
Learning Shape Corresponden
e for n-D 
urvesAlain Pitiot, Hervé Delingette and Paul M. ThompsonFebruary 7, 2006Abstra
tWe present a learning method that introdu
es expli
it knowledge into the shape 
orresponden
eproblem. Given two input 
urves to be mat
hed, our approa
h establishes a dense 
orresponden
e�eld between them, where the 
hara
teristi
s of the mat
hing �eld 
losely resemble those in ana priori learning set. We build a shape distan
e matrix from the values of a shape des
riptor
omputed at every point along the 
urves. This matrix embeds the 
orresponden
e problem in ahighly expressive and redundant 
onstru
t and provides the basis for a pattern mat
hing strategyfor 
urve mat
hing. We sele
ted the previously introdu
ed observed transport measure as a shapedes
riptor, as its properties make it parti
ularly amenable to the mat
hing problem. Syntheti
and real examples are presented along with dis
ussions of the robustness and appli
ations of thete
hnique.1 Introdu
tion�As for example in geometry [...℄ I de�ne �gure [shape℄ to be that in whi
h the solid ends; or, more
on
isely, the limit of solid�. This ex
erpt from a dialogue between So
rates and Meno as �
titiouslyreported by Plato [37℄ illustrates how di�
ult it is to 
hara
terize the notion of shape, a 
ommon
on
ept that is still in need of a satisfying de�nition, 
enturies after the �rst inquiries into its nature.As pointed out by Veltkamp [44℄, shape is 
lassi
ally 
onsidered as �something geometri
al�, ade�nition that leaves a large part to psy
hovisual analysis. Shape has therefore been studied bothfrom the perspe
tive of the human visual system and from a more abstra
t mathemati
al one (see[29, 47, 17℄ for reviews).Among the studies dealing with the visual system aspe
t of shape, psy
ho-
ognitive approa
hes su
has the holisti
 Gestalt [25, 47℄ or redu
tionist approa
hes [19, 14℄ have fo
used on developing an arti�
ialequivalent to the human shape analysis system, 
apable of both visual per
eption and 
ognition.Despite their su

ess, they are inherently qualitative and di�
ult to translate into algorithms. Severalmore 
omputational theories have also been proposed: Marr's �primal sket
h� theory [30, 31, 32℄, theso-
alled �shape from x� te
hniques (shape from shading [20℄, from 
ontour [42℄, et
.), the dynami
hierar
hi
al approa
h [24℄ or Leyton's Symmetry-Curvature evolution theorem [28℄ to name a few.From a more abstra
t mathemati
al point of view, a shape 
an be de�ned as an equivalen
e 
lassunder a group of transformations. Given a similarity measure (or measure of resemblan
e), whi
h mustbe invariant under this transformation group, the shape of a pattern is the pattern modulo the a
tionof the group [16℄. The 
ompeting statisti
al theories of Bookstein [5℄ and Kendall [23℄ are two attemptsto establish a mathemati
al framework that rigorously de�nes the notion of shape distan
e or shapesimilarity.1.1 Shape Corresponden
eBoth of these mathemati
al approa
hes require that 
orresponden
es between shapes are already avail-able a priori, a limitation shared by most methods in the literature. This 
orresponden
e problem arisesin a broad range of image-related �elds, from signal pro
essing to pattern re
ognition. In 
omputervision for instan
e, the sear
h for target patterns often requires a given template to be mat
hed to1



Figure 1: Illustration of the mat
hing framework. (a) Given a 
orresponding pair of mat
hed points,
(M1,M2), whi
h de�nes the origins of axis x1 and x2, a reparameterization 
orresponds to the redpath φ between (0, 0) and (1, 1). As x travels along φ, φ1(x) in C1 is mat
hed to φ2(x) in C2. (b) Su
ha framework allows for the triangular indentation [α-β℄ in C3 to be mat
hed to a single point γ in C4and 
onversely for [δ-ǫ℄ in C4 to map to point ζ in C3.pi
torial elements in an input image [33℄. In 
omputer graphi
s, mat
hed 
urves may be used to derivea series of intermediate shapes to �morph� one into the other [21℄. In medi
al image analysis, theobje
ts to be mat
hed may be instan
es of a given anatomi
al stru
ture, for whi
h a statisti
al model,or time-dependent model, is required [9℄. In this paper, we approa
h the issue of 
urve mat
hing as apro
ess of 
omputing a dense 
orresponden
e �eld between two a priori parameterized 
urves.At a glan
e, de�ning a 
orresponden
e between two 
urves entails �nding in them pairs of 
orre-sponding elements that share spe
i�
 similarities in shape, position, or both. More formally, given two
urves C1 and C2 with any a priori parameterizations represented by two fun
tions C1 and C2:

C1 :

∣

∣

∣

∣

I1 ⊂ R → R
n

x1 7→ C1 (x1)
, C2 :

∣

∣

∣

∣

I2 ⊂ R → R
n

x2 7→ C2 (x2)
(1)we are looking for a reparameterization of C1 and C2, that is, for two fun
tions f1 and f2, su
hthat C∗

1 = C1 ◦ f1 and C∗

2 = C2 ◦ f2 and
∀x1 ∈ I1, ∀x2 ∈ I2, x1 �
lose to� x2 ⇒ C∗

1 (x1) �very similar in shape to� C∗

2 (x2) (2)where �very similar in shape to� is de�ned with respe
t to a given shape similarity metri
.Following [41℄, to allow multiple points in I1 to be mat
hed to a single point in I2 and 
onversely,we restate our problem as that of �nding a 
ontinuous fun
tion
ϕ :

∣

∣

∣

∣

I ⊂ R
2 → I1 × I2

x 7→ (ϕ1 (x) , ϕ2 (x))
(3)su
h that:

∀x ∈ I, C1 (ϕ1 (x)) �very similar in shape to" C2 (ϕ2 (x)) (4)Figure 1(a) illustrates this approa
h on a pair of re
tangles with triangular indentations. Theinherent symmetry of this framework is shown in (b) where an entire sub
urve in C3 is mat
hed to asingle point in C4, and the other way round.In addition, as in [41℄, we would like the mat
hing fun
tion to satisfy, the following properties:2



symmetry: the fun
tion ϕC1→C2
asso
iated with the mat
hing of C1 to C2 should be the inverse of

ϕC2→C1
, the fun
tion asso
iated with the mat
hing of C2 to C2.
onsistent self-mat
hing: when trying to mat
h an obje
t to itself, the optimal reparameterizationshould be the identity: ∀ curve C, ϕC→C = (Id, Id). In general, we would like ϕ to be not toodissimilar from the identity.1.2 Obje
t mat
hing approa
hesA number of automated methods for parameterized 
urve or surfa
e mat
hing have been presented inthe literature, that ta
kle some or all of the above issues. Extensive reviews of these approa
hes areavailable elsewhere (see [45℄, [29℄ or [26℄ for instan
e). We present in the following se
tion a sele
tionof te
hniques and 
omment in Se
tion 1.3 on their la
k of expli
it 
ontrol, an issue that we solve via alearning paradigm (see Se
tion 3).Trouvé and Younes detailed in [41℄ an axiomati
 formulation for 1-D mat
hing: they introdu
ed,among others, the 
on
epts of symmetry and 
onsistent self-mat
hing and proposed a mat
hing frame-work for 2-D pie
ewise lines that satis�es their axioms.One of the many suggested PDE approa
hes, Cohen's approa
h [7℄ 
ompared the bending andstret
hing energies of one 
urve, C1, and a reparameterization of the other, C∗

2 , to �nd the best mat
h.In [8℄, several PDEs were introdu
ed to introdu
e geometri
 information when 
omputing a set ofgeodesi
 paths between the 
urves to be mat
hed.Te
hniques may also be derived from a dire
t 
ombinatorial sear
h for point 
orresponden
e. Arkinet al. [1℄ proposed an e�
ient polygonal line mat
hing algorithm where the turning fun
tion (measureof the angle between the tangent to a 
urve and a pre-determined axis as a fun
tion of ar
 length)was used as a shape measure. Chui and Rangarajan's �soft assign� algorithm [6℄ o�ers a robust way to�nd 
orresponden
es between noisy input point sets. Wang et al. [46℄ used geodesi
 interpolation to
ompute the dense 
orresponden
e �eld between two surfa
es on
e an initial sparse set of 
orrespondingpoints had been obtained with another automated shape-based mat
hing algorithm.De
omposition of the input obje
ts in the spatial or frequen
y domains has also proved popular.In [22℄, the �rst ellipti
al harmoni
s of the expansion of the input obje
ts (whi
h must have spheroidalshapes) served to establish a 
orresponden
e. Similar Fourier-based te
hniques were reported earlierin [34℄.In [39℄, Sebastian et al. used a dynami
 programming approa
h similar to that of [41℄ to �nd thebest mat
h between two 2-D 
urves, using a similarity measure based on �alignment� between segmentsof the 
urves. A similar dynami
 programming s
heme was proposed by Gdalyahu et al. in [13℄ wherethe edit distan
e (minimum number of elementary 
hanges required to 
hange the string-like des
riptorof one 
urve into that of the other 
urve) served as a similarity measure.Registration and elasti
 warping approa
hes have also been investigated. In [40℄, Thompson etal. mapped the input surfa
es to two spheres whose 
oordinates were then warped under anatomi
alfeature 
urve 
onstraints using spheri
al harmoni
 interpolation. Davatzikos et al. [10℄ also identi�ed
orresponding points on obje
t boundaries in two images before aligning them using elasti
 warping.Fleuté et al. [12℄ minimized the Eu
lidean distan
e between an input shape and a registered template,whi
h assumed smooth transition paths between them.From an optimization point of view, Davies et al. [11℄ presented a 
urve mat
hing method, in the
ontext of sear
hing for the most 
ompa
t statisti
al shape model. An information-theoreti
 
riterionwas designed and 
ontrolled the 
orresponden
e between obje
ts.These approa
hes generally rely on 
omputing a shape des
riptor or a set of des
riptors, eitherlo
ally or globally. If obje
ts to be mat
hed are 
onsidered as �lled 
ontours (or regions), spatialmoments 
an be used for mat
hing. These are global measures, and quantify the shape of the obje
t
onsidered as a whole. A number of moment invariants 
an be derived from them: area, 
ir
ularity,3



Figure 2: Mat
hing two animal silhouettes: (a) outline of a rabbit; (b) outline 
ould either be that offrog (
) or of squirrel (d). The mat
hing of segments ai and bi therefore depends on external knowledgeto 
hoose between these two alternatives.
ompa
tness, e

entri
ity, et
. (see [38℄ for details). Shape matri
es have also been used as a 
ompa
trepresentation of global and lo
al shape properties Goshtasby [15℄ binned pixels based on their polar
oordinates. Similarly, Belongie's shape 
ontext [4℄ outputs for ea
h point of an obje
t the histogramof the positions of all the other points expressed in a log-polar 
oordinate system (
entered on thegiven point).Often, obje
t boundaries are used instead of their entire area. In the 
ase of 
urves or surfa
es,a number of analyti
 fun
tions 
an be estimated at any point: tangent, a

eleration, tangent angle,
urvature, or torsion for instan
e [43℄. Signature fun
tions and �time warps� may also be 
omputed[45℄.1.3 Common 
aveatDespite their diversity, these mat
hing approa
hes share the same drawba
k: their la
k of 
ontrol overthe similarity measure introdu
ed in equation 2, whi
h is often de�ned a priori, on
e and for all, anduses only limited domain-based information (or information learned impli
itly from examples). Typi-
ally, these mat
hing pro
esses 
an be redu
ed to optimizing a fun
tional whose minimum 
orrespondsto a �good� 
orresponden
e �eld. The di�
ulty of designing an adequate fun
tional 
omes from thedi�
ulty of 
hara
terizing an adequate 
orresponden
e �eld. In [7℄ for instan
e, the authors assumethat points with similar 
urvature should be mat
hed. This may suit some appli
ations, but is notalways desirable. Figure 2 illustrates su
h a situation where a series of animal silhouettes is availableand we wish to 
ompute an average shape:
• Suppose that the database of delineations 
ontains both rodents and batra
hians. Figure 2(a)
ould then be the outline of a rabbit and Figure 2(b) the outline of frog (
). We would probablynot like the frog's eye b2 to be mat
hed with the rabbit's ear a2. Instead we would like segments{a1, (b1, b2)}, {(a2, a3), b3} and {a4, b4} to be mat
hed, in spite of the fa
t that the 
urvaturesignature of segment a2 more 
losely resembles that of b2 than that of b3.
• On the other hand, we may know beforehand that the database 
ontains only rodents and thatFigure 2(b) is a
tually the outline of squirrel (d). Then, we would like the following segmentpairs to mat
h: {a1, b1}, {a2, b2}, {a3, b3} and {a4, b4}.Clearly, 
hoosing between these two s
enarios requires expli
it knowledge to be introdu
ed into themat
hing algorithm, as designing a suitable mat
hing algorithm to handle ea
h new 
ase separatelywould be parti
ularly ine�e
tive.1.4 Learning the 
orresponden
e �eldTo over
ome this issue, we propose a learning approa
h where an a priori learning set of 
orrespon-den
e �elds helps the mat
hing algorithm 
ompute a 
orresponden
e �eld, between the input 
urves,whose 
hara
teristi
s resemble those in the learning set. Our method uses a shape distan
e matrix4



Figure 3: Observed transport des
riptor prin
iple demonstrated on a human vertebra outline: thevisible ar
s (thi
k red lines) are de�ned for three lo
ations on C(u).[41, 39℄, the matrix of the di�eren
es between the values of a lo
al shape des
riptor 
omputed onevery pair of points of the 
urves to be mat
hed (see Figure 1 for an illustration and Se
tion 3 for amathemati
al des
ription). We argue that this shape distan
e matrix embeds the mat
hing problemin a highly expressive and redundant 
onstru
t that is easier to manipulate than the reparameteriza-tions of the input 
urves. This matrix is visually interesting sin
e it allows visual inspe
tion of thereparameterization problem. It also re
asts the mat
hing problem as a sear
h for a geodesi
 in anothermetrizable spa
e, the spa
e of reparameterizations (whi
h is a group).We brie�y present in the following Se
tion 2 the observed transport des
riptor that we previouslyintrodu
ed in [36℄, and re
all the properties that make it suitable for our mat
hing problem. We thenelaborate on a 
lassi
al non-learning te
hnique in Se
tion 3 and introdu
e our learning-based mat
hingmethod in Se
tion 4. Results are dis
ussed in Se
tion 5 where we also investigate the robustness ofour approa
h. Note that a preliminary version of this study was published in [36℄.2 The observed transport shape des
riptorBefore 
omputing a shape distan
e matrix, we �rst have to sele
t a shape des
riptor. Evaluatingthe quality of a given des
riptor is di�
ult, as it depends both on the 
hara
teristi
s of the shapesto be des
ribed and on the spe
i�
 appli
ation. As we 
ould not �nd a des
riptor to suit our needsin the literature and bearing in mind the rodent/batra
hian example detailed above, we developedour own: the observed transport des
riptor (OT). Here, we formulate it in the 
ontinuous 1-D anddis
rete n-D 
ases and illustrate its behavior and notable properties on a few examples. Extensionsto higher-dimensional spa
es, additional properties, theoreti
al proofs and a

ompanying experiments
an be found in the thesis [35℄.2.1 De�nitions
• 
ontinuous 
ase:Let C :

∣

∣

∣

∣

I ⊂ R → R
n

u 7→ C (u)
be a 
urve in n-D (open or 
losed), parameterized with respe
t toa s
alar u.We de�ne the observed transport measure ρr as follows:

∀u ∈ I, ρr (C(u))
.
=

∫

Vr(C(u))
‖C (u) − C (v)‖ .

∣

∣

∣
C

′

(v)
∣

∣

∣
.dv (5)where ‖C (u) − C (v)‖ is the Eu
lidean distan
e in R

n, and Vr (C (u)) is the set of the �visible� ar
s5



of C, within distan
e (or range) r ∈ R
+ from C (u): Vr (C (u)) = {v s.t. ‖C (u) C (v)‖ ≤ r and linesegment [C (u)C (v)] interse
ts C only in C(u) and C(v)}By 
onsidering only the points visible from C (u), we obtain a measure whose value 
hanges dras-ti
ally with the sudden apparition of vastly di�erent surroundings within the range r, whi
h a
tsas a lo
ality 
ontrol (
ompare Figure 3(a), (b) and (
)). This helps a
hieve greater dis
riminationsin
e those points are visually remarkable.

ρr (C(u)) may be regarded as the minimal total amount of work it takes to transport the ele-mentary elements dv with mass ∣

∣

∣
C

′

(v)
∣

∣

∣
· dv that are visible within range r from point C (u),from their lo
ation C (v), to C (u) in the fashion of a Monge-Kantorovi
h transport problem [18℄,hen
e its name.

• dis
rete approximation on a regular grid:We de�ne a dis
rete version of 
urve C as an unsorted 
olle
tion of n-D isotropi
 voxels of size
sn: C = {Ci ∈ R

n}N
i=1. In this 
ase, we do not assume any a priori parameterization.We then derive a dis
rete version of ρr in the n-D dis
rete 
ase:
∀i ∈ 1 . . . N, ρr (Ci)

.
=

N
∑

j=1,Cj∈Vr(Ci)

‖Ci − Cj‖ .dVj (Ci) (6)where dVj (Ci) is the surfa
e of voxel Cj visible from voxel Ci whi
h we approximate by nsn−1.2.2 Examples and propertiesFigure 4 shows how ρ behaves with respe
t to the 
lassi
al 
urvature des
riptor on a few 2-D 
urves.All values were re
orded with a range r = +∞. Both des
riptor values for the hand outlines in (b) and(d) were saturated at a �fth of their respe
tive maximal value to better illustrate the dis
riminatingpower of the observed transport approa
h. We re
all here the main properties of our des
riptor (see[35℄ for details):Large s
ope: The OT des
riptor has a fairly large s
ope of appli
ation sin
e it 
an be 
omputed onboth 
onne
ted and dis
onne
ted n-D manifolds and n-D sets of voxels or points. Note that fordis
onne
ted manifolds, a parameterized representation of the obje
t might be di�
ult to obtain.In
reased dis
riminating power: As illustrated in 
urve (a), even though ρ evidently depends onthe 
urvature at the point at whi
h it is 
omputed, it a
tually takes into a

ount a mu
h largerneighborhood around it. We then get ρ (A) 6= ρ (B) and ρ (C) 6= ρ (D), whi
h 
orre
tly re�e
tsthe di�eren
es in the shape lands
ape surrounding those points. Note that, of 
ourse, A & Band C & D have, respe
tively, the same 
urvature.Curves (a) and (b) also demonstrate that high 
urvature points are adequately dis
riminated.The interse
tion points of the 
ir
le and the straight line in 
urve (a) have distin
tive values, thetips and jun
tions of the �ngers in 
urve (b) and (d) are 
learly distinguished, et
. These mattersin
e they are signi�
ant for visual per
eption (see the psy
hologi
al experiments of Attneaveand Arnoult [2, 3℄).Adjustable lo
ality: The observed transport des
riptor is both a lo
al measure of shape and anindi
ator of 
ontext (for large values of r): for instan
e, it adequately dis
riminates between theinferior and superior aspe
ts of the 
orpus 
allosum in Figure 4(
). A lo
al shape modi�
ationtherefore only a�e
ts its immediate neighborhood, as illustrated with 
urve (d): the 
ut middle�nger mostly modi�es the des
riptor values of the immediately surrounding �ngers, slightly altersits values for points dire
tly opposite on the other side of the hand (sin
e the 
ut �nger was visiblefrom them), and, evidently, does not a�e
t the left-most and right-most �ngers.6



Figure 4: Observed transport (OT) and 
urvature des
riptors 
omputed over a variety of 
urves: (a)trun
ated 
ir
le (u-parameterized 2-D 
urve); (b) 5-�ngered hand (set of 2-D points); (
) 3 
orpora
allosa (set of 2-D points) and (d) hand with missing �nger (set of 2-D points).Invarian
e: Our des
riptor is also invariant with respe
t to rigid transformations sin
e both the visiblesets and the distan
es between visible points are invariant with respe
t to rigid transformations.OT is not s
ale invariant per se as we believe that s
ale is an important shape 
hara
teristi
.S
ale invarian
e is however desirable in a 
urve reparameterization approa
h (see Se
tion 3 foran implementation). Finally, the use of ar
 length ∣

∣

∣
C

′

(v)
∣

∣

∣
.dv = ds ensures that the des
riptoris invariant under reparameterization.3 A non-learning reparameterization approa
hEquipped with a suitable shape des
riptor, we 
an ta
kle the 
orresponden
e problem. We �rst re-
all, and elaborate on, a standard non-learning algorithm for 
urve mat
hing [41, 39℄. We will detailin Se
tion 4 how a learning strategy 
an be derived from it. Note that all the methods we dis
uss
ould equally be applied to a di�erent shape des
riptor (
urvature, for instan
e). The enhan
ed dis-
riminating power of the observed transport des
riptor makes it a more appropriate 
andidate however.We 
onsider 
urves de�ned on an interval of R, taking values in R

n with n = 2 or 3 (i.e. planar orspa
e 
urves). Following Trouvé et al. [41℄ (see also Sebastian et al. [39℄ or Gdalyahu et al. [13℄) wede�ne the best reparameterization ϕ∗

C1→C2
between 
urves C1 and C2 to be that whi
h minimizes theoverall 
umulative distan
e between des
riptor values 
omputed for all pairs of mat
hed points (seeFigure 1):

ϕ∗

C1→C2

.
= arg min

ϕ=(ϕ1,ϕ2)

{
∫

I

|ρr (C1(ϕ1 (s))) − ρr (C2(ϕ2 (s)))| .ds

} (7)where ds is the ar
 length. 7



In pra
ti
e, we often need to dis
retize both 
urves to 
ompute ϕ∗

C1→C2
. This sampling pro
essmust be performed 
arefully so as not to dis
ard from the dis
rete set of pixels important 
urve fea-tures. In parti
ular, one should pay attention to the sampling rate required to 
apture the 
urve detailsdeemed important.Let Λ be the shape distan
e matrix asso
iated with the dis
retized 
urves C1 =

{

Ci
1

}N1

i=1
and

C2 =
{

Ci
2

}N2

i=1
where N1 is the number of points in the dis
rete C1 and N2 the number of points in C2:

Λ = [λij] i = 1 . . . N1

j = 1 . . . N2

, ∀ (i, j) λij
.
=

∣

∣

∣
ρr

(

Ci
1

)

− ρr

(

Cj
2

)
∣

∣

∣
(8)Finding the best reparameterization then boils down to �nding in Λ the minimal 
ost path betweenpoints (0, 0) and (N1, N2), whi
h requires that a single mat
hing pair of points (M1 ∈ C1, M2 ∈ C2) begiven. This 
an be done with a dynami
 programming approa
h [41, 39℄.Note that the dis
rete C1 and C2 may sometimes have very di�erent sizes. For instan
e, they mayhave been sampled at the same rate from images with di�erent resolutions. In this 
ases, non s
aleinvariant des
riptors will take vastly di�erent ranges of values. This may hamper the 
omputationof an adequate 
orresponden
e �eld. One way to alleviate this issue is to repla
e Λ by a normalizedversion, Λ̃, 
omputed as follows:

∀ (i, j) λ̃ij
.
=

∣

∣ρ̃r

(

Ci
1

)

− ρ̃r

(

Ci
2

)
∣

∣ with ρ̃r

(

C l
k

)

.
=

ρr

(

C l
k

)

− µCk

σCk

(9)where µCk
and σCk

are respe
tively the mean and the standard deviation of {

ρr

(

C l
k

)}Nk

l=1
.3.1 Choosing M1 and M2The mat
hing pair of points 
an be 
hosen a priori or they may be optimized as well. For open 
urves,a natural 
hoi
e would be to sele
t one of the 
orresponding extremities. The dynami
 programmingapproa
h then yields an O (N1.N2) 
omplexity. For 
losed 
urves, a pair of remarkable homologouspoints (one in ea
h 
urve) 
ould be sele
ted based on their parti
ular 
hara
teristi
s: extrema of
urvature, left-most/right-most points, et
. Complexity is also O (N1.N2). In the general 
ase whereno pair of mat
hing points is given, the 
omplexity be
omes O

(

N1.N
2
2

) as we apply the O (N1.N2)dynami
 programming algorithm to all possible pairs (M1 ∈ C1, M) , ∀M ∈ C2 and sele
t the mat
hingwith lowest 
ost.Mu
h better 
ontrol over this sele
tion pro
ess 
an be obtained with the learning approa
h weintrodu
e below (see Se
tion 4).3.2 Consistent self-mat
hingWhen a number of 
onse
utive points have the same shape des
riptor (in a 
ir
le for instan
e, forboth OT and 
urvature), there is no unique best path with respe
t to the above 
riterion. To bias thesear
h towards �natural� reparameterizations (the �
onsistent self-mat
hing� axiom), we introdu
e inequation 7 a 
onstraint to prevent the path from deviating too mu
h from the diagonal of Λ, i.e. forsome α ∈ R:
ϕ∗

C1→C2

.
= arg min

ϕ

{
∫

I

|ρ̃r (C1(ϕ1 (s))) − ρ̃r (C2(ϕ2 (s)))| .ds +

α.

∫

I

∣

∣

∣
ϕ1 (s) .C

′

2 (s) − ϕ2 (s) .C
′

1 (s)
∣

∣

∣
.ds)

} (10)8



The larger the α, the 
loser the path is to the diagonal. A 
ir
le mat
hed against itself then yields
φ1 = φ2 = Id when α > 0. Consistent self-mat
hing is parti
ularly desirable for shape des
riptorswith only average dis
riminating power, for whi
h large parts of the input obje
ts map to the samedes
riptor value. It also proves useful as a regularization term when the 
hosen shape des
riptor isnoisy. Clearly, there are only a handful of di�erent 
urvature values for the re
tangles of Figure 5 (g)and (h). The asso
iated shape distan
e matrix then presents large uniformly 
olored squares withinwhi
h all paths would be equiprobable if α were zero. In pra
ti
e, we take α = 0 for the OT des
riptoras it is su�
iently dis
riminating in and of itself.3.3 A few minimal 
ost path examplesFigure 5 illustrates the non-learning approa
h on four pairs of 
urves (one pair per 
olumn), for theobserved transport and the 
urvature des
riptors. For ea
h pair, we show the OT maps in (a,b) andthe 
urvature maps in (g,h), along with the point-by-point Eu
lidean averages derived from them (f,i),and the shape distan
e matrix asso
iated to the OT des
riptor (
). We used α = 0, and r = +∞ toyield maximum dis
riminating power. Both OT and the 
urvature des
riptor were normalized withthe mean/standard deviation te
hnique des
ribed above. Color is used both to display the values ofthe des
riptors in (a),(b),(g) and (h), and to render 
orresponding points in (d) and (e). Overall, theOT des
riptor behaves more adequately than 
urvature on the syntheti
 and real examples.4 A learning reparameterization approa
hWe present in this se
tion the learning algorithms we developed to bias the sear
h for a 
orresponden
e�eld between two n-D 
urves towards instan
es that are admissible with respe
t to an a priori givenlearning set. It is through this learning set that we introdu
e a priori knowledge and expertise in themat
hing pro
ess.4.1 MethodAn interesting feature of the shape distan
e matrix is that it embeds, in a highly redundant way,information about all possible reparameterizations between the two input obje
ts. In Figure 8 forinstan
e, we 
an noti
e 
lear patterns 
orresponding to the triangular indentations of the re
tangles(highlighted areas). A lo
al mat
hing s
enario, e.g. �mat
hing the rodents' ears� in Figure 2, or�mat
hing the triangles together� in Figure 5, then 
orresponds to a sub-path in a sub-matrix extra
tedfrom the shape distan
e matrix of the obje
ts.We derive the following 4-step algorithm (see Figure 6):Step 1 (a priori). Given a number of desired lo
al mat
hing s
enarios, a human operator �rstforms a learning set by sele
ting instan
es (i.e. examples) for ea
h s
enario. An instan
e
onsists of a 2-D sub-matrix Mi,j ∈ Mmi,j×ni,j

, and its asso
iated 
onne
ted sub-path Pi,j =
{(

xk
i,j, y

k
i,j

)}mi,j+ni,j

k=1
, where i is the s
enario index, and j is the instan
e index.Sub-paths may be de�ned in many ways. For instan
e, if the operator is satis�ed with the
hara
teristi
s of a mat
h obtained between two 
urves with the non-learning mat
hing approa
h,and wants to enfor
e similar 
hara
teristi
s over a series of similar 
urves, he 
an extra
t sub-paths from the 
omplete minimum 
ost path 
omputed via dynami
 programming between thesetwo 
urves. Alternatively, sub-paths 
an be drawn by hand on the sub-matri
es (this is in essen
ewhat we did in Figure 8) or generated algorithmi
ally.Similarly, sub-matri
es are extra
ted from shape distan
e matri
es 
omputed from 
urves thatshould look similar to the ones the operator wants to reparameterize. As always with a learningapproa
h, the operator should ensure that the learning set adequately represents the desiredmat
hing 
hara
teristi
s by sele
ting appropriate instan
es.9



Figure 5: Non-learning reparameterization: (a,b) Observed Transport maps; (
) asso
iated shapedistan
e matri
es (s
aled to a square) and optimal paths (in red); (d,e) reparameterized 
urves withOT (
orresponding points are rendered in the same 
olor); (f) point-by-point Eu
lidean averages forOT; (g,h) 
urvature maps; (i) point-by-point Eu
lidean averages for 
urvature.
Pi,j is then the sub-path in Mi,j whi
h represents a lo
al mat
hing s
enario, in the same fashionthat the optimal 
ost path in Se
tion 3 represents the �optimal� global mat
hing s
enario.Figure 6 illustrates that pro
ess. We want to reparameterize a series of 
orpora 
allosa (the
orpus 
allosum is a C-shaped stru
ture of the brain whi
h 
ontains nerve �bres that 
onne
t thehemispheres). Two representative pairs of 
allosa are �st sele
ted (A,B). Note that we 
ould havesele
ted only one pair, or more than two pairs, depending on the heterogeneity of the dataset.The shape distan
e matrix of ea
h pair is 
omputed (C,D). Then, the operator identi�es in theshape matri
es the sub-matri
es Mi,j that 
orrespond to the mat
hing s
enarios of interest (forinstan
e, mat
hing the posterior part of the 
allosa and mat
hing the anterior part) to form thelearning set (E). In this example, we have one instan
e, S1,1, for the �rst mat
hing s
enario andtwo instan
es, S2,1 and S2,2, for the se
ond s
enario. For ea
h instan
e Si,j, we also 
ompute thedistan
e map Di,j of its sub-path inside the domain de�ned by its sub-matrix ( Figure 6(F) ).10



Figure 6: Pattern mat
hing strategy.Let S1 = {S1,1, . . . , S1,N1
} , . . . , SK = {SK,1, . . . , SK,NK

} be the K s
enarios, with their instan
es
Si,j = (Mi,j ,Di,j).Step 2. On
e we have 
omputed the shape distan
e matrix M ∈ Mm,n from the two input 
urvesto be reparameterized C1 and C2 ( Figure 6(G) ), a pattern mat
hing algorithm is used to �ndsub-matri
es in M that 
losely resemble those of the learning set. We use a straightforwardmulti-s
ale registration approa
h: for ea
h sub-matrix Mi,j in the learning set, we 
ompute thesimilarity between its translated and s
aled image and the underlying sub-matrix in M of samedimensions. The range of translations and s
ales explored by the registration algorithm de�nesan �exploration neighborhood� in the shape distan
e matrix whose size 
an be 
ontrolled by theuser. To a

ount for a possible mismat
h between M1 and M2, we 
onsider M to be 
losed underverti
al and horizontal 
ir
ular shifts. That is, when the translated and s
aled image of Mi,j isnot entirely in
luded in M , missing values are taken from the 
orresponding other side of thematrix M .For ea
h Mi,j, we then re
ord the translation t∗i,j and s
ale s∗i,j for whi
h the maximal similarityis a
hieved:

(

t∗i,j, s
∗

i,j

)

= arg max
t,s

(similarity (T (t, s)Mi,j ,M)) (11)where T (t, s)Mi,j is the image of Mi,j translated by ve
tor t and s
aled by fa
tor s. We also dis
ardinstan
es for whi
h the asso
iated similarity measure is too low (that is, below an appli
ation-dependent threshold θ, typi
ally 0.2 for the 
orrelation 
oe�
ient).Step 3. For ea
h s
enario Si in the learning set, we then apply translation t∗i,j and s
ale s∗i,j to thedistan
e maps Di,j asso
iated with ea
h of its instan
es and average them, to allow for everyinstan
e of the s
enario to equally in�uen
e the mat
hing ( Figure 6(H) ). Let D̄i be the averagedistan
e map asso
iated with s
enario Si. The averaging pro
ess is done pixel by pixel:
∀(x, y), D̄i(x, y) =

1

Ni

Ni
∑

j=1

T (t∗i,j, s
∗

i,j)Di,j(x, y) (12)11



with the 
onvention that Di,j(x, y) = 0 outside of the domain de�ned by the sub-matrix Mi,jinside whi
h the sub-path Pi,j is ins
ribed.For example in Figure 6, we average the s
aled and translated maps T (t∗2,1, s2,1)D2,1 and T (t∗2,2, s2,2)D2,2of the two instan
es S2,1 and S2,2 of s
enario S2; no averaging is required for s
enario S1 sin
eit only has one instan
e, S1,1. The zero-level sets of the average transformed distan
e maps [27℄then give the average transformed sub-paths, P̄i.Note that the quality of the mat
h between the sub-matri
es from the learning set and the matrix
M 
ould be used to 
ompute a weighted average distan
e map instead of an equal-weight one.Also, there is no theoreti
al guarantee that the zero-level set of an average map is a single open
urve, as averages of distan
e maps are not distan
e maps. However in pra
ti
e, it is highlyunlikely that a topologi
ally di�erent path would be obtained as the sub-paths being averagedare fairly similar to ea
h other.Step 4. We then use dynami
 programming to �nd the optimal sub-paths in the shape distan
ematrix M in between the average sub-paths, P̄i, 
omputed at step #3 (i.e., those imposed by thes
enarios).Alternatively, we 
ould simply bias the sear
h for the global optimal path towards those de�nedby the average sub-paths instead of for
ing it to pass through them. We would then repla
e Λ by
Λ̄, the 
ombination of the shape distan
e matrix Λ with ea
h average distan
e map D̄i de�nedas follows:

∀(x, y), Λ̄(x, y) = Λ(x, y) +

K
∑

i=1

(

D̄i(x, y) + (1 − χD̄i
(x, y)) · αi

) (13)where αi is the minimum value of D̄i and χD̄i
is the indi
ator fun
tion su
h that: χD̄i

(x, y) =
∣

∣

∣

∣

1 if (x, y) ∈ domain of D̄i

0 otherwiseAdding the minimal value of the average distan
e map to all the other pixels in the shapedistan
e matrix prevents the dynami
 programming algorithm from systemati
ally avoiding thesub-matri
es around the sub-paths, as ea
h of the sub-matri
es' pixels would otherwise addthe value of the distan
e map to the shape distan
e matrix of the input 
urve underneath. Hereagain, a weighted sum 
ould be 
onsidered to favor the sub-paths asso
iated to the best mat
hingsub-matri
es.Even with a shape des
riptor invariant under reparameterizations, pairs of 
urves with substantiallydi�erent initial parameterizations will produ
e di�erent looking shape distan
e matri
es (for instan
e,if one of the 
urves were parameterized in the reverse dire
tion). Care should thus be taken to usesimilar a priori parameterizations for the obje
ts to be mat
hed and the ones in the learning set (ar
length for instan
e, if it 
an be 
omputed, or similarly ordered sets of pixels sampled in a similarfashion). This initial parameterization issue is somewhat typi
al of learning approa
hes. Clearly, theremust be a su�
ient degree of similarity between the items of the learning set and those onto whi
h apreviously learnt pro
edure has to be applied.4.2 Determining M1 and M2As mentioned above, the dynami
 programming framework requires that a pair of mat
hing points,
M1 and M2, be 
hosen a priori. Our mat
hing approa
h provides an alternative means to sele
tthose points, with the proviso that they exhibit parti
ular 
hara
teristi
s. Namely, we 
an extra
tfrom the shape distan
e matrix a sub-matrix that 
ontains the mat
hed (M1,M2) and use patternmat
hing to �nd its translated/s
aled image in the shape distan
e matrix of the pair of input 
urves12



Figure 7: Determining the mat
hing pairs of points: (a) sele
ted representative outlines (
olor isused to render OT values) with 
allosal head highlighted in yellow and mat
hing pair (M1,M2); (b)
orresponding shape distan
e matrix with higlighted head sub-matrix; (
) another pair of 
allosaloutlines with random initial mat
hing pair (M init
3 ,M init

4 ); (d) asso
iated shape distan
e matrix withhighlighted mat
hed sub-matrix; (e) resampled outlines (
orresponding points are rendered in the same
olor) with new mat
hing points after pattern mat
hing; (f) asso
iated shape distan
e matrix.to be reparameterized. As the shape distan
e matrix is redundant, this provides us with a sele
tionte
hnique more robust than those using maxima of 
urvature or position, for instan
e.We applied this te
hnique to a series of 
orpus 
allosum outlines (#1 and #2 in Figure 7(a), #3and #4 in (b), the remaining 
allosa are displayed in Figure 11(
) ). For ea
h pair of outlines, we arelooking for an adequate mat
hing pair of points. The user starts by 
hoosing a pair of representativesoutlines (#1 and #2) and determines a pair of mat
hing point on them (a). We then 
ompute the shapedistan
e matrix (b). The user then determines in this matrix the sub-matrix 
orresponding to the headof the 
orpus 
allosum (highlighted in yellow). Given a new pair of outlines (
), we sele
t M init
3 and

M init
4 at random and 
ompute the shape distan
e matrix (d). The pattern mat
hing approa
h detailedin Se
tion 4.1 is then used to �nd the 
allosal head sub-matrix from whi
h we extra
t a proper pair ofmat
hed points (Mhead

3 ,Mhead
4 ) in (e). We used the 
orrelation 
oe�
ient as a similarity measure and

θ = 0.2.The new shape distan
e matrix (f) is the image of the matrix (d) by the 
ombination of a horizontaland a verti
al 
ir
ular shift (hen
e the need to take these into a

ount in step 2 of the learningapproa
h).5 ResultsWe present here some syntheti
 examples as well as biomedi
al ones (our initial motivation) before
ommenting on the robustness of the learning approa
h.5.1 Mat
hing re
tangles and trianglesFigure 8 illustrates our approa
h on the familiar re
tangles with sliding triangular indentations. Inthe �rst 
ase/s
enario (�rst row), we wanted to mat
h the triangular indentations together, whereasin the se
ond 
ase (se
ond row), we wished to dis
ard them as noise, and mat
h them against thedire
tly 
orresponding re
tangle pie
es. The learning set 
onsisted in ea
h 
ase of the same sub-matrixtaken from shape distan
e matrix (b) but with a di�erent sub-path. The range of s
ales explored13



Figure 8: Learning reparameterization: (a) pair of 
urves used to build the learning set (
olor is usedto render OT values); (b) shape distan
e matrix with highlighted learning sub-matrix; (
) learningsub-matrix with sub-paths for two mat
hing s
enarios: mat
hing the triangular indentations (toprow), dis
arding triangles as noise (bottom row); (d and e) input 
urves with 
olor used to render
orresponding points after the reparameterization; (f) the resulting point-by-point Eu
lidean average
urves.by the mat
hing algorithm was {0.5, 1.0, 1.5}. We used the 
orrelation 
oe�
ient as a similaritymeasure and θ = 0.2. Figure 8(f) shows that the point-to-point Eu
lidean averages obtained for ea
hs
enario 
onformed to the expe
ted mat
hing 
hara
teristi
s: we obtained a triangle positioned half-way between the ones in the input 
urves on the �rst row (re�e
ting the fa
t that the triangles weremat
hed together, as demonstrated by the 
olor mat
hes in (d) and (e)), and two attenuated triangleson the se
ond row.Note that the results of the �rst s
enario exhibit 
hara
teristi
s similar to those of the Eu
lideanaverage obtained with the 
lassi
al non-learning approa
h (see left-most Eu
lidean average in Figure5(f)) with the notable di�eren
e that the average triangular indentation is better de�ned with thelearning approa
h. This was to be expe
ted sin
e the learning approa
h ensured that the tips of thetriangular indentations in the input 
urves were in exa
t 
orresponden
e whereas the non-learningte
hnique 
an only aim for it.The same learning sets were used to 
ompute the mean shape of the set of noisy irregular re
tangleswith protruding indentations in Figure 9(a). The similarity measure threshold was set slightly lowerto 0.1 as the input 
urves were somewhat perturbed. Noti
e how the indentation was indeed per
eivedas an important feature with the �rst learning set in (b) or dis
arded as noise in (
).5.2 Preventing mat
hesOur learning approa
h to reparameterization 
an also be used to prevent sub-mat
hes. In this 
ase, wegive to all points in the sub-matrix found by the pattern mat
hing te
hnique of step 2 an arbitrarilyhigh value: the dynami
 programming algorithm will then avoid this area in sear
h for the overallminimum 
ost path. This 
ould be helpful to prevent the mat
hing of an animal's eyes with another'sears in Se
tion 1.3, for instan
e, when we know that there are mistakes in the database.This te
hnique was used in Figure 10 to prevent the �shes' �ns from being mat
hed. We sele
tedamong the shape distan
e matri
es 
omputed between 20 �sh delineations (6 of them are shown in(a)) three sub-matri
es 
orresponding to the �n-to-�n mat
hing areas. While the 
lassi
al non-learningte
hnique fairly adequately mat
hed the s
ales in (b), our learning algorithm su

essfully dis
ardedthem as a non-preeminent feature in (
). The strain imposed on the dynami
 programming algorithmby these avoidan
e 
onstraints unfortunately prevented it from 
orre
tly mat
hing the �sh tails. An14



Figure 9: Mat
hing irregular indentations: (a) set of irregular 
urves with a sliding indentation; (b)learning based Eu
lidean point-by-point average with s
enario #1's learning set; (
) learning basedaverage with s
enario #2's learning set.improved average outline 
ould be obtained by introdu
ing the �sh tail area into the learning set, withthe appropriate sub-path.5.3 Biomedi
al example.Figure 11 demonstrates the behavior of our mat
hing approa
h on a series of 
orpus 
allosum delin-eations. Two pairs of 
orpus 
allosum outlines were a priori manually reparameterized (a): a numberof pairs of 
orresponding points were manually sele
ted, and a 
ontinuous 
orresponden
e �eld wasinterpolated between them. We 
omputed their asso
iated shape distan
e matrix (b) and sele
ted in ita number of s
enarios (yellow highlights) to serve as a learning set. We applied our learning approa
hto a test set of 20 
allosa manually delineated by an expert in T1-weighted MR volumes. The mat
hingpair of points were obtained using the pattern mat
hing strategy des
ribed in Se
tion 4.2. Here also,the range of s
ales explored by the mat
hing algorithm was {0.5, 1.0, 1.5}. We used the 
orrelation
oe�
ient as a similarity measure and θ = 0.2. Figure 11(
) shows 5 out of the 20 reparameterized
orpora 
allosa, and the overall 
allosum average in (d), 
omputed as the point-by-point Eu
lideanmean of the reparameterized 
allosa. Clearly, both the head and the tail of the 
allosum were 
orre
tlymat
hed a
ross the set of instan
es. This outline 
ompares favorably against the Eu
lidean mean 
om-puted without learning (e) for whi
h, as 
ould be expe
ted, the fairly irregular shape of the 
allosalhead fooled the dynami
 programming sear
h.5.4 Robustness of the mat
hing approa
hA 
lassi
al dilemma of learning approa
hes, shared by ours, is whether the learning set is representative.Namely, a trade-o� must be found between too exhaustive a learning set that might indu
e over�ttingand too small a learning set whi
h will not represent the target shapes su�
iently well, both of themyielding poor generalizability. Representativity aside, the robustness of our method mostly depends onthat of the pattern mat
hing algorithm used in step 2 whi
h in turn is determined by the 
hara
teristi
s
Figure 10: Preventing mat
hes: (a) 6 out of 20 �sh delineations; (b) non-learning Eu
lidean point-by-point average; (
) learning based average where �ns were dis
arded as noise and prevented frommat
hing. 15



Figure 11: Pattern mat
hing reparameterization of a few 
orpus 
allosum: (a) Two pairs of a prioriparameterized 
allosum (
orresponding points are rendered in the same 
olor); (b) their asso
iatedshape distan
e matrix with the 
orresponding path shown in red and the sele
ted s
enario/shapedistan
e sub-matri
es in yellow; (
) a few reparameterized 
orpus 
allosum; (d) the overall point-by-point Eu
lidean average 
allosum with learning; (e) Eu
lidean average without learning.of the 
hosen shape des
riptor, the similarity measure used, and the neighborhood explored.5.4.1 Similarity measureSin
e we are mat
hing shape distan
e sub-matri
es against ea
h other, a similarity measured designedfor mono-modal registration should be used. Here, we sele
ted the 
orrelation 
oe�
ient, whi
h assumesan a�ne relationship between the intensities of both sub-matri
es. When a greater dissimilarity isexpe
ted (that is, when the samples from the learning set might be fairly di�erent from the obje
ts tobe mat
hed), more general purpose measures 
ould be used, the 
orrelation ratio or mutual informationfor instan
e. These 
ould only work properly on su�
iently large sub-matri
es as they rely on theestimation of probability densities.To in
rease robustness, we dis
ard the poor mat
hes between the sub-matri
es in the learning setand the shape distan
e matrix. No mat
h a
tually had to be dis
arded in the experiments reported inthis arti
le, though.5.4.2 Exploration neighborhoodThe size of the exploration neighborhood depends on the di�eren
es between the global shapes of theobje
ts to be mat
hed and those of the a priori mat
hed obje
ts in the learning set:
• when they di�er substantially, the exploration neighborhood must be relatively large (it 
ouldeven be extended to the entire shape distan
e matrix) as the sub-matrix in the shape distan
ematrix of the obje
ts to be mat
hed might o

upy a 
ompletely di�erent position from that ofthe 
orresponding sub-matrix in the learning set. Adding noise to one 
urve (see Se
tion 5.4.4)usually also implies in
reasing the size of the exploration neighborhood.
• when the obje
ts are globally similar in shape, the shape distan
e matri
es must also look alike:the exploration neighborhood 
an 
onsequently be redu
ed as the 
orresponding sub-matri
esshould o

upy 
lose lo
ations. 16



µ distan
e (pixel) triangular indentation all other points0 mean 2 3max 3 102 mean 2.7 4max 4 54 mean 3 5max 3 76 mean 3.7 9max 5 148 mean 4.3 14max 6 1510 mean 6.7 16max 9 2312 mean 10 19max 15 26Table 1: Noise sensitivity of the mat
hing algorithm.5.4.3 S
aleThe range of s
ales explored also depends on the expe
ted di�eren
es between the learning set and theobje
ts to be mat
hed:
• if the sizes between these are expe
ted to be about the same (as with anatomi
al stru
tures, forinstan
e) then a small range of s
ales should be used; this should only be large enough to allowfor variations 
aused by noise;
• when the sizes are expe
ted to be more di�erent, then obviously a larger range should be used.The use of a normalized share distan
e matrix is then highly re
ommended.5.4.4 NoiseAn experiment was designed to assess the sensitivity of the mat
hing algorithm to small variations ofthe input 
urves. The obje
ts 
onsidered were again the pair of re
tangles with a sliding triangularindentation. 14 �virtual� landmark points were 
hosen along ea
h 
urve: one at ea
h 
orner and onehalf-way between every 
orner. These landmarks were not atta
hed to a point on the 
urves - theyonly represent areas of interest in the 
urve. Curve 2 was then perturbed by a uniform noise of varyingamplitude µ (we added the noise, varian
e σ2 = µ2/3, to ea
h point of the delineation). The 
urveswere subsequently mat
hed with the learning set of the �rst row of Figure 8 (�mat
hing triangle�s
enario).Table 1 reports the average and maximal Eu
lidean distan
e between the landmarks of 
urve 2 andthe points of the perturbed 
urve 2 asso
iated after mat
hing to the 
orresponding landmark in 
urve1 for various values of µ. We made a distin
tion between points whi
h belonged to the triangle fromthe others as their mat
hing was supposed to be enfor
ed by our algorithm. We used the 
orrelation
oe�
ient as a similarity measure and θ = 0.2. The range of s
ales explored by the mat
hing algorithmwas {0.5, 1.0, 1.5} and we 
onsidered as an exploration neighborhood a re
tangular window twi
e thesize of the 
onsidered sub-matrix, 
entered on it.As expe
ted, the mat
hing error was lower in the triangular indentation and, more importantly,stayed relatively 
onstant until µ = 8, whereas the error 
ontinuously in
reased along with µ for pointswhere the mat
hing was not enfor
ed via the learning set.When µ be
ame too high, the mat
hing algorithm 
ould not manage to �nd in the shape distan
ematrix a sub-matrix similar enough to the one in the learning set.17



5.5 Building the learning setOur learning method requires that the 
orresponden
es between the obje
ts of the learning set beestablished a priori. This may not always be a trivial task for 
omplex shapes. However, it only hasto be spe
i�ed on
e and for a small number of instan
es. Also a sparse subset of the 
orresponden
e�eld 
ould be spe
i�ed by the user to generate a learning set. Most of the fully automated te
hniquespresented in the introdu
tion 
ould produ
e a meaningful set that 
ould then be manually 
orre
tedwith a simple interfa
e if need be.Note that using a learning set implies that the obje
ts we want to reparameterize should not be toodi�erent from those in the learning set. In fa
t, similarities between obje
ts do not matter so mu
h assimilarities between the pairs of obje
ts to be reparameterized and the pairs of obje
ts in the learningset. Of 
ourse, the former is a su�
ient 
ondition for the latter. However, a unique advantage of ourapproa
h is that it 
an learn a mat
hing strategy for even very dissimilar obje
ts (e.g., a
ross spe
iesin 
omparative allometry appli
ations), provided that we apply it to the same dissimilar mat
hingsituations.As su
h, this te
hnique 
ould prove parti
ularly useful to put into 
orresponden
e the �odd looking�instan
es of an obje
t set as they might require more attention than the �ordinary� ones whi
h 
ouldbe treated with dire
t non-learning algorithms.6 Con
lusionA 
areful analysis of the obje
t mat
hing problem motivated the need for expli
it 
ontrol over thereparameterization pro
ess. We 
onsequently developed a learning approa
h to the mat
hing problem,based upon a 
lassi
al shape di�eren
e geodesi
 sear
h te
hnique [41, 39℄. A pattern mat
hing algorithmdrives the mat
hing algorithm towards a 
orresponden
e �eld whose 
hara
teristi
s 
losely resemblethose in a learning set of a priori 
orresponding instan
es. This allows the user to exert expli
it 
ontrolover the reparameterization.We 
hose as a shape des
riptor the previously introdu
ed observed transport des
riptor, in view ofits in
reased dis
riminating power.We have demonstrated the adequate behavior and �exibility of this approa
h on a number ofsyntheti
 and real examples. We also illustrated its inherent simpli
ity. Given a mat
hing s
enario,the visual qualities of the shape distan
e matrix make it straightforward to build a learning set bysele
ting sub-matri
es in it. To satisfa
torily handle the same s
enario, a 
lassi
al approa
h wouldrequire the user to a
tually design a suitable similarity measure and its asso
iated set of 
onstraints.We are 
urrently investigating the extensions of this te
hnique to (1) higher dimensional spa
es tomat
h surfa
es and volumes (see [36℄ for a preliminary sket
h) and (2) to the reparameterization ofgroups of 
urves for atlas building.A
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