mean value taken over the ball �

�R � IR�� �u � IRd �
u� �
�

A
BuR�

Z
B
u

R

�
v�dBuR 
��

where BuR is the ball of radiusR centered on u� This mean value property uniquely
characterizes harmonic functions and indeed corresponds to a highly desirable
property for solving interpolation problems� The mean value property may be
expressed too in terms of mean value over a sphere SuR centered on u rather than
over a ball BuR�

��� Invariance of Tikhonov Stabilizers

Tikhonov stabilizers have the following properties�

� Invariance with rigid motion� The multivariate Tikhonov stabilizers have
been especially designed for their isometric invariance�

� Dependence on size� For all stabilizers E
l�� � l�E
��� However� for a
solution ��of a given set of data constraints and end conditions� the scaled
solution is solution of the scaled problem�

� Dependence on parameterization� Tikhonov stabilizers are not posed in
terms of intrinsic parameters and consequently fairness of the reconstructed
surfaces is not guaranteed�

� Independence with inner�scale� The smoothnessmeasure is estimated on
in�nitely small neighborhood around each point of a surface� The regulariza	
tion parameter � weights the smoothing e�ect on the regularized surface and
thereupon controls the scale at which the surface is smoothed� However� it
couples both notion of �scale� and �closeness of �t� that are clearly distinct�

� Spheres are not optimal� Circles and Spheres do not minimize the Tikhonov
smoothness measures� Furthermore� in �DHI��a�� we have proved that none
of the quadratic stabilizers accept circles as optimal curves� Consequently�
shrinkage is inherent to linear �ltering�



��� Physically�based Smoothness Functionals

Many natural phenomena may be modelled through variational principles and
the energy of deformations of physical system may be used as smoothness mea	
sures� For instance� an elastic spanned between two points reaches its equilibrium
when minimizing its length�

S
�� �

Z u�

�

k�ukdu

The �rst variation of this �rst order stabilizing functional is �S
�� � d
duT and

curves of least energy are lines�
The mechanical spline energy is derived from the physical deformation of a

thin beam attached at speci�ed points�

S
�� �

Z u�

�

k�
u�ds �

Z u�

�


xuyuu � yuxuu��


x�u � y�u�
���

du 
��

This energy was proposed by Blake and Zisserman�Bla��� to achieve a view	
point invariant surface reconstruction�Curves minimizing the sum of their square
curvature or mechanical splines have been studied by many authors including
Horn�Hor��� and they verify the following intrinsic equation�

�S
�� �
d

du

�
k�T� �

dk

ds
N

�
�

ds

du

�
k� � �

d�k

ds�

�
N � 	

This intrinsic smoothness functional does not accept circles as optimal curves
and furthermore is not size invariant�

� Di�erential Stabilizer

A necessary condition for � to minimize E
�� � � �S
���D
�� is the vanishing
of the �rst variation �E
�� � ���S
����D
�� � �� Since E
�� is formulated as a
variational principal� �E
�� is derived through the Euler	Lagrange equation� In
general� solutions of a variational problem are recovered by solving the associated
Euler	Lagrange equation� hence making abstraction of the actual minimization
problem� In practice� the energy to minimize in non	convex� and the solution of
Euler	Lagrange equation leads local minima�

It is therefore natural to extend the framework of regularization by replacing
the necessary condition � � �S
�� � �D
�� � � by the more general condition

� � 	
�� � �D
�� � � 
��

where�

� 	
�� is an operator from a speci�ed functional space F into F � We will call
	
�� a Di�erential Stabilizer 
DS��

� �D
�� is the �rst variation of D
�� � kA� � dk��



We will call stabilization the transformation of the problem A� � d into the
following problem�

Among all � � F � that verify� � 	
�� � �D
�� � �
Find ��that minimizes �

C
�� �
R
IRd

	
���du�
R
IRd

jA�
u�� d
u�j�du

��

Instead of solving a minimization problem � stabilization proposes to solve the
di�erential equation � � 	
�� � �D
�� � �� and then to discriminate among
solutions by minimizing the cost function C
��� In general� stabilization is not
equivalent to minimizing the cost function C
��� However� when the di�erential
stabilizer 	
�� is a linear� symmetric and positive operator on a Hilbert space�
then 	
�� corresponds to the �rst variation of the functional S
�� �

R
IRd

	
���du
and hence stabilization is equivalent to regularization�

The incentive behind stabilization is to provide a wider range of smoothness
functional for solving inverse problems� We can justify this approach with an
analogy with mechanics theory� The laws of mechanics are based on the mini	
mization of the Lagrangian L � T �U where T is the kinetic energy and U the
total potential energy of the system� The Euler	Lagrange equation correspond	
ing to the minimization of L is the law of motionm� � F� However� some forces
do not derived from a potential �eld such as viscous or friction forces� such that
it is not always possible to set the problem in terms of minimization of energy
but only in terms of force equilibrium� Hence� the di�erential stabilizer 	
�� may
be seen as an internal force enforcing shape constraints while �D
�� may be seen
as an external force enforcing accuracy�

Several properties are desirable for a DS to render feasible and computable
solutions� In addition to invariance with rigid motion� size� parameterization� we
add the notion of sphere invariance as well as stability and convergence�

� Intrinsic Polynomial Stabilizer

��� Controlled�Scale Extensions of Tikhonov Stabilizers

We now propose an extension of the Tikhonov functionals described in section
��� by introducing the notion of �scale	sensitive derivatives�� For instance� we
can evaluate the �rst derivative on a curve �
u� at di�erent scale with the ratio

�
u�r���
u�r��
�r where r controls the scale at which we consider the curve
geometry� A smoothness measure of the �rst order at scale r on closed curves
then writes as�

S
�� �

Z
�


�
u� r�� �
u� r���

�r�
du

�S
�� �
�
u�

�r�
�
�
u� �r� � �
u� �r�

�r�

The curves of least energy verifying �
u� � ��u��r	���u��r	

r � are therefore har	

monic� i�e� lines for a univariate function� we further extent the Tikhonov sta	
bilizers by allowing the scale parameter r to vary spatially along the curve� In
general� the scale parameter should be large at the center of the set � where
the surface is de�ned and should be decreasing near the boundary ��� Table
� summarizes the di�erent controlled	scale di�erential stabilizers generalizing
Tikhonov functionals�



Controlled�Scale Weak String ���� 	



r��u�

�
��u��

��u� r�u�� � ��u� r�u��




�

Controlled�Scale Thin Rod ���� 	 � �
r��u�

�
�uu�u��

�uu�u�r�u����uu �u�r�u��
�

	

Controlled�Scale Membrane ���� 	
�

r�u�

�
��u��

R
S
r�u�
u

��u�du


�r�u�

�

Controlled�Scale Thin Plate ���� 	 �
�

r�u�

�
���u��

R
S
r�u�
u

���u�du


�r�u�

�

Table �� The controlled�scale extensions of Tikhonov stabilizers

Those controlled�scale di�erential stabilizers fully generalizes the Tikhonov
stabilizers since they converge toward the Tikhonov stabilizers as r
u� converges
toward zero�

Using an analogy with mechanics� those �smoothing forces� can be inter	
preted as spring forces exerted between a surface point and the centroid of the

curve �
v�� v � S
r�u	
u � Instead of considering the centroid of the curve �
v� sur	

rounding a point� we can consider the centroid of the area it encloses� We then
obtain another set of smoothing functionals that rely on the same notion of
�scaled derivatives�� but leads to smoother deformations because it averages
over a larger extent� The uniform controlled�scale di�erential stabilizers are de	
�ned as�

Uniform Controlled�Scale Weak String ���� 	 ��u��

R
u�r�u�

u�r�u�
��v�dv


r�u�

Uniform Controlled�Scale Thin Rod ���� 	 ��uu�u� �

R
u�r�u�

u�r�u�
�uu�v�dv


r�u�

Uniform Controlled�Scale Membrane ���� 	 ��u��

R
B
r�u�
u

��u�du

��r��u�

Uniform Controlled�Scale Thin Plate ����� 	 ���u� �

R
B
r�u�
u

���u�du

�r��u�

Table �� The uniform controlled�scale extensions of Tikhonov stabilizers

Solutions of the di�erential equation � typically use �nite di�erences or �	
nite elements methods with iterative schemes such as Gauss	Seidel relaxation�
Controlled	scale stabilizers involve inverting a banded positive de�nite matrix
whose bandwidth depends on the scale parameter r
u�� The computational com	
plexity for solving those systems is the same that for regular Tikhonov stabilizers
but the rate of convergence is signi�cantly increased since constraints propagate
faster along the curve�

For sparse data approximation� smoothness should not be evaluated over the
discontinuity entailed by each data constraint� For appropriate approximation
over data points Pi� the scale parameters ri should be picked such that smoothing
does not occur across discontinuities 
see Figure 
����
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Fig� �� a� Approximation of data points with the controlled�scale thin rod stabilizers
and varying scale parameter b� Distribution of the scale parameters along the curve�
The parameter at each �attached� nodes is one� and vary linearly otherwise c� Result
of the same approximation with almost constant scale parameters  d� Distribution of
the scale parameters corresponding to c�� ri 	Min��� i� N � i�

��� Intrinsic Polynomial Stabilizer

The Intrinsic Polynomial Stabilizer�DHI��a� 
IPS� are di�erential stabilizers act	
ing on planar curves� They are invariant to rigid motion� parameterization� they
are scale sensitive and they accept circles as optimal curves� Another interesting
feature is their intrinsic nature which makes them sensitive to shape regardless
of the parameterization� Our approach consists in linearly �ltering the curvature
space instead of linearly �ltering the parameter space�

More precisely� given a curve �
u�� we choose to �lter the derivative of the
tangent polar angle d�

du � k
u� dsdu � Given a di�erential stabilizer 	�

d�
du � applied

on the rate of turn d�
du 
u�� we de�ne a di�erential stabilizer 	 applied on the

parametric equation�

	
��
u� �
d�s

du�
T �

ds

du
	�


d�

du
�N 
��

The Intrinsic Polynomial Stabilizers are derived directly from equation 
��� with
	� corresponding to uniform controlled	scale di�erential stabilizers of di�erent
orders�

IPS order zero 	IPS�
�� �
d�s

du�
T 
��

IPS order one 	IPS�
�� �
d�s

du�
T �

ds

du

d�

du
N 
��

IPS order two 	IPS�
�� �
d�s

du�
T �

ds

du



�d�

du

u��

R u�r�u	
u�r�u	

d�
du 
v�dv

�r
u�

�
AN 
���

The IPS of order one correspond to the weak string di�erential stabilizer�

The curves that nullify the IPS of order n verify both d�s
du� � � and 	�


d�
du � � �



and therefore are curves whose curvature pro�le is a polynomial of degree �n��

of the arc	length� For n � �� the �smoothest� curve verify only d�s
du� � � which

does not constraint the shape of a curve� only its parameterization� For second
order stabilizers the curve of least energy are Cornu�s Spirals or Clothoids�

Intrinsic Polynomial Stabilizers can be seen as merely scale	sensitive Tikhonov
stabilizers regularizing the curvature pro�le instead of the parametric equation�
They are circle	invariant which prevents any �shrinking e�ect� during �ltering�
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Fig� �� a� Interpolation with the thin rod stabilizer b� Its curvature pro�le c� Inter�
polation with IPS of order two the curve is C� continuous d� Its curvature pro�le is
piecewise linear e� Interpolation with IPS of order three the curve is C� f� Its curva�
ture is piecewise cubic g� Approximation with a thin rod h� Approximation with IPS
of order one i� Approximation with IPS of order two �same regularization parameter�

We use an explicit �nite di�erence scheme for solving approximation� inter	
polation� and segmentation problem� The expression of the stabilizer is simple
enough to render real	time deformations of an active contour on a Sun� work	
station� Figure 
�� compares the interpolation and approximation solutions for
the thin rod� IPS of order two and IPS of order three� The curvature pro�le
shows clearly that IPS release smoother and natural	looking shapes than the
linear thin rod stabilizer�

��� Shape constraints

Another interesting type of internal constraints for solving computer vision prob	
lems� is shape� For instance� in order to track deformable object� one would
like to have a template with enough shape constraints for correctly matching



the target but with enough �exibility to adapt to perspective distortion and
target deformation�BACZ���� Weighted Intrinsic Polynomial Stabilizers create
complex	shaped deformable templates with controlled	rigidity� Those templates
naturally converge toward their initial shape when not submitted to any external
constraints�

Given a curve and its curvature pro�le� k � f
s�� we �rst determine the
extrema of curvature� If we compute the weight function as w
u� � �
jf �
u�j�
then solutions of the weighted weak membrane di�erential stabilizer 	
�� �
d
du �w
u��u� � � between two extrema are the functions �
u� � af
u� � b� A
stabilizer enforcing shape prior on a contour is de�ned as following�

	
��
u� �
d�s

du�
T �

ds

du
	�


d�

du
�N

with 	�

d�
du � equals to�

� d
du �w
u�

d��
du� � with w
u� � �
jf �
u�j if f
u� is between two extrema�

� f
u�� d�
du if f
u� is an extremum of curvature�

This method applies to any C� continuous contour� The previous stabilizer
can be extended further by integrating for notion of scale at which the shape
is de�ned� In Figure 
��� we use the smoothed shape of France to illustrate the
shape prior ability of intrinsic stabilizers� After constraining the position of seven
nodes� the curve reaches a state of equilibrium with a trade	o� between natural
shape and closeness of �t�

a� b�

Fig� �� a�Initial curve with its rest shape b� Curve solution of an approximation prob�
lem under the in�uence of the weighted intrinsic polynomial stabilizer� The curve is
constrained by seven springs attached to the black squares� Under the in�uence of the
stabilizer� the curve shape is similar to its prior shape�

� Conclusion

The controlled	scale stabilizers� on one hand� provide an additional set of pa	
rameters� the scale parameters� that in�uences both the convergence rate and
the smoothness of the reconstructed signal� Intrinsic stabilizers on the other



hand� provide a complete control of the curvature pro�le of a curve and con	
sequently its shape� A promising application of shape	control is the creation of
smoothly deformable templates for target tracking� Finally� intrinsic splines for
which curvature is a polynomial function of arc	length are of great interest for
computer	aided design because of their natural appearance�
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