

Hervé Delingette

Herve.Delingette@sophia.inria.fr

Plan

- Description des simulateurs médicaux
 - Modélisation des tissus mous
 - Modèles Masses-Ressorts
 - Introduction à la biomécanique
 - Mécanique des Milieux Continus
 - Estimation de paramètres biomécaniques.
 - · Discrétisation par la Méthode des Elements-Finis
 - Modèle Elastique Linéaire Pré-calculé
 - Modèle Masses-Tenseurs

Motivation de la simulation médicale

- Complexité croissante des procédures thérapeutiques et en particulier chirurgicales Besoin Croissant de formation des chirurgiens et des internes en chirurgie
- Les erreurs médicales sont devenues socialement et économiquement inacceptables
 Besoin croissant d'une évaluation objective de la performance des chirurgiens
- Extension naturelle de la planification de chirurgie

Simulation de la chirurgie Laparoscopique

Le concept de la laparoscopie a été inventé au milieu du XIX^{eme} siècle

Chirurgie laparoscopiqu (source, US Surgical Corporation

Courtesy of L. Soler (IRCAD)

Da Vinci (Intuitive Surgery) Courtesy of E. Coste-Manière (Chir)

Formation des chirurgiens : Aujourd'hui

- Entraînement aux gestes à partir de :
 - Simulateur Mécanique
 - Animaux (Ethique, Isomorphisme)
 - Patients (courbe d'apprentissage)

97 United States Surgical Corporation

Entrainement ou Préparation

- Simulateur Générique
 - Très important pour la formation des jeunes chirurgiens
 - Permet d'évaluer objectivement la pratique des chirurgiens
 - Simulation de pathologies rares
- Simulation à partir de l'anatomie d'un patient donné
 - Validation d'une stratégie opératoire ou d'une gestuelle opératoire pour des interventions complexes.

SIMULATEURS INRIA [Cotin, 1997] [Picinbono, 2001] [Forest 2003]

- Simulation d'une hepatectomie par laparoscopie
- Inclut vaisseaux sanguins et parenchyme hépatique

Plan

- Description des simulateurs médicaux
- Modélisation des tissus mous
 - Modèles Masses-Ressorts
 - Introduction à la biomécanique
 - Mécanique des Milieux Continus
 - Estimation de paramètres biomécaniques.
 - Discrétisation par la Méthode des Elements-Finis
 - Modèle Elastique Linéaire Pré-calculé
 - Modèle Masses-Tenseurs

Simulation du geste Chirurgical

- Modélisation Physique
 - Nature déformable des tissus mous
 - Interaction complexe des instruments chirurgicaux avec les tissus mous (découpe,...)
- Importance de l'interactivité
 - Retour visuel (24 images / s)
 - Retour d'efforts sur les instruments chirurgicaux (de 300 à 1000 consignes / s)

Plan

- Description des simulateurs médicaux
 - Modélisation des tissus mous
 - Modèles Masses-Ressorts

- Introduction à la biomécanique
- Mécanique des Milieux Continus
- Estimation de paramètres biomécaniques.
- Discrétisation par la Méthode des Elements-Finis
- Modèle Elastique Linéaire Pré-calculé
- Modèle Masses-Tenseurs

- Utilisation de la mécanique du point (et pas de la mécanique des milieux continus)
- Peut-être défini sur un graphe (pas de notion de maillage)
- Facile à mettre en œuvre dans un schéma explicite ou implicite

$$m_i \frac{d^2 \boldsymbol{P}_i}{dt^2} = \gamma_i \frac{d \boldsymbol{P}_i}{dt} + \boldsymbol{F}_i$$

Problèmes des masse-ressorts (1)

- Comportement trop mou
 - utilisation d'un schéma implicite d'intégration
 - On remplace

$$\mathbf{F}_{ij} = k_{ij} \left(\left\| \mathbf{P}_i \mathbf{P}_j \right\| - l_{ij}^0 \right) \frac{\mathbf{P}_i \mathbf{P}_j}{\left\| \mathbf{P}_i \mathbf{P}_j \right\|}$$
$$\mathbf{F}_{ij} = \left[\mathbf{K}_{ij} \right] \left(\mathbf{P}_i - \mathbf{P}_i^0 \right) \quad \text{avec} \quad [\mathbf{K}_{ij}] = \frac{\partial \mathbf{F}_{ij}}{\partial \mathbf{P}_i}$$

Problèmes des masse-ressorts (1)

Mauvais comportement en cisaillement
voir travaux de X. Provot

Problèmes des masse-ressorts (3)

- Solutions au problème de cisaillement
 - ajout d'éléments diagonaux
 - Utilisation d'une limite sur la déformation des ressorts

ral" springs

Problèmes des masse-ressorts (4)

- Comportement dépend du maillage
 - aucune étude globale permet de relier la topologie du maillage à son comportement
 - Difficulté à relier les paramètres de raideurs à des grandeurs physiques (Module de Young, coefficient de Poisson)
 - Utilisation de méthodes connexionnistes ou d'algorithmes génétiques pour l'identification de paramètres.

Plan

- · Description des simulateurs médicaux
 - Modélisation des tissus mous
 - Modèles Masses-Ressorts
 - Introduction à la biomécanique
 - Mécanique des Milieux Continus
 - Estimation de paramètres biomécaniques.
 - · Discrétisation par la Méthode des Elements-Finis
 - Modèle Elastique Linéaire Pré-calculé
 - Modèle Masses-Tenseurs

Caractérisation des tissus mous

- Le comportement biomécanique de la plupart des tissus mous est très complexe.
- Un tissu mou est généralement constitué de plusieurs structures :
 - Fluides : eau et sang
 - Matériaux fibreux : fibres musculaires, fibres neuronales
 - Membranes : capsule de Glisson
 - Parenchyme : hépatique ou cérébral

Plan

- Description des simulateurs médicaux
- Modélisation des tissus mous
 - Modèles Masses-Ressorts

- Introduction à la biomécanique
- Mécanique des Milieux Continus
- Estimation de paramètres biomécaniques.
- Discrétisation par la Méthode des Elements-Finis
- Modèle Elastique Linéaire Pré-calculé
- Modèle Masses-Tenseurs

Other Hyperelastic Material

• Neo-Hookean Model
$$w(X) = \frac{\mu}{2}trE + f(I_3)$$

- Fung Isotropic Model $w(X) = \frac{\mu}{2}e^{wE} + f(I_3)$
- Fung Anisotropic Model $w(X) = \frac{\mu}{2} e^{wE} + \frac{k_1}{k_2} \left(e^{k_2(I_4-1)} 1 \right) + f(I_3)$
- Veronda-Westman $w(X) = c_1 \left(e^{\gamma t r E} \right) + c_2 t r E^2 + f(I_3)$
- Mooney-Rivlin: $w(X) = c_{10}trE + c_{01}trE^2 + f(I_3)$

Plan

- · Description des simulateurs médicaux
- Modélisation des tissus mous
 - Modèles Masses-Ressorts
 - Introduction à la biomécanique
 - Mécanique des Milieux Continus
- Estimation de paramètres biomécaniques.
 - Discrétisation par la Méthode des Elements-Finis
 - Modèle Elastique Linéaire Pré-calculé
 - Modèle Masses-Tenseurs

Estimating material parameters

- Complex for biological tissue :
 - · Heterogeneous and anisotropic materials
 - Tissue behavior changes between in-vivo and in-vitro
 - Ethics clearance for performing experimental studies
 - Effect of preconditioning
 - · Potential large variability across population

Soft Tissue Characterization

- Different possible methods
 - In vitro rheology
 - In vivo rheology
 - Elastometry
 - Solving Inverse problems

Soft Tissue Characterization

- In vivo rheology
- can provide stress/strain relationships at several locations
 Influence of boundary conditions not well
 - Influence of boundary conditions not well
 understood

Soft Tissue Characterization

- Still difficult to find "reliable" soft tissue material parameters
- Example : Liver soft tissue characterization

First Author	Experimental Technique	Liver Origin	Young
			Modulus (kPa
Yamashita [111]	Image-Based	Human	Not Available
Brown [15]	in-vivo	Porcine Liver	≈ 80
Carter [17]	in-vivo	Human Liver	≈ 170
Dan [27]	ex-vivo	Porcine Liver	≈ 10
Liu [62, 61]	ex-vivo	Bovine Liver	Not Available
Nava [76]	in-vivo	Porcine Liver	≈ 90
Miller [74]	in-vivo	Porcine Liver	Not Available
Sakuma [92]	ex-vivo	Bovine Liver	Not Available

Table 2: List of published articles providing some quantitative data about biomechanical properties of the liver.

Plan

- Description des simulateurs médicaux
- Modélisation des tissus mous
 - · Modèles Masses-Ressorts
 - Introduction à la biomécanique
 - Mécanique des Milieux Continus
 - Estimation de paramètres biomécaniques.
- Discrétisation par la Méthode des Elements-Finis
 - Modèle Elastique Linéaire Pré-calculé
 - Modèle Masses-Tenseurs

Discretisation techniqu

- Four main approaches :
 - · Volumetric Mesh Based
 - Surface Mesh Based
 - Meshless
 - Particles

Volumetric Mesh Discretization

- Classical Approaches :
 - Finite Element Method (weak form)
 - Rayleigh Ritz Method (variational form)
 - Finite Volume Method (conservation eq.)
 - Finite Differences Method (strong form)
- FEM, RRM, FVM are equivalent when using linear elements

Stiffness Matrix

• Ecrire l'énergie élastique pour chaque tétraèdre

$$W_{T_i} = \sum_{jk} U_j^t \left[\mathbf{K}_{jk}^{\mathsf{T}_i} \right] U_k$$

• Avec:

• le tétraèdre T_i

- ses coéfficients de Lamé λ_i et μ_i
- ses vecteurs normaux M_i à la position au repos

$$[\mathbf{K}_{jk}^{T_i}] = \frac{1}{36 \cdot \mathbf{V}(T_i)} \left(\lambda_i \mathbf{M}_k \mathbf{M}_j^T + \mu_i \mathbf{M}_j \mathbf{M}_k^T + \mu_i \left(\mathbf{M}_j \cdot \mathbf{M}_k \right) [\mathbf{Id}_{3x3}] \right]$$

Matrice de Raideur

• Ecrire l'énergie élastique totale

$$W_{\text{total}} = \sum_{T_i} W_{T_i}$$

• Dériver l'expression de la force élastique au sommet i : sommet i : $F_i = \frac{\partial W_{\text{total}}}{\partial U_i}$ qui peut être écrit comme :

$$F_i = [\mathbf{K}_{ii}] U_i + \sum_j [\mathbf{K}_{ij}] U_j$$

Rayleigh-Ritz Method
• Step3
• Sum to get the total elastic energy

$$W(U) = \int_{\Omega_h} w(I_1, I_2, I_3) dX = \sum_{T_i} W_{T_i} = U^T K U$$

• Write the conservation of energy
 $W(U) = F^T U + \int_{\Omega} \rho(X) (X \cdot g) dX$
Internal Energy Nodal Gravity Potential Energy

Plan

- Description des simulateurs médicaux
- Modélisation des tissus mous
 - Modèles Masses-Ressorts
 - · Introduction à la biomécanique
 - Mécanique des Milieux Continus
 - Estimation de paramètres biomécaniques.
 - Discrétisation par la Méthode des Elements-Finis
 - Modèle Elastique Linéaire Pré-calculé
 - Modèle Masses-Tenseurs

Modélisation en

Eléments Finis

• Utilise un maillage tétraèdrique conforme pour modéliser les tissus mous

•Construction du maillage tétraèdrique à partir de la triangulation de son enveloppe

Elasticité Linéaire et FEM

• Résoudre le problème statique conduit à : F = [K] u

• avec

- [K] Matrice de Rigidité (3n.3n)
- **u** Vecteurs de déplacement (3n)
- **F** Forces Externes (3n) + conditions aux limites

Complexité de FEM

- Taille de K : $(3N)^2$
 - N est le nombre de sommets internes et à la surface
- Modèle de foie:

• Temps de calcul = 20s avec gradient conjugué pré-conditionné

• N = 1969 (9517 Tétraèdres)

• Contraintes Temps-réel (25Hz and 300Hz)

Principe des Pré-calculs

- <u>Principes</u>
 - On inverse la matrice de rigidité uniquement pour les nœuds de la surface
 - Pendant la simulation, on effectue des calculs matrice-vecteurs
- Hypothèse 1
 - On interagit uniquement avec les nœuds de la surface du maillage
- Hypothèse 2
 - Pas de changement de topologie durant la simulation

Description des pré-• On décompose le problème en fonction des nœuds de la surface et des nœuds internes $\begin{bmatrix} K_{SS} & K_{SI} \\ (K_{SI})^T & K_{II} \end{bmatrix} \begin{bmatrix} U_S \\ U_I \end{bmatrix} = \begin{bmatrix} F_S \\ F_I \end{bmatrix}$ Indice s = surface Indice i = interne • On précalcule G_{ss}, compliance des nœuds de la surface $\begin{bmatrix} U_S \\ U_I \end{bmatrix} = \begin{bmatrix} G_{SS} & G_{SI} \\ (G_{SI})^T & G_{II} \end{bmatrix} \begin{bmatrix} F_S \\ F_I \end{bmatrix}$ • Pendant la simulation on calcule : $U_s = G_{ss} F_s$ où Fs est un vecteur « creux »

Méthode no 1

- Algorithme :
 - Pour chaque sommet i de la surface
 - Pour chaque direction d (x, y ou z) - met Fs à 0
 - Applique la force f = 1 Newton suivant la direction d sur
 - le sommet i – Résoud F=KU
 - Pour chaque sommet $j \neq i$
 - » Stocke le déplacement du sommet j, u_j dans une colonne de la matrice $[G_{SS}^{ij}]$

Méthode no 2

• Condensation de matrice :

$$(K_{SS} - K_{SI}(K_{II})^{-1}K_{IS})U_{S} = F_{S} - K_{SI}(K_{II})^{-1}F_{I}$$

$$G_{SS} = \left(K_{SS} - K_{SI} \left(K_{II}\right)^{-1} K_{IS}\right)^{-1}$$

Calcul pendant la simulation

Après applications de forces

$$u_l = \sum_k \left[G_{SS}^{lk} \right] f_k^B$$

• Après avoir imposé un déplacement au nœud k

 $\boldsymbol{u}_{l} = \left[\boldsymbol{G}_{SS}^{lk}\right] \left[\boldsymbol{G}_{SS}^{kk}\right]^{-1} \boldsymbol{u}_{k}$

Temps de calcul

- Modèle de foie:
 - N = 1969 (9517 Tétraèdres)
 - déformation: 10ms (vs. 20s)
 - forces: 2ms (vs. 20s)
 - Facteur d'accélération: 2000 to 10000

Modèle quasi-statique linéaire pré-calculé

• Performances (P II 450MHz)

- Force ou déplacement à un sommet : > 3300 Hz
- Déplacement imposé à 3 sommets (un triangle) : > 800 Hz
- Déplacement imposé à 10 sommets : >130 Hz
- Déplacement imposé à 20 sommets : > 30 Hz

Inconvénients

• Ne peut pas prendre en compte les changements de topologie

Plan

- · Description des simulateurs médicaux
- Modélisation des tissus mous
 - · Modèles Masses-Ressorts
 - Introduction à la biomécanique
 - Mécanique des Milieux Continus
 - Estimation de paramètres biomécaniques.
 - Discrétisation par la Méthode des Elements-Finis
 - Modèle Elastique Linéaire Pré-calculé
 - Modèle Masses-Tenseurs

Modèle Masse-

Tenseur

- Motivations
 - Pré-calcul ne permet pas de simuler la découpe
 - Résoudre [K] u = F sur le maillage complet sans pré-calculs est trop coûteux pour le temps-réel.

Idée

 Introduire un modèle élastique autorisant les découpes là où s'éffectuer.

Modèle Masse-

• Repose sur un modèle élastique linéaire dynamique discrétisé avec un schéma

• Equation du mouvement Newtonienne :

$$M\ddot{U} + C\dot{U} + KU = F$$

M est une matrice de Masse *C* est une matrice d'amortissement

Modèle Masse-Tenseur (3)

- Choix des matrices :
 - <u>Masse</u>

explicite

- Pour optimiser la value du pas de temps (lors de découpe) on utilise
- <u>Amortissement</u> $M = m_0 [Id_3]$
 - Suivant le schéma, on utilise $\mathbf{C} = \gamma_1 m_0 [\mathbf{Id}_3]$

Ou encore $\mathbf{C} = \gamma_1 m_0 [\mathbf{Id}_3] + \gamma_2 \mathbf{K}$

Modèle Masse-Tenseur (5)

• Comparaison des 3 approches

	Méthode d'Euler	Euler avec DF centrées	Runge Kutta
Temps de calcul	faible	faible	élevé
Amortissement	Rayleigh	masse	masse
Pas de temps	faible	moyen	élevé

• Calcul du pas de temps

• Critère de courant ou analyse matricielle

Structure de donnée (3)

- Stockage optimal de la matrice de rigidité
 - Sur chaque sommet : $[K_{ii}]$
 - Sur chaque arête reliant sommets i et j: $[\mathbf{K}_{ij}] = [\mathbf{K}_{ij}]^T$
- Calcul de la force élastique

$$[\mathbf{K}_{ii}]\mathbf{U}_i + \sum_{j \in N(\mathbf{P}_i)} [\mathbf{K}_{ij}]\mathbf{U}_j$$

• Requiert un passage sur la liste des arêtes et un passage sur la liste des sommets

Modèle Masse-Tenseur (3)

• Lien avec les modèles masses-ressorts • Masses-ressorts $\mathbf{F}_i = \sum_{j \in N(\mathbf{P}_i)} k_{ij} (\|\mathbf{P}_i \mathbf{P}_j\| - l_{ij}^0) \frac{\mathbf{P}_i \mathbf{P}_j}{\|\mathbf{P}_i \mathbf{P}_j\|}$

• Force Elastique
$$\mathbf{F}_i = [\mathbf{K}_{ii}] \mathbf{P}_i^0 \mathbf{P}_i + \sum_{j \in N(\mathbf{P}_i)} [\mathbf{K}_{ij}] \mathbf{P}_j^0 \mathbf{P}_j$$

- Structure de données
 - Placer [K_{ii}] aux sommets
 - Placer [K_{ij}] aux arêtes

Biomécaniques					
	Modèle élastique pré-calculé	Modèle élastique dynamique	Modèle masse-ressort		
Efficacité calculatoire	+++	+	+		
Réalisme Biomécanique	+	+	-		
Simulation de découpe	-	++	+		
Grands Déplacements	-	-	+		

