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Abstract. This paper provides a formal connexion between springs and
continuum mechanics in the context of two-dimensional and three dimen-
sional hyperelasticity. First, we establish the equivalence between surface
and volumetric St Venant-Kirchhoff materials defined on linear triangles
and tetrahedra with tensile, bending and volumetric biquadratics springs.
Those springs depend on the variation of square edge length while tra-
ditional or quadratic springs depend on the change in edge length. How-
ever, we establish that for small deformations, biquadratic springs can
be approximated with quadratic springs with different stiffnesses. This
work leads to an efficient implementation of St Venant-Kirchhoff materi-
als that can cope with compressible strains. It also provides expressions
to compute spring stiffnesses on triangular and tetrahedral meshes.

1 Introduction

Surgery simulation requires the real-time modeling of soft tissue deformation. To
obtain a viable compromise between realism and computational speed a wide va-
riety of so-called ”physically based models” [7] have been developed. For instance
mass-spring models are essentially discrete models that define elastic forces be-
tween two vertices based on the variation of the edge length. They are still
widely used in surgery simulators because they are supposedly both simple to
understand and to implement. Those models however cannot be used to dis-
cretize properly two or three dimensional elastic materials based on continuum
mechanics. Van Gelder [11] showed for instance that spring-mass models cannot
represent linear elastic membranes (see section 2.4 for more discussion). The dis-
crete nature of spring-mass systems is particularly problematic when handling
unstructured triangular or tetrahedral meshes. To cope with this limitation, a
number of researchers [2] have proposed computational methods to estimate the
topologies and the stiffness of springs. A common way to cope with this limita-
tion is to define springs on a rectangular [10, 12] lattice in order to improve the
isotropy and homogeneity of the deformation.

Several authors have proposed more complex methods than mass-spring mod-
els that are to some degree related to continuum mechanics. For instance tensor-
mass models [3] correspond to an efficient implementation of linear elastic models
while corotational methods [8] extend linear elasticity to large displacements. If
those methods are physically plausible they are not hyperelastic materials and
are often limited to small deformations. This is why some authors have used also



St Venant Kirchhoff materials for real-time simulation either through optimized
data structures [9] or reduced basis [1].

In this paper, we show the total equivalence between St Venant Kirchhoff
materials defined on discrete surfaces and volumes and a set of triangular and
tetrahedral biquadratic springs. Those springs do not correspond exactly to the
regular springs that are commonly used. However, we show that for small de-
formations, they are equivalent to regular (quadratic) tensile, angular and vol-
umetric springs, therefore providing analytical expressions of spring stiffness as
a function of the rest triangle or tetrahedron geometry. Furthermore, we extend
the St Venant Kirchhoff materials to cope with their known limitation in com-
pression. Finally, we show that those biquadratic springs are simple to implement
and efficient to compute which makes them well suited for surgery simulation.

2 Membrane Energy on triangular meshes

2.1 Membrane Energy

We consider a two-dimensional compact domain Ω ⊂ IR2 being deformed into
another domain Φ(Ω). A physical point X ∈ Ω is moved to a new position
Φ(X) ∈ Φ(Ω), the function Φ(X) being the deformation function. The relative
change of length around point X is captured by a two dimensional tensor, the
right Cauchy-Green deformation tensor C, defined as C = ∇ΦT∇Φ while the
deformation is described by the Green-Lagrange strain tensor E : E = 1/2(C−I).

With isotropic St Venant Kirchhoff membrane, there exists a linear relation-
ship between the second Piola Kirchhoff stress tensor and the Green-Lagrange
strain tensor. The density of membrane energy W (X) can then be written as :
W (X) = λ

2 (trE)2 + µ
2 trE2 where λ and µ are the Lamé coefficients of the ma-

terial. Those coefficients are simply related to the physically meaningful Young
modulus E and Poisson coefficient ν : λ = Eν

1−ν2 and µ = E(1−ν)
1−ν2 . The Young

modulus quantifies the stiffness of the material while the Poisson coefficient
characterizes the material compressibility (ν = 1.0 for an incompressible surface
material and ν = 0.5 for an incompressible volumetric material).

2.2 Membrane energy of a deformed Triangle

We now consider that the rest surface Ω is discretized as a set of triangles
{Ti}, i = {1, .., p} and a set of vertices {Pi}, i ∈ {1, .., n}. The deformation of
that surface is solely determined by the knowledge of the deformed positions of
those vertices {Qi}, i ∈ {1, .., n} such that Qi = Φh(Pi). We write as AP (resp.
AQ) the area of the rest triangle TP (resp. triangle TQ), li (resp. Li) its edge
length and αi (resp. βi ) its 3 angles (see Figure 1 (Left)).

With a linear triangle element, the deformation function Φ(X) maps a point
X ∈ TP such that Φ(X) has the same barycentric coordinates in triangle TQ

than X in triangle TP :

Φ(X) =
3∑

i=1

ηi(X) Qi =
3∑

i=1

(
1
3

+ Di · (X−G)
)

Qi (1)



where ηi(X) is the barycentric coordinates of X in TP , Di are the shape vectors
of TP and G is the centroid of TP . The shape vectors Di are directed along
the inner normal (independently of the triangle orientation) and are of length
1/hi, hi being the altitude of Pi in TP . They are algebraically defined in 2D as
follows :

Di =
1

2AP
(Pi+1 −Pi+2)⊥ (2)

where X⊥ = (−y, x)T is the orthogonal of vector X.
From this definition of the deformation, one can easily derive the deformation

gradient ∇Φ =
[

∂Φi

∂xj

]
=

∑3
i=1 Qi ⊗Di and the trace of the right Cauchy Green

tensor trC =
∑3

i=1

∑3
j=1(Qi ·Qj)(Di ·Dj).

Since C is invariant by translation, one can consider that the origin to be
the center OQ of the circumscribed circle of TQ having radius RQ. Therefore if

i 6= j, Qi ·Qj = R2
Q − l2k

2 and ‖Qi‖2 = R2
Q. Using the property that all shape

vectors sum to zero, one gets the following simple expression :

trC = −
2∑

i=1

∑
j>i

(Di ·Dj)l2k =
1

2AP

(
l21 cot α1 + l22 cot α2 + l23 cot α3

)
Finally, by using Heron’s formula in triangle TP which writes the triangle area

AP as a function of square edge lengthAP = 1
4

(
L2

1 cot α1 + L2
2 cot α2 + L2

3 cot α3

)
one can formulate the 2 invariants of the strain tensor E :

trE =
∑3

i=1 ∆2li cot αi

2AP
trE2 =

∑
i 6=j 2∆2li∆

2lj −
∑3

i=1(∆
2li)2

64A2
P

where ∆2li = (l2i − L2
i ) is the square edge elongation.

2.3 Membrane Energy as Triangular Biquadratic Springs

Thus, the total membrane energy to deform triangle TP into TQ is a function of
square edge variation ∆2li and of the angles αi of the rest triangle :

WTRBS(TP ) =
3∑

i=1

kTP
i

4
(l2i − L2

i )
2 +

∑
i 6=j

cTP

k

2
(l2i − L2

i )(l
2
j − L2

j )

where kTP
i and cTP

k are the tensile and angular stiffness of the biquadratic springs :

kTP
i =

2 cot2 αi(λ + µ) + µ

16AP
cTP

k =
2 cot αi cot αj(λ + µ)− µ

16AP

We call this formulation the TRiangular Biquadratic Springs (TRBS) since the
first term can be interpreted as the energy of three tensile biquadratic springs that
prevent edges from stretching while the second term can be seen as three angular



biquadratic springs that prevent any change in vertex angles (cTP

k controling
the change in angles around Qi and Qj). Tensile biquadratics springs have a
stretching energy which is proportional to the square of the square edge length
variation while regular or quadratic springs have an energy related to the edge
length variation. The former types of springs are stiffer in extension and looser
in compression and are related to the Green-Lagrange strain while the latter are
related to the engineering strain [4].

When considering regular triangles, αi = π/3, the tensile stiffness is minimal
and the angular stiffness is zero for ν = 1/3 and both stiffnesses increase to
infinity as ν tends towards 1 (material incompressibility).

P1

2P

3P

l2

l
3

L
1

a
1

a
2

a3

2Q

1Q

3Q

L
2

L

3

l 1
G

b2b1

b3

P1

2P

3P

1,3

2Q

1
Q

3Q

L

P4

2,3
L

2,4
L

1,4
L

1,2
L

3,4
L

4
Q

2,3
ll

l

l l

l

2,4
1,4

1,2

3,4

1,3

Fig. 1. (Left) Rest triangle TP having vertices Pi and its deformed state with vertices
Qi. (Right) Rest tetrahedron TP and its deformed state TQ.

2.4 Small Deformations : Triangular Quadratic Springs

When deformations are small, the square edge elongation ∆2li = (l2i −L2
i ) can be

simplified as ∆2li ≈ 2Lidli where dli = li −Li is the edge elongation. We define
the TRiangular Quadratic Springs (TRQS) as an approximation of TRBS :

WTRQS(TP ) =
3∑

i=1

1
2
κTP

i (dli)2 +
∑
i 6=j

γTP

k dli dlj

where κTP
i = 4L2

i k
TP
i and γTP

k = 4LiLjc
TP

k are the corresponding tensile and
angular spring stiffnesses.

To the best of our knowledge, it is the first time that a theoretical link
between spring-mass models and continuum mechanics is established. Without
the addition of angular springs, mass springs models with the right stiffness
parameters can at best approximate the behavior of a membrane with ν = 1/3
(see [6] for a similar conclusion based on linear elasticity analogy). With angular
springs, the TRQS model is equivalent to the TRBS model but only for small
deformations of triangles : dli/Li < 10%.



3 St Venant Kirchoff Elasticity on Tetrahedral Meshes

The elastic energy of a St Venant Kirchkoff material is simply expressed as a
function of invariant of the Green-Lagrange strain E : WSV K(X) = λ

2 (trE)2 +
µtrE2 where λ and µ are the (volumetric) Lamé coefficients related to Young
Modulus and Poisson ratio as follows :λ = Eν

(1+ν)(1−2ν) and µ = E
2(1+ν) .

When discretizing a volumetric body with linear tetrahedral elements, the
deformation function Φ(X) of a tetrahedron TP into tetrahedron TQ (see Figure 1
(right)) may be written as a function of the barycentric coordinates ηi(X) of X in
TP similarly to the 2D case. The 4 shape vectors Di are then defined as follows :

Di = (−1)i Pi+1 ∧Pi+2 + Pi+2 ∧Pi+3 + Pi+3 ∧Pi+1

6VP

Following the same approach as in Section 2.2, we can express the first in-
variant of the strain tensor as:

trE = −1
2

∑
(i,j)∈E(T )

(Di ·Dj) (l2i,j − L2
i,j)

where E(T ) is the set of 6 edges in tetrahedron TP . The expression of the second
invariant trE2 is also a function of the variation of square edge length but its
complex expression is skipped in this paper due to a lack of space.

From previous results, the total energy to deform tetrahedron TP into TQ

can be derived as a function of square edge variation ∆2li and the geometry of
the rest tetrahedron :

WTBS(TP ) =
∑

(i,j)∈E(T )

kTP
i,j

4
(∆2li,j)2 +

∑
((i,j),(i,k))∈A(T )

cTP

[i],[j,k]

2
∆2li,j ∆2li,k+

∑
((i,j),(k,l))∈O(T )

dTP

[i,j],[k,l]

2
∆2li,j ∆2lk,l

– kTP
i,j is a tensile stiffness of a spring linking vertex i and j.

kTP
i,j =

(λ + µ)VP

2
(Di ·Dj)2 +

µ ∗ VP

2
‖Di‖2‖Dj‖2

– cTP

[i],[j,k] is an angular stiffness that prevents the triangle linking vertices i,
j and k from changing its angle around vertices j and k. A(T ) is the set
of 12 adjacent pair of edges (edge pairs having one and only one vertex in
common) in TP .

cTP

[i],[j,k] =
(λ + µ)VP

2
(Di ·Dj)(Di ·Dk) +

µVP

2
‖Di‖2(Dj ·Dk)



– dTP

[i,j],[k,l] is a volumetric stiffness that prevents the tetrahedron TP from col-
lapsing. O(T ) is the set of 3 opposite pair of edges in TP .

dTP

[i,j],[k,l] =
λVP

2
(Di ·Dj)(Dk ·Dl) +

µVP

2
((Di ·Dk)(Dj ·Dl) + (Di ·Dl)(Dj ·Dk))

Thus the elastic energy can be decomposed into the sum of 6 + 12 + 3 = 21
terms. We call this formulation of the St Venant Kirchoff energy, the Tetrahedral
Biquadratic Springs (TBS).

Similarly to the membrane energy, each biquadratic springs may be approx-
imated by a quadratic spring by making the following hypothesis :∆2li,j ≈
2Li,j(li,j − Li,j) = 2Li,jdli,j . Typically those approximations are valid for small
strains, i.e. when |dli,j/Li,j | < 0.1. Under this hypothesis, we can define the
Tetrahedral Quadratic Springs (TQS) as an approximation of TBS :

WTQS(TP ) =
∑

(i,j)∈E(T )

χTP
i,j

4
(dli,j)2 +

∑
((i,j),(i,k))∈A(T )

γTP

[i],[j,k]

2
dli,j dli,k+

∑
((i,j),(k,l))∈O(T )

ξTP

[i,j],[k,l]

2
dli,j dlk,l

where the TQS tensile, angular and volumetric stiffnesses are proportional to
their TBS counterpart :

χTP
i,j = 4L2

i,j kTP
i γTP

[i],[j,k] = 4Li,jLi,k cTP

[i],[j,k] ξTP

[i,j],[k,l] = 4Li,jLk,l cTP

[i,j],[k,l]

4 Compressible St Venant Kirchhoff Materials

The elastic energy of St Venant Kirchhoff material only depends on the invari-
ants of E which implies that this elastic energy is invariant with respect to any
rotations, translations but also any plane reflexion. Therefore, it is easy to show
that the elastic energy becomes locally minimum when a triangle or tetrahedron
becomes flat. This entails that zero elastic force is applied to resist the collapse
of a triangle or tetrahedron. This severely limits the use of St Venant Kirchoff
materials since it is not appropriate to simulate materials under compression.

There exists different ways to cope with this limitation. If J = detΦ is the
ratio of the deformed volume over the rest volume, then one option is to add an
energy term proportional to (J − 1)2 [9] or to log |J | as done for Neo Hookean
materials. Also some authors have proposed to cope for flat or inverted elements
at the cost diagonalizing the deformation gradient matrix with a polar [5] or
QR [8] decomposition .

In order to improve the compressibility of St Venant Kirchhoff (SVK) ma-
terials while limiting the added computational cost, we propose to add the fol-
lowing energy W comp term to the energy : W comp = 0 if J > 1 and W comp =
(λ + µ)(J − 1)4/2 if J < 1. Figure 2 (Left) compares the elastic force on a single
tetrahedron when a vertex is moved toward its opposite triangle, FSV K being
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Fig. 2. (Left) Effect of the added volume penalty term F comp on the compression force
computed on a single tetrahedron; (Right) Compressible constraint allows to compute
the large bending of cylinder under its own weight.

the regular SVK force and F comp being the additional force. The composite force
F comp + FSV K is C1 continuous and is a cubic function of strain similarly to
the extension case. Compression strain of more than 50% can be reached with
this formulation. Figure 2 (Right) shows the effect of the additional compression
energy on a soft cylinder clamped on one side and bending upon its own weight.
With the regular SVK material, several tetrahedra collapse due to the amount
of compression (thus falling into a local minimum) but not for the compressible
SVK. Furthermore, the compressible SVK bends significantly but much less than
a corotational material having the same Lamé coefficients (E = 1, ν = 0.35).
This shows that corotational models have a far greater resistance to shear stress
than SVK models.

5 Results and Implementation issues

In this paper, we provide analytical stiffness parameters κTP
i,j and χTP

i,j involving
Young Modulus and Poisson ratios for spring mass-models defined on triangu-
lation and tetrahedral meshes. We have verified that those spring-mass models
behave consistently whether the mesh is regularly tesselated or not [4]. Their
behavior is however physically plausible only on triangulations for a choice of
the Poisson coefficient equal to 1/3. To obtain reasonable results for other Pois-
son coefficient, it is required to implement the full TRQS and TQS models that
involve angular and volumetric springs.

The TBS, TQS, TRBS and TRQS models have been implemented in the
SOFA platform, elastic force and tangent stiffness matrices being analytically
derived from the elastic energy presented in this paper. In terms of performance,
preliminary studies show that the TBS and TRBS are slightly faster than the
TRQS and TQS, since the former do not involve any square root evaluation
and lead to simpler expression. Figure 3 (Top) provides some benchmark for the
elastic force evaluation and stiffness matrix-vector product on a triangulation
computed on a laptop computer with a Core Duo T2400 1.83 MHz processor.



In this implementation, edges, triangles and tetrahedra are successively scanned
to apply respectively tensile, angular and volumetric forces. It appears that the
biquadratic model is only 60% more expensive than the spring-mass model,
while the quadratic model is itself 60 % more expensive than the biquadratic
model. On tetrahedral meshes, first implementations seem to indicate similar
trends, with the TQS model being twice slower than the TBS, and in the worst
case (when all tetrahedra are compressed) the compressible TBS being 65%
slower than the regular TBS model. Corotational models seem also be 80% slower
than the regular TBS. Figure 3 (Bottom) show the use of a compressible TBS
model for surgery simulation on a tetrahedral mesh with 1059 vertices and 5015
tetrahedra. Interactive simulation of resection was obtained using an implicit
Euler time integration. Edge, triangle and tetrahedra stiffnesses are updated
each time tetrahedra are being removed.
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Fig. 3. (Top) Execution times of the elastic force and the matrix-vector product for 4
different elastic membrane formulations; (Bottom) Liver surgery simulation performed
in real time with a compressible TBS model before and after resection.



6 Conclusion

In this paper, we have first showed the equivalence between surface and volu-
metric St Venant Kirchhoff materials ad triangular and tetrahedral biquadratic
springs. Furthermore we showed that quadratic tensile, angular and volumetric
spring models correspond to small deformations approximations of those bi-
quadratic springs. Finally we have improved the compression behavior of the St
Venant Kirchhoff material by adding a volume penalty which makes the com-
pression and extension forces symmetric.

Future work should include a more thorough comparison with existing FEM
or corotational methods both in terms of computational performance and be-
havior. Extension of the proposed approach to anisotropic and incompressible
materials is also important to produce realistic soft tissue deformation.
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