
Learning Shape Correspondene for n-D urvesAlain Pitiot, Hervé Delingette and Paul M. ThompsonFebruary 7, 2006AbstratWe present a learning method that introdues expliit knowledge into the shape orrespondeneproblem. Given two input urves to be mathed, our approah establishes a dense orrespondene�eld between them, where the harateristis of the mathing �eld losely resemble those in ana priori learning set. We build a shape distane matrix from the values of a shape desriptoromputed at every point along the urves. This matrix embeds the orrespondene problem in ahighly expressive and redundant onstrut and provides the basis for a pattern mathing strategyfor urve mathing. We seleted the previously introdued observed transport measure as a shapedesriptor, as its properties make it partiularly amenable to the mathing problem. Synthetiand real examples are presented along with disussions of the robustness and appliations of thetehnique.1 Introdution�As for example in geometry [...℄ I de�ne �gure [shape℄ to be that in whih the solid ends; or, moreonisely, the limit of solid�. This exerpt from a dialogue between Sorates and Meno as �titiouslyreported by Plato [37℄ illustrates how di�ult it is to haraterize the notion of shape, a ommononept that is still in need of a satisfying de�nition, enturies after the �rst inquiries into its nature.As pointed out by Veltkamp [44℄, shape is lassially onsidered as �something geometrial�, ade�nition that leaves a large part to psyhovisual analysis. Shape has therefore been studied bothfrom the perspetive of the human visual system and from a more abstrat mathematial one (see[29, 47, 17℄ for reviews).Among the studies dealing with the visual system aspet of shape, psyho-ognitive approahes suhas the holisti Gestalt [25, 47℄ or redutionist approahes [19, 14℄ have foused on developing an arti�ialequivalent to the human shape analysis system, apable of both visual pereption and ognition.Despite their suess, they are inherently qualitative and di�ult to translate into algorithms. Severalmore omputational theories have also been proposed: Marr's �primal sketh� theory [30, 31, 32℄, theso-alled �shape from x� tehniques (shape from shading [20℄, from ontour [42℄, et.), the dynamihierarhial approah [24℄ or Leyton's Symmetry-Curvature evolution theorem [28℄ to name a few.From a more abstrat mathematial point of view, a shape an be de�ned as an equivalene lassunder a group of transformations. Given a similarity measure (or measure of resemblane), whih mustbe invariant under this transformation group, the shape of a pattern is the pattern modulo the ationof the group [16℄. The ompeting statistial theories of Bookstein [5℄ and Kendall [23℄ are two attemptsto establish a mathematial framework that rigorously de�nes the notion of shape distane or shapesimilarity.1.1 Shape CorrespondeneBoth of these mathematial approahes require that orrespondenes between shapes are already avail-able a priori, a limitation shared by most methods in the literature. This orrespondene problem arisesin a broad range of image-related �elds, from signal proessing to pattern reognition. In omputervision for instane, the searh for target patterns often requires a given template to be mathed to1



Figure 1: Illustration of the mathing framework. (a) Given a orresponding pair of mathed points,
(M1,M2), whih de�nes the origins of axis x1 and x2, a reparameterization orresponds to the redpath φ between (0, 0) and (1, 1). As x travels along φ, φ1(x) in C1 is mathed to φ2(x) in C2. (b) Suha framework allows for the triangular indentation [α-β℄ in C3 to be mathed to a single point γ in C4and onversely for [δ-ǫ℄ in C4 to map to point ζ in C3.pitorial elements in an input image [33℄. In omputer graphis, mathed urves may be used to derivea series of intermediate shapes to �morph� one into the other [21℄. In medial image analysis, theobjets to be mathed may be instanes of a given anatomial struture, for whih a statistial model,or time-dependent model, is required [9℄. In this paper, we approah the issue of urve mathing as aproess of omputing a dense orrespondene �eld between two a priori parameterized urves.At a glane, de�ning a orrespondene between two urves entails �nding in them pairs of orre-sponding elements that share spei� similarities in shape, position, or both. More formally, given twourves C1 and C2 with any a priori parameterizations represented by two funtions C1 and C2:

C1 :

∣

∣

∣

∣

I1 ⊂ R → R
n

x1 7→ C1 (x1)
, C2 :

∣

∣

∣

∣

I2 ⊂ R → R
n

x2 7→ C2 (x2)
(1)we are looking for a reparameterization of C1 and C2, that is, for two funtions f1 and f2, suhthat C∗

1 = C1 ◦ f1 and C∗

2 = C2 ◦ f2 and
∀x1 ∈ I1, ∀x2 ∈ I2, x1 �lose to� x2 ⇒ C∗

1 (x1) �very similar in shape to� C∗

2 (x2) (2)where �very similar in shape to� is de�ned with respet to a given shape similarity metri.Following [41℄, to allow multiple points in I1 to be mathed to a single point in I2 and onversely,we restate our problem as that of �nding a ontinuous funtion
ϕ :

∣

∣

∣

∣

I ⊂ R
2 → I1 × I2

x 7→ (ϕ1 (x) , ϕ2 (x))
(3)suh that:

∀x ∈ I, C1 (ϕ1 (x)) �very similar in shape to" C2 (ϕ2 (x)) (4)Figure 1(a) illustrates this approah on a pair of retangles with triangular indentations. Theinherent symmetry of this framework is shown in (b) where an entire suburve in C3 is mathed to asingle point in C4, and the other way round.In addition, as in [41℄, we would like the mathing funtion to satisfy, the following properties:2



symmetry: the funtion ϕC1→C2
assoiated with the mathing of C1 to C2 should be the inverse of

ϕC2→C1
, the funtion assoiated with the mathing of C2 to C2.onsistent self-mathing: when trying to math an objet to itself, the optimal reparameterizationshould be the identity: ∀ curve C, ϕC→C = (Id, Id). In general, we would like ϕ to be not toodissimilar from the identity.1.2 Objet mathing approahesA number of automated methods for parameterized urve or surfae mathing have been presented inthe literature, that takle some or all of the above issues. Extensive reviews of these approahes areavailable elsewhere (see [45℄, [29℄ or [26℄ for instane). We present in the following setion a seletionof tehniques and omment in Setion 1.3 on their lak of expliit ontrol, an issue that we solve via alearning paradigm (see Setion 3).Trouvé and Younes detailed in [41℄ an axiomati formulation for 1-D mathing: they introdued,among others, the onepts of symmetry and onsistent self-mathing and proposed a mathing frame-work for 2-D pieewise lines that satis�es their axioms.One of the many suggested PDE approahes, Cohen's approah [7℄ ompared the bending andstrething energies of one urve, C1, and a reparameterization of the other, C∗

2 , to �nd the best math.In [8℄, several PDEs were introdued to introdue geometri information when omputing a set ofgeodesi paths between the urves to be mathed.Tehniques may also be derived from a diret ombinatorial searh for point orrespondene. Arkinet al. [1℄ proposed an e�ient polygonal line mathing algorithm where the turning funtion (measureof the angle between the tangent to a urve and a pre-determined axis as a funtion of ar length)was used as a shape measure. Chui and Rangarajan's �soft assign� algorithm [6℄ o�ers a robust way to�nd orrespondenes between noisy input point sets. Wang et al. [46℄ used geodesi interpolation toompute the dense orrespondene �eld between two surfaes one an initial sparse set of orrespondingpoints had been obtained with another automated shape-based mathing algorithm.Deomposition of the input objets in the spatial or frequeny domains has also proved popular.In [22℄, the �rst elliptial harmonis of the expansion of the input objets (whih must have spheroidalshapes) served to establish a orrespondene. Similar Fourier-based tehniques were reported earlierin [34℄.In [39℄, Sebastian et al. used a dynami programming approah similar to that of [41℄ to �nd thebest math between two 2-D urves, using a similarity measure based on �alignment� between segmentsof the urves. A similar dynami programming sheme was proposed by Gdalyahu et al. in [13℄ wherethe edit distane (minimum number of elementary hanges required to hange the string-like desriptorof one urve into that of the other urve) served as a similarity measure.Registration and elasti warping approahes have also been investigated. In [40℄, Thompson etal. mapped the input surfaes to two spheres whose oordinates were then warped under anatomialfeature urve onstraints using spherial harmoni interpolation. Davatzikos et al. [10℄ also identi�edorresponding points on objet boundaries in two images before aligning them using elasti warping.Fleuté et al. [12℄ minimized the Eulidean distane between an input shape and a registered template,whih assumed smooth transition paths between them.From an optimization point of view, Davies et al. [11℄ presented a urve mathing method, in theontext of searhing for the most ompat statistial shape model. An information-theoreti riterionwas designed and ontrolled the orrespondene between objets.These approahes generally rely on omputing a shape desriptor or a set of desriptors, eitherloally or globally. If objets to be mathed are onsidered as �lled ontours (or regions), spatialmoments an be used for mathing. These are global measures, and quantify the shape of the objetonsidered as a whole. A number of moment invariants an be derived from them: area, irularity,3



Figure 2: Mathing two animal silhouettes: (a) outline of a rabbit; (b) outline ould either be that offrog () or of squirrel (d). The mathing of segments ai and bi therefore depends on external knowledgeto hoose between these two alternatives.ompatness, eentriity, et. (see [38℄ for details). Shape matries have also been used as a ompatrepresentation of global and loal shape properties Goshtasby [15℄ binned pixels based on their polaroordinates. Similarly, Belongie's shape ontext [4℄ outputs for eah point of an objet the histogramof the positions of all the other points expressed in a log-polar oordinate system (entered on thegiven point).Often, objet boundaries are used instead of their entire area. In the ase of urves or surfaes,a number of analyti funtions an be estimated at any point: tangent, aeleration, tangent angle,urvature, or torsion for instane [43℄. Signature funtions and �time warps� may also be omputed[45℄.1.3 Common aveatDespite their diversity, these mathing approahes share the same drawbak: their lak of ontrol overthe similarity measure introdued in equation 2, whih is often de�ned a priori, one and for all, anduses only limited domain-based information (or information learned impliitly from examples). Typi-ally, these mathing proesses an be redued to optimizing a funtional whose minimum orrespondsto a �good� orrespondene �eld. The di�ulty of designing an adequate funtional omes from thedi�ulty of haraterizing an adequate orrespondene �eld. In [7℄ for instane, the authors assumethat points with similar urvature should be mathed. This may suit some appliations, but is notalways desirable. Figure 2 illustrates suh a situation where a series of animal silhouettes is availableand we wish to ompute an average shape:
• Suppose that the database of delineations ontains both rodents and batrahians. Figure 2(a)ould then be the outline of a rabbit and Figure 2(b) the outline of frog (). We would probablynot like the frog's eye b2 to be mathed with the rabbit's ear a2. Instead we would like segments{a1, (b1, b2)}, {(a2, a3), b3} and {a4, b4} to be mathed, in spite of the fat that the urvaturesignature of segment a2 more losely resembles that of b2 than that of b3.
• On the other hand, we may know beforehand that the database ontains only rodents and thatFigure 2(b) is atually the outline of squirrel (d). Then, we would like the following segmentpairs to math: {a1, b1}, {a2, b2}, {a3, b3} and {a4, b4}.Clearly, hoosing between these two senarios requires expliit knowledge to be introdued into themathing algorithm, as designing a suitable mathing algorithm to handle eah new ase separatelywould be partiularly ine�etive.1.4 Learning the orrespondene �eldTo overome this issue, we propose a learning approah where an a priori learning set of orrespon-dene �elds helps the mathing algorithm ompute a orrespondene �eld, between the input urves,whose harateristis resemble those in the learning set. Our method uses a shape distane matrix4



Figure 3: Observed transport desriptor priniple demonstrated on a human vertebra outline: thevisible ars (thik red lines) are de�ned for three loations on C(u).[41, 39℄, the matrix of the di�erenes between the values of a loal shape desriptor omputed onevery pair of points of the urves to be mathed (see Figure 1 for an illustration and Setion 3 for amathematial desription). We argue that this shape distane matrix embeds the mathing problemin a highly expressive and redundant onstrut that is easier to manipulate than the reparameteriza-tions of the input urves. This matrix is visually interesting sine it allows visual inspetion of thereparameterization problem. It also reasts the mathing problem as a searh for a geodesi in anothermetrizable spae, the spae of reparameterizations (whih is a group).We brie�y present in the following Setion 2 the observed transport desriptor that we previouslyintrodued in [36℄, and reall the properties that make it suitable for our mathing problem. We thenelaborate on a lassial non-learning tehnique in Setion 3 and introdue our learning-based mathingmethod in Setion 4. Results are disussed in Setion 5 where we also investigate the robustness ofour approah. Note that a preliminary version of this study was published in [36℄.2 The observed transport shape desriptorBefore omputing a shape distane matrix, we �rst have to selet a shape desriptor. Evaluatingthe quality of a given desriptor is di�ult, as it depends both on the harateristis of the shapesto be desribed and on the spei� appliation. As we ould not �nd a desriptor to suit our needsin the literature and bearing in mind the rodent/batrahian example detailed above, we developedour own: the observed transport desriptor (OT). Here, we formulate it in the ontinuous 1-D anddisrete n-D ases and illustrate its behavior and notable properties on a few examples. Extensionsto higher-dimensional spaes, additional properties, theoretial proofs and aompanying experimentsan be found in the thesis [35℄.2.1 De�nitions
• ontinuous ase:Let C :

∣

∣

∣

∣

I ⊂ R → R
n

u 7→ C (u)
be a urve in n-D (open or losed), parameterized with respet toa salar u.We de�ne the observed transport measure ρr as follows:

∀u ∈ I, ρr (C(u))
.
=

∫

Vr(C(u))
‖C (u) − C (v)‖ .

∣

∣

∣
C

′

(v)
∣

∣

∣
.dv (5)where ‖C (u) − C (v)‖ is the Eulidean distane in R

n, and Vr (C (u)) is the set of the �visible� ars5



of C, within distane (or range) r ∈ R
+ from C (u): Vr (C (u)) = {v s.t. ‖C (u) C (v)‖ ≤ r and linesegment [C (u)C (v)] intersets C only in C(u) and C(v)}By onsidering only the points visible from C (u), we obtain a measure whose value hanges dras-tially with the sudden apparition of vastly di�erent surroundings within the range r, whih atsas a loality ontrol (ompare Figure 3(a), (b) and ()). This helps ahieve greater disriminationsine those points are visually remarkable.

ρr (C(u)) may be regarded as the minimal total amount of work it takes to transport the ele-mentary elements dv with mass ∣

∣

∣
C

′

(v)
∣

∣

∣
· dv that are visible within range r from point C (u),from their loation C (v), to C (u) in the fashion of a Monge-Kantorovih transport problem [18℄,hene its name.

• disrete approximation on a regular grid:We de�ne a disrete version of urve C as an unsorted olletion of n-D isotropi voxels of size
sn: C = {Ci ∈ R

n}N
i=1. In this ase, we do not assume any a priori parameterization.We then derive a disrete version of ρr in the n-D disrete ase:
∀i ∈ 1 . . . N, ρr (Ci)

.
=

N
∑

j=1,Cj∈Vr(Ci)

‖Ci − Cj‖ .dVj (Ci) (6)where dVj (Ci) is the surfae of voxel Cj visible from voxel Ci whih we approximate by nsn−1.2.2 Examples and propertiesFigure 4 shows how ρ behaves with respet to the lassial urvature desriptor on a few 2-D urves.All values were reorded with a range r = +∞. Both desriptor values for the hand outlines in (b) and(d) were saturated at a �fth of their respetive maximal value to better illustrate the disriminatingpower of the observed transport approah. We reall here the main properties of our desriptor (see[35℄ for details):Large sope: The OT desriptor has a fairly large sope of appliation sine it an be omputed onboth onneted and disonneted n-D manifolds and n-D sets of voxels or points. Note that fordisonneted manifolds, a parameterized representation of the objet might be di�ult to obtain.Inreased disriminating power: As illustrated in urve (a), even though ρ evidently depends onthe urvature at the point at whih it is omputed, it atually takes into aount a muh largerneighborhood around it. We then get ρ (A) 6= ρ (B) and ρ (C) 6= ρ (D), whih orretly re�etsthe di�erenes in the shape landsape surrounding those points. Note that, of ourse, A & Band C & D have, respetively, the same urvature.Curves (a) and (b) also demonstrate that high urvature points are adequately disriminated.The intersetion points of the irle and the straight line in urve (a) have distintive values, thetips and juntions of the �ngers in urve (b) and (d) are learly distinguished, et. These mattersine they are signi�ant for visual pereption (see the psyhologial experiments of Attneaveand Arnoult [2, 3℄).Adjustable loality: The observed transport desriptor is both a loal measure of shape and anindiator of ontext (for large values of r): for instane, it adequately disriminates between theinferior and superior aspets of the orpus allosum in Figure 4(). A loal shape modi�ationtherefore only a�ets its immediate neighborhood, as illustrated with urve (d): the ut middle�nger mostly modi�es the desriptor values of the immediately surrounding �ngers, slightly altersits values for points diretly opposite on the other side of the hand (sine the ut �nger was visiblefrom them), and, evidently, does not a�et the left-most and right-most �ngers.6



Figure 4: Observed transport (OT) and urvature desriptors omputed over a variety of urves: (a)trunated irle (u-parameterized 2-D urve); (b) 5-�ngered hand (set of 2-D points); () 3 orporaallosa (set of 2-D points) and (d) hand with missing �nger (set of 2-D points).Invariane: Our desriptor is also invariant with respet to rigid transformations sine both the visiblesets and the distanes between visible points are invariant with respet to rigid transformations.OT is not sale invariant per se as we believe that sale is an important shape harateristi.Sale invariane is however desirable in a urve reparameterization approah (see Setion 3 foran implementation). Finally, the use of ar length ∣

∣

∣
C

′

(v)
∣

∣

∣
.dv = ds ensures that the desriptoris invariant under reparameterization.3 A non-learning reparameterization approahEquipped with a suitable shape desriptor, we an takle the orrespondene problem. We �rst re-all, and elaborate on, a standard non-learning algorithm for urve mathing [41, 39℄. We will detailin Setion 4 how a learning strategy an be derived from it. Note that all the methods we disussould equally be applied to a di�erent shape desriptor (urvature, for instane). The enhaned dis-riminating power of the observed transport desriptor makes it a more appropriate andidate however.We onsider urves de�ned on an interval of R, taking values in R

n with n = 2 or 3 (i.e. planar orspae urves). Following Trouvé et al. [41℄ (see also Sebastian et al. [39℄ or Gdalyahu et al. [13℄) wede�ne the best reparameterization ϕ∗

C1→C2
between urves C1 and C2 to be that whih minimizes theoverall umulative distane between desriptor values omputed for all pairs of mathed points (seeFigure 1):

ϕ∗

C1→C2

.
= arg min

ϕ=(ϕ1,ϕ2)

{
∫

I

|ρr (C1(ϕ1 (s))) − ρr (C2(ϕ2 (s)))| .ds

} (7)where ds is the ar length. 7



In pratie, we often need to disretize both urves to ompute ϕ∗

C1→C2
. This sampling proessmust be performed arefully so as not to disard from the disrete set of pixels important urve fea-tures. In partiular, one should pay attention to the sampling rate required to apture the urve detailsdeemed important.Let Λ be the shape distane matrix assoiated with the disretized urves C1 =

{

Ci
1

}N1

i=1
and

C2 =
{

Ci
2

}N2

i=1
where N1 is the number of points in the disrete C1 and N2 the number of points in C2:

Λ = [λij] i = 1 . . . N1

j = 1 . . . N2

, ∀ (i, j) λij
.
=

∣

∣

∣
ρr

(

Ci
1

)

− ρr

(

Cj
2

)
∣

∣

∣
(8)Finding the best reparameterization then boils down to �nding in Λ the minimal ost path betweenpoints (0, 0) and (N1, N2), whih requires that a single mathing pair of points (M1 ∈ C1, M2 ∈ C2) begiven. This an be done with a dynami programming approah [41, 39℄.Note that the disrete C1 and C2 may sometimes have very di�erent sizes. For instane, they mayhave been sampled at the same rate from images with di�erent resolutions. In this ases, non saleinvariant desriptors will take vastly di�erent ranges of values. This may hamper the omputationof an adequate orrespondene �eld. One way to alleviate this issue is to replae Λ by a normalizedversion, Λ̃, omputed as follows:

∀ (i, j) λ̃ij
.
=

∣

∣ρ̃r

(

Ci
1

)

− ρ̃r

(

Ci
2

)
∣

∣ with ρ̃r

(

C l
k

)

.
=

ρr

(

C l
k

)

− µCk

σCk

(9)where µCk
and σCk

are respetively the mean and the standard deviation of {

ρr

(

C l
k

)}Nk

l=1
.3.1 Choosing M1 and M2The mathing pair of points an be hosen a priori or they may be optimized as well. For open urves,a natural hoie would be to selet one of the orresponding extremities. The dynami programmingapproah then yields an O (N1.N2) omplexity. For losed urves, a pair of remarkable homologouspoints (one in eah urve) ould be seleted based on their partiular harateristis: extrema ofurvature, left-most/right-most points, et. Complexity is also O (N1.N2). In the general ase whereno pair of mathing points is given, the omplexity beomes O

(

N1.N
2
2

) as we apply the O (N1.N2)dynami programming algorithm to all possible pairs (M1 ∈ C1, M) , ∀M ∈ C2 and selet the mathingwith lowest ost.Muh better ontrol over this seletion proess an be obtained with the learning approah weintrodue below (see Setion 4).3.2 Consistent self-mathingWhen a number of onseutive points have the same shape desriptor (in a irle for instane, forboth OT and urvature), there is no unique best path with respet to the above riterion. To bias thesearh towards �natural� reparameterizations (the �onsistent self-mathing� axiom), we introdue inequation 7 a onstraint to prevent the path from deviating too muh from the diagonal of Λ, i.e. forsome α ∈ R:
ϕ∗

C1→C2

.
= arg min

ϕ

{
∫

I

|ρ̃r (C1(ϕ1 (s))) − ρ̃r (C2(ϕ2 (s)))| .ds +

α.

∫

I

∣

∣

∣
ϕ1 (s) .C

′

2 (s) − ϕ2 (s) .C
′

1 (s)
∣

∣

∣
.ds)

} (10)8



The larger the α, the loser the path is to the diagonal. A irle mathed against itself then yields
φ1 = φ2 = Id when α > 0. Consistent self-mathing is partiularly desirable for shape desriptorswith only average disriminating power, for whih large parts of the input objets map to the samedesriptor value. It also proves useful as a regularization term when the hosen shape desriptor isnoisy. Clearly, there are only a handful of di�erent urvature values for the retangles of Figure 5 (g)and (h). The assoiated shape distane matrix then presents large uniformly olored squares withinwhih all paths would be equiprobable if α were zero. In pratie, we take α = 0 for the OT desriptoras it is su�iently disriminating in and of itself.3.3 A few minimal ost path examplesFigure 5 illustrates the non-learning approah on four pairs of urves (one pair per olumn), for theobserved transport and the urvature desriptors. For eah pair, we show the OT maps in (a,b) andthe urvature maps in (g,h), along with the point-by-point Eulidean averages derived from them (f,i),and the shape distane matrix assoiated to the OT desriptor (). We used α = 0, and r = +∞ toyield maximum disriminating power. Both OT and the urvature desriptor were normalized withthe mean/standard deviation tehnique desribed above. Color is used both to display the values ofthe desriptors in (a),(b),(g) and (h), and to render orresponding points in (d) and (e). Overall, theOT desriptor behaves more adequately than urvature on the syntheti and real examples.4 A learning reparameterization approahWe present in this setion the learning algorithms we developed to bias the searh for a orrespondene�eld between two n-D urves towards instanes that are admissible with respet to an a priori givenlearning set. It is through this learning set that we introdue a priori knowledge and expertise in themathing proess.4.1 MethodAn interesting feature of the shape distane matrix is that it embeds, in a highly redundant way,information about all possible reparameterizations between the two input objets. In Figure 8 forinstane, we an notie lear patterns orresponding to the triangular indentations of the retangles(highlighted areas). A loal mathing senario, e.g. �mathing the rodents' ears� in Figure 2, or�mathing the triangles together� in Figure 5, then orresponds to a sub-path in a sub-matrix extratedfrom the shape distane matrix of the objets.We derive the following 4-step algorithm (see Figure 6):Step 1 (a priori). Given a number of desired loal mathing senarios, a human operator �rstforms a learning set by seleting instanes (i.e. examples) for eah senario. An instaneonsists of a 2-D sub-matrix Mi,j ∈ Mmi,j×ni,j

, and its assoiated onneted sub-path Pi,j =
{(

xk
i,j, y

k
i,j

)}mi,j+ni,j

k=1
, where i is the senario index, and j is the instane index.Sub-paths may be de�ned in many ways. For instane, if the operator is satis�ed with theharateristis of a math obtained between two urves with the non-learning mathing approah,and wants to enfore similar harateristis over a series of similar urves, he an extrat sub-paths from the omplete minimum ost path omputed via dynami programming between thesetwo urves. Alternatively, sub-paths an be drawn by hand on the sub-matries (this is in essenewhat we did in Figure 8) or generated algorithmially.Similarly, sub-matries are extrated from shape distane matries omputed from urves thatshould look similar to the ones the operator wants to reparameterize. As always with a learningapproah, the operator should ensure that the learning set adequately represents the desiredmathing harateristis by seleting appropriate instanes.9



Figure 5: Non-learning reparameterization: (a,b) Observed Transport maps; () assoiated shapedistane matries (saled to a square) and optimal paths (in red); (d,e) reparameterized urves withOT (orresponding points are rendered in the same olor); (f) point-by-point Eulidean averages forOT; (g,h) urvature maps; (i) point-by-point Eulidean averages for urvature.
Pi,j is then the sub-path in Mi,j whih represents a loal mathing senario, in the same fashionthat the optimal ost path in Setion 3 represents the �optimal� global mathing senario.Figure 6 illustrates that proess. We want to reparameterize a series of orpora allosa (theorpus allosum is a C-shaped struture of the brain whih ontains nerve �bres that onnet thehemispheres). Two representative pairs of allosa are �st seleted (A,B). Note that we ould haveseleted only one pair, or more than two pairs, depending on the heterogeneity of the dataset.The shape distane matrix of eah pair is omputed (C,D). Then, the operator identi�es in theshape matries the sub-matries Mi,j that orrespond to the mathing senarios of interest (forinstane, mathing the posterior part of the allosa and mathing the anterior part) to form thelearning set (E). In this example, we have one instane, S1,1, for the �rst mathing senario andtwo instanes, S2,1 and S2,2, for the seond senario. For eah instane Si,j, we also ompute thedistane map Di,j of its sub-path inside the domain de�ned by its sub-matrix ( Figure 6(F) ).10



Figure 6: Pattern mathing strategy.Let S1 = {S1,1, . . . , S1,N1
} , . . . , SK = {SK,1, . . . , SK,NK

} be the K senarios, with their instanes
Si,j = (Mi,j ,Di,j).Step 2. One we have omputed the shape distane matrix M ∈ Mm,n from the two input urvesto be reparameterized C1 and C2 ( Figure 6(G) ), a pattern mathing algorithm is used to �ndsub-matries in M that losely resemble those of the learning set. We use a straightforwardmulti-sale registration approah: for eah sub-matrix Mi,j in the learning set, we ompute thesimilarity between its translated and saled image and the underlying sub-matrix in M of samedimensions. The range of translations and sales explored by the registration algorithm de�nesan �exploration neighborhood� in the shape distane matrix whose size an be ontrolled by theuser. To aount for a possible mismath between M1 and M2, we onsider M to be losed undervertial and horizontal irular shifts. That is, when the translated and saled image of Mi,j isnot entirely inluded in M , missing values are taken from the orresponding other side of thematrix M .For eah Mi,j, we then reord the translation t∗i,j and sale s∗i,j for whih the maximal similarityis ahieved:

(

t∗i,j, s
∗

i,j

)

= arg max
t,s

(similarity (T (t, s)Mi,j ,M)) (11)where T (t, s)Mi,j is the image of Mi,j translated by vetor t and saled by fator s. We also disardinstanes for whih the assoiated similarity measure is too low (that is, below an appliation-dependent threshold θ, typially 0.2 for the orrelation oe�ient).Step 3. For eah senario Si in the learning set, we then apply translation t∗i,j and sale s∗i,j to thedistane maps Di,j assoiated with eah of its instanes and average them, to allow for everyinstane of the senario to equally in�uene the mathing ( Figure 6(H) ). Let D̄i be the averagedistane map assoiated with senario Si. The averaging proess is done pixel by pixel:
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i,j)Di,j(x, y) (12)11



with the onvention that Di,j(x, y) = 0 outside of the domain de�ned by the sub-matrix Mi,jinside whih the sub-path Pi,j is insribed.For example in Figure 6, we average the saled and translated maps T (t∗2,1, s2,1)D2,1 and T (t∗2,2, s2,2)D2,2of the two instanes S2,1 and S2,2 of senario S2; no averaging is required for senario S1 sineit only has one instane, S1,1. The zero-level sets of the average transformed distane maps [27℄then give the average transformed sub-paths, P̄i.Note that the quality of the math between the sub-matries from the learning set and the matrix
M ould be used to ompute a weighted average distane map instead of an equal-weight one.Also, there is no theoretial guarantee that the zero-level set of an average map is a single openurve, as averages of distane maps are not distane maps. However in pratie, it is highlyunlikely that a topologially di�erent path would be obtained as the sub-paths being averagedare fairly similar to eah other.Step 4. We then use dynami programming to �nd the optimal sub-paths in the shape distanematrix M in between the average sub-paths, P̄i, omputed at step #3 (i.e., those imposed by thesenarios).Alternatively, we ould simply bias the searh for the global optimal path towards those de�nedby the average sub-paths instead of foring it to pass through them. We would then replae Λ by
Λ̄, the ombination of the shape distane matrix Λ with eah average distane map D̄i de�nedas follows:

∀(x, y), Λ̄(x, y) = Λ(x, y) +

K
∑

i=1

(

D̄i(x, y) + (1 − χD̄i
(x, y)) · αi

) (13)where αi is the minimum value of D̄i and χD̄i
is the indiator funtion suh that: χD̄i

(x, y) =
∣

∣

∣

∣

1 if (x, y) ∈ domain of D̄i

0 otherwiseAdding the minimal value of the average distane map to all the other pixels in the shapedistane matrix prevents the dynami programming algorithm from systematially avoiding thesub-matries around the sub-paths, as eah of the sub-matries' pixels would otherwise addthe value of the distane map to the shape distane matrix of the input urve underneath. Hereagain, a weighted sum ould be onsidered to favor the sub-paths assoiated to the best mathingsub-matries.Even with a shape desriptor invariant under reparameterizations, pairs of urves with substantiallydi�erent initial parameterizations will produe di�erent looking shape distane matries (for instane,if one of the urves were parameterized in the reverse diretion). Care should thus be taken to usesimilar a priori parameterizations for the objets to be mathed and the ones in the learning set (arlength for instane, if it an be omputed, or similarly ordered sets of pixels sampled in a similarfashion). This initial parameterization issue is somewhat typial of learning approahes. Clearly, theremust be a su�ient degree of similarity between the items of the learning set and those onto whih apreviously learnt proedure has to be applied.4.2 Determining M1 and M2As mentioned above, the dynami programming framework requires that a pair of mathing points,
M1 and M2, be hosen a priori. Our mathing approah provides an alternative means to seletthose points, with the proviso that they exhibit partiular harateristis. Namely, we an extratfrom the shape distane matrix a sub-matrix that ontains the mathed (M1,M2) and use patternmathing to �nd its translated/saled image in the shape distane matrix of the pair of input urves12



Figure 7: Determining the mathing pairs of points: (a) seleted representative outlines (olor isused to render OT values) with allosal head highlighted in yellow and mathing pair (M1,M2); (b)orresponding shape distane matrix with higlighted head sub-matrix; () another pair of allosaloutlines with random initial mathing pair (M init
3 ,M init

4 ); (d) assoiated shape distane matrix withhighlighted mathed sub-matrix; (e) resampled outlines (orresponding points are rendered in the sameolor) with new mathing points after pattern mathing; (f) assoiated shape distane matrix.to be reparameterized. As the shape distane matrix is redundant, this provides us with a seletiontehnique more robust than those using maxima of urvature or position, for instane.We applied this tehnique to a series of orpus allosum outlines (#1 and #2 in Figure 7(a), #3and #4 in (b), the remaining allosa are displayed in Figure 11() ). For eah pair of outlines, we arelooking for an adequate mathing pair of points. The user starts by hoosing a pair of representativesoutlines (#1 and #2) and determines a pair of mathing point on them (a). We then ompute the shapedistane matrix (b). The user then determines in this matrix the sub-matrix orresponding to the headof the orpus allosum (highlighted in yellow). Given a new pair of outlines (), we selet M init
3 and

M init
4 at random and ompute the shape distane matrix (d). The pattern mathing approah detailedin Setion 4.1 is then used to �nd the allosal head sub-matrix from whih we extrat a proper pair ofmathed points (Mhead

3 ,Mhead
4 ) in (e). We used the orrelation oe�ient as a similarity measure and

θ = 0.2.The new shape distane matrix (f) is the image of the matrix (d) by the ombination of a horizontaland a vertial irular shift (hene the need to take these into aount in step 2 of the learningapproah).5 ResultsWe present here some syntheti examples as well as biomedial ones (our initial motivation) beforeommenting on the robustness of the learning approah.5.1 Mathing retangles and trianglesFigure 8 illustrates our approah on the familiar retangles with sliding triangular indentations. Inthe �rst ase/senario (�rst row), we wanted to math the triangular indentations together, whereasin the seond ase (seond row), we wished to disard them as noise, and math them against thediretly orresponding retangle piees. The learning set onsisted in eah ase of the same sub-matrixtaken from shape distane matrix (b) but with a di�erent sub-path. The range of sales explored13



Figure 8: Learning reparameterization: (a) pair of urves used to build the learning set (olor is usedto render OT values); (b) shape distane matrix with highlighted learning sub-matrix; () learningsub-matrix with sub-paths for two mathing senarios: mathing the triangular indentations (toprow), disarding triangles as noise (bottom row); (d and e) input urves with olor used to renderorresponding points after the reparameterization; (f) the resulting point-by-point Eulidean averageurves.by the mathing algorithm was {0.5, 1.0, 1.5}. We used the orrelation oe�ient as a similaritymeasure and θ = 0.2. Figure 8(f) shows that the point-to-point Eulidean averages obtained for eahsenario onformed to the expeted mathing harateristis: we obtained a triangle positioned half-way between the ones in the input urves on the �rst row (re�eting the fat that the triangles weremathed together, as demonstrated by the olor mathes in (d) and (e)), and two attenuated triangleson the seond row.Note that the results of the �rst senario exhibit harateristis similar to those of the Eulideanaverage obtained with the lassial non-learning approah (see left-most Eulidean average in Figure5(f)) with the notable di�erene that the average triangular indentation is better de�ned with thelearning approah. This was to be expeted sine the learning approah ensured that the tips of thetriangular indentations in the input urves were in exat orrespondene whereas the non-learningtehnique an only aim for it.The same learning sets were used to ompute the mean shape of the set of noisy irregular retangleswith protruding indentations in Figure 9(a). The similarity measure threshold was set slightly lowerto 0.1 as the input urves were somewhat perturbed. Notie how the indentation was indeed pereivedas an important feature with the �rst learning set in (b) or disarded as noise in ().5.2 Preventing mathesOur learning approah to reparameterization an also be used to prevent sub-mathes. In this ase, wegive to all points in the sub-matrix found by the pattern mathing tehnique of step 2 an arbitrarilyhigh value: the dynami programming algorithm will then avoid this area in searh for the overallminimum ost path. This ould be helpful to prevent the mathing of an animal's eyes with another'sears in Setion 1.3, for instane, when we know that there are mistakes in the database.This tehnique was used in Figure 10 to prevent the �shes' �ns from being mathed. We seletedamong the shape distane matries omputed between 20 �sh delineations (6 of them are shown in(a)) three sub-matries orresponding to the �n-to-�n mathing areas. While the lassial non-learningtehnique fairly adequately mathed the sales in (b), our learning algorithm suessfully disardedthem as a non-preeminent feature in (). The strain imposed on the dynami programming algorithmby these avoidane onstraints unfortunately prevented it from orretly mathing the �sh tails. An14



Figure 9: Mathing irregular indentations: (a) set of irregular urves with a sliding indentation; (b)learning based Eulidean point-by-point average with senario #1's learning set; () learning basedaverage with senario #2's learning set.improved average outline ould be obtained by introduing the �sh tail area into the learning set, withthe appropriate sub-path.5.3 Biomedial example.Figure 11 demonstrates the behavior of our mathing approah on a series of orpus allosum delin-eations. Two pairs of orpus allosum outlines were a priori manually reparameterized (a): a numberof pairs of orresponding points were manually seleted, and a ontinuous orrespondene �eld wasinterpolated between them. We omputed their assoiated shape distane matrix (b) and seleted in ita number of senarios (yellow highlights) to serve as a learning set. We applied our learning approahto a test set of 20 allosa manually delineated by an expert in T1-weighted MR volumes. The mathingpair of points were obtained using the pattern mathing strategy desribed in Setion 4.2. Here also,the range of sales explored by the mathing algorithm was {0.5, 1.0, 1.5}. We used the orrelationoe�ient as a similarity measure and θ = 0.2. Figure 11() shows 5 out of the 20 reparameterizedorpora allosa, and the overall allosum average in (d), omputed as the point-by-point Eulideanmean of the reparameterized allosa. Clearly, both the head and the tail of the allosum were orretlymathed aross the set of instanes. This outline ompares favorably against the Eulidean mean om-puted without learning (e) for whih, as ould be expeted, the fairly irregular shape of the allosalhead fooled the dynami programming searh.5.4 Robustness of the mathing approahA lassial dilemma of learning approahes, shared by ours, is whether the learning set is representative.Namely, a trade-o� must be found between too exhaustive a learning set that might indue over�ttingand too small a learning set whih will not represent the target shapes su�iently well, both of themyielding poor generalizability. Representativity aside, the robustness of our method mostly depends onthat of the pattern mathing algorithm used in step 2 whih in turn is determined by the harateristis
Figure 10: Preventing mathes: (a) 6 out of 20 �sh delineations; (b) non-learning Eulidean point-by-point average; () learning based average where �ns were disarded as noise and prevented frommathing. 15



Figure 11: Pattern mathing reparameterization of a few orpus allosum: (a) Two pairs of a prioriparameterized allosum (orresponding points are rendered in the same olor); (b) their assoiatedshape distane matrix with the orresponding path shown in red and the seleted senario/shapedistane sub-matries in yellow; () a few reparameterized orpus allosum; (d) the overall point-by-point Eulidean average allosum with learning; (e) Eulidean average without learning.of the hosen shape desriptor, the similarity measure used, and the neighborhood explored.5.4.1 Similarity measureSine we are mathing shape distane sub-matries against eah other, a similarity measured designedfor mono-modal registration should be used. Here, we seleted the orrelation oe�ient, whih assumesan a�ne relationship between the intensities of both sub-matries. When a greater dissimilarity isexpeted (that is, when the samples from the learning set might be fairly di�erent from the objets tobe mathed), more general purpose measures ould be used, the orrelation ratio or mutual informationfor instane. These ould only work properly on su�iently large sub-matries as they rely on theestimation of probability densities.To inrease robustness, we disard the poor mathes between the sub-matries in the learning setand the shape distane matrix. No math atually had to be disarded in the experiments reported inthis artile, though.5.4.2 Exploration neighborhoodThe size of the exploration neighborhood depends on the di�erenes between the global shapes of theobjets to be mathed and those of the a priori mathed objets in the learning set:
• when they di�er substantially, the exploration neighborhood must be relatively large (it ouldeven be extended to the entire shape distane matrix) as the sub-matrix in the shape distanematrix of the objets to be mathed might oupy a ompletely di�erent position from that ofthe orresponding sub-matrix in the learning set. Adding noise to one urve (see Setion 5.4.4)usually also implies inreasing the size of the exploration neighborhood.
• when the objets are globally similar in shape, the shape distane matries must also look alike:the exploration neighborhood an onsequently be redued as the orresponding sub-matriesshould oupy lose loations. 16



µ distane (pixel) triangular indentation all other points0 mean 2 3max 3 102 mean 2.7 4max 4 54 mean 3 5max 3 76 mean 3.7 9max 5 148 mean 4.3 14max 6 1510 mean 6.7 16max 9 2312 mean 10 19max 15 26Table 1: Noise sensitivity of the mathing algorithm.5.4.3 SaleThe range of sales explored also depends on the expeted di�erenes between the learning set and theobjets to be mathed:
• if the sizes between these are expeted to be about the same (as with anatomial strutures, forinstane) then a small range of sales should be used; this should only be large enough to allowfor variations aused by noise;
• when the sizes are expeted to be more di�erent, then obviously a larger range should be used.The use of a normalized share distane matrix is then highly reommended.5.4.4 NoiseAn experiment was designed to assess the sensitivity of the mathing algorithm to small variations ofthe input urves. The objets onsidered were again the pair of retangles with a sliding triangularindentation. 14 �virtual� landmark points were hosen along eah urve: one at eah orner and onehalf-way between every orner. These landmarks were not attahed to a point on the urves - theyonly represent areas of interest in the urve. Curve 2 was then perturbed by a uniform noise of varyingamplitude µ (we added the noise, variane σ2 = µ2/3, to eah point of the delineation). The urveswere subsequently mathed with the learning set of the �rst row of Figure 8 (�mathing triangle�senario).Table 1 reports the average and maximal Eulidean distane between the landmarks of urve 2 andthe points of the perturbed urve 2 assoiated after mathing to the orresponding landmark in urve1 for various values of µ. We made a distintion between points whih belonged to the triangle fromthe others as their mathing was supposed to be enfored by our algorithm. We used the orrelationoe�ient as a similarity measure and θ = 0.2. The range of sales explored by the mathing algorithmwas {0.5, 1.0, 1.5} and we onsidered as an exploration neighborhood a retangular window twie thesize of the onsidered sub-matrix, entered on it.As expeted, the mathing error was lower in the triangular indentation and, more importantly,stayed relatively onstant until µ = 8, whereas the error ontinuously inreased along with µ for pointswhere the mathing was not enfored via the learning set.When µ beame too high, the mathing algorithm ould not manage to �nd in the shape distanematrix a sub-matrix similar enough to the one in the learning set.17



5.5 Building the learning setOur learning method requires that the orrespondenes between the objets of the learning set beestablished a priori. This may not always be a trivial task for omplex shapes. However, it only hasto be spei�ed one and for a small number of instanes. Also a sparse subset of the orrespondene�eld ould be spei�ed by the user to generate a learning set. Most of the fully automated tehniquespresented in the introdution ould produe a meaningful set that ould then be manually orretedwith a simple interfae if need be.Note that using a learning set implies that the objets we want to reparameterize should not be toodi�erent from those in the learning set. In fat, similarities between objets do not matter so muh assimilarities between the pairs of objets to be reparameterized and the pairs of objets in the learningset. Of ourse, the former is a su�ient ondition for the latter. However, a unique advantage of ourapproah is that it an learn a mathing strategy for even very dissimilar objets (e.g., aross speiesin omparative allometry appliations), provided that we apply it to the same dissimilar mathingsituations.As suh, this tehnique ould prove partiularly useful to put into orrespondene the �odd looking�instanes of an objet set as they might require more attention than the �ordinary� ones whih ouldbe treated with diret non-learning algorithms.6 ConlusionA areful analysis of the objet mathing problem motivated the need for expliit ontrol over thereparameterization proess. We onsequently developed a learning approah to the mathing problem,based upon a lassial shape di�erene geodesi searh tehnique [41, 39℄. A pattern mathing algorithmdrives the mathing algorithm towards a orrespondene �eld whose harateristis losely resemblethose in a learning set of a priori orresponding instanes. This allows the user to exert expliit ontrolover the reparameterization.We hose as a shape desriptor the previously introdued observed transport desriptor, in view ofits inreased disriminating power.We have demonstrated the adequate behavior and �exibility of this approah on a number ofsyntheti and real examples. We also illustrated its inherent simpliity. Given a mathing senario,the visual qualities of the shape distane matrix make it straightforward to build a learning set byseleting sub-matries in it. To satisfatorily handle the same senario, a lassial approah wouldrequire the user to atually design a suitable similarity measure and its assoiated set of onstraints.We are urrently investigating the extensions of this tehnique to (1) higher dimensional spaes tomath surfaes and volumes (see [36℄ for a preliminary sketh) and (2) to the reparameterization ofgroups of urves for atlas building.AknowledgmentsThe authors wish to thank the reviewers for their many helpful insights. P.T. was supported by theNational Institute on Aging, the National Library of Mediine, the National Institute for Biomedi-al Imaging and Bioengineering, and the National Center for Researh Resoures (grants AG016570,LM05639, EB01651, RR019771).Referenes[1℄ E. Arkin, P. Chew, D. Huttenloher, K. Kedem, and J. Mithel. An e�ient omputable metri foromparing polygonal shapes. IEEE Transations on Pattern Analysis and Mahine Intelligene,13(3):703�716, 1991. 18
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