#### Hervé DELINGETTE INRIA Sophia-Antipolis



• Asclepios : 3D Segmentation, Simulation Platform, Soft Tissue Modeling

http://www.inria.fr/asclepios

• CardioSense3D : Cardiac Simulation,

http://www.inria.fr/CardioSense3D

•SOFA : Open Software Plateform for Medical Simulation

http://www.sofa-framework.org/

# Towards the virtual physiological human

#### Physically-based simulation of biological tissues

- Biomechanical behavior of biological tissue is very complex
- Most biological tissue is composed of several components :
  - □ Fluids : water or blood
  - Fibrous materials : muscle fiber, neuronal fibers, ...
  - Membranes : interstitial tissue, Glisson capsule
  - □ Parenchyma : liver or brain

To characterize a tissue, its stressstrain relationship is studied



## Linear Elastic Material

- Simplest Material behaviour
- Only valid for small deformations (less than 5%)





#### Biological Tissue

#### Many complex phenomena arises



#### **Continuum Mechanics**



#### Deformation Function

 X \in \Omega (X) \in \Pi^3
 Displacement Function U(X) = \phi(X) - X



The local deformation is captured by the deformation gradient :



#### Distance between point may not be preserved



Distance between deformed points  $(ds)^{2} = \left\| \phi(X + dX) - \phi(X) \right\|^{2} \approx dX^{T} (\nabla \phi^{T} \nabla \phi) dX$ Right Cauchy-Green Deformation tensor  $C = \nabla \phi^{T} \nabla \phi$ Measures the change of metric in the deformed body

- Example : Rigid Bo(dy) motion entails no deformation) = R  $C = R^T R = Id$
- Strain tensor captures the amount of deformation

□ It is defined as the "distance between C and the Identity matrix"  $E = \frac{1}{2} \left( \nabla \phi^T \nabla \phi - Id \right) = \frac{1}{2} \left( C - Id \right)$ 

## Strain Tensor

- Diagonal Terms : E<sub>i</sub>
  - Capture the length variation along the 3 axis



• Off-Diagonal Terms : $\gamma_i$ 

□ Capture the shear effect along the 3 axis



#### Linearized Strain Tensor

• Use displacent rather than deformation  $E = \frac{1}{2} \left( \nabla U + \nabla U^T + \nabla U^T \nabla U \right)$ 

• Assume small displacements  $E_{Lin} = \frac{1}{2} \left( \nabla U + \nabla U^T \right)$ 

## Hyperelastic Energy

The energy required to deform a body is a function of the invariants of strain tensor E :

$$\Box$$
 Trace E = I<sub>1</sub>

 $\Box$  Trace E\*E= I<sub>2</sub>

 $\Box$  Determinant of E = I<sub>3</sub>



$$W(\phi) = \int_{\Omega} w(I_1, I_2, I_3) dX$$
 Total Elastic Energy

## Linear ElasticityIsotropic Energy

$$w(X) = \frac{\lambda}{2} (tr E_{Lin})^2 + \mu tr E_{Lin}^2$$

 $(\lambda, \mu)$  : Lamé coefficients

Hooke's Law

- w(X) : density of elastic energy
- Advantage :

Quadratic function of displacement

$$w = \frac{\lambda}{2} (div U)^2 + \mu \left\| \nabla U \right\|^2 - \frac{\mu}{2} \left\| rot U \right\|^2$$

#### Drawback :

Not invariant with respect to global rotation

Extension for anisotropic materials

Shortcomings of linear elasticity

Non valid for « large rotations and displacements »



## St-Venant Kirchoff Elasticity Isotropic Energy $w(X) = \frac{\lambda}{2} (tr E)^2 + \mu tr E^2$

#### $(\lambda, \mu)$ : Lamé coefficients

Advantage :

□ Generalize linear elasticity

Invariant to global rotations

#### Drawback :

Poor behavior in compression

Quartic function of displacement

Extension for anisotropic materials



Other Hyperelastic Material  

$$w(X) = \frac{\mu}{2}trE + f(I_3)$$

Neo-Hookean Model

Fung Isotropic Model

$$w(X) = \frac{\mu}{2}e^{trE} + f(I_3)$$

$$w(X) = \frac{\mu}{2}e^{trE} + \frac{k_1}{k_2}\left(e^{k_2(I_4-1)} - 1\right) + f(I_3)$$

Fung Anisotropic Model

$$w(X) = c_1 \left( e^{\gamma trE} \right) + c_2 trE^2 + f(I_3)$$

Veronda-Westman

$$w(X) = c_{10}trE + c_{01}trE^{2} + f(I_{3})$$

Mooney-Rivlin :

#### Estimating material parameters

- Complex for biological tissue :
  - Heterogeneous and anisotropic materials
  - Tissue behavior changes between in-vivo and in-vitro
  - Ethics clearance for performing experimental studies
  - Effect of preconditioning
  - Potential large variability across population

Different possible methods
 In vitro rheology
 In vivo rheology
 Elastometry
 Solving Inverse problems

#### Un vitro rheology

 $\Box$  can be performed in a laboratory.



Technique is mature





- In vivo rheology
  - can provide stress/strain relationships at
    - several locations
  - Influence of boundary conditions not well

under



Source : Cimit. Boston USA

#### Iastometry (MR, Ultrasound)

Fibroscan

mesure property inside any organ non invasively

validati



Source Echosens, Paris

#### verse Problems



well-suited for surgery simulation (computational approach)



- Still difficult to find "reliable" soft tissue material parameters
- Example : Liver soft tissue characterization

| First Author    | Experimental Technique | Liver Origin  | Young         |
|-----------------|------------------------|---------------|---------------|
|                 |                        |               | Modulus (kPa) |
| Yamashita [111] | Image-Based            | Human         | Not Available |
| Brown [15]      | in-vivo                | Porcine Liver | $\approx 80$  |
| Carter [17]     | in-vivo                | Human Liver   | $\approx 170$ |
| Dan [27]        | ex- $vivo$             | Porcine Liver | $\approx 10$  |
| Liu [62, 61]    | ex- $vivo$             | Bovine Liver  | Not Available |
| Nava [76]       | in-vivo                | Porcine Liver | $\approx 90$  |
| Miller [74]     | in-vivo                | Porcine Liver | Not Available |
| Sakuma [92]     | ex- $vivo$             | Bovine Liver  | Not Available |

Table 2: List of published articles providing some quantitative data about the biomechanical properties of the liver.

#### **Discretisation techniques**

Four main approaches :
 Volumetric Mesh Based
 Surface Mesh Based
 Meshless
 Particles



Structured vs Unstructured meshes

Example 1 : Liver meshed with hexahedra

3 months work (courtesy of ESI)



#### Example 2: Liver meshed with tetrahedra

Automatically generated (1s)

#### **Volumetric Mesh Discretization**

Classical Approaches :

 Finite Element Method (weak form)
 Rayleigh Ritz Method (variational form)
 Finite Volume Method (conservation eq.)
 Finite Differences Method (strong form)

 FEM, RRM, FVM are equivalent when using linear elements

- Step1 : Choose
  - □ Finite Element (e.g. linear tetrahedron)
  - Mesh discrediting the domain of computation
  - Hyperelastic Material with its parameters
  - Boundary Conditions



4 nodes



$$w(X) = \frac{\lambda}{2} (tr E)^2 + \mu tr E^2$$

Young Modulus Poisson Coefficient



• Step3  

$$W(U) \stackrel{\text{Sumftoget the total elastic}}{\longrightarrow} M_{n_{i}} \stackrel{\text{Sumftoget total elastic}}{\longrightarrow} M_{n_{i}} \stackrel{\text{Sumftog$$

Write the conservation of energy
$$W(U) = F^T U + \int_{\Omega} \rho(X) (X \cdot g) dX$$
Internal  
EnergyNodal  
ForcesGravity Potential Energy



HyperElasticity=NonLinear ElasticityK(U) = RStatic case $M\ddot{U} + C\dot{U} + K(U) = R(t)$ Dynamic case

#### Surface-Based Methods

- Only consider the mesh surface under some hypothesis :
  - □ Linear Elastic Material (sometimes homogeneous)
  - □ Only interact with organ surface
- Pros :
  - □ No need to produce volumetric meshes
  - □ Much faster than volumetric computation
- Cons :
  - Only linear material
  - □ No cutting

#### **Surface-Based Methods**

Possible approaches :

□ Boundary Element Models (BEM)

- Based on the Green Function of the linear elastic operator
- Requires homogeneous material
- Matrix Condensation
  - Full Matrix inversion
- □ Iterative Precomputed Generation
  - Solve 3\*Ns equations F=KU

#### **Other Methods**

Meshless Methods

- Use only points inside and specific shape functions
- □ Can better optimize location of DOFs
- □ Can cope with large deformations
- □ Deformation accuracy unknown

#### Particles

Smooth Particles Hydrodynamics that interact based on a state equation

## Dynamic evolution and numerical integration

#### Dynamic evolution

- □ Discrete models = lumped mass particles submitted to forces
- $\Box$  Newtonian evolution (1<sup>st</sup> order differential system):

 $\delta P = V.dt$  $\delta V = M^{-1}F(P,V).dt$ 

Explicit schemes:

• Euler: 
$$\begin{cases} \delta P = V_t . dt \\ \delta V = M^{-1} F(P_t, V_t) . dt \end{cases}$$

• Runge-Kutta: several evaluations to better extrapolate the new state [press92] $\rightarrow$  Unstable for large time-step !!

Semi-Implicit schemes:

• Euler: 
$$\begin{cases} \delta P = V_{t+dt} . dt \\ \delta V = M^{-1} F(P_t, V_t) . dt \end{cases}$$

 $\Rightarrow \begin{cases} \mathbf{P}_{t+dt} = 2\mathbf{P}_t - \mathbf{P}_{t-dt} + \mathbf{M}^{-1} \mathbf{F}(\mathbf{P}_t, \mathbf{V}_t) \cdot dt^2 \\ \mathbf{V}_{t+dt} = (\mathbf{P}_{t+dt} - \mathbf{P}_t) dt^{-1} \end{cases}$ 

■ Verlet [teschner04]

## Evolution

- □ Implicit schemes [terzopoulos87], [baraff98], [desbrun99], [volino01], [hauth01]
  - First-order expansion of the force:

$$F(P_{t+dt}, V_{t+dt}) \approx F(P_t, V_t) + \frac{\partial F}{\partial P} \delta P + \frac{\partial F}{\partial V} \delta V$$

• Euler implicit

$$\rightarrow \begin{cases} \delta P = V_{t+dt} \cdot dt \\ \delta V = H^{-1}Y \end{cases}$$
 with 
$$\begin{aligned} H = I - M^{-1} \frac{\partial F}{\partial V} dt - M^{-1} \frac{\partial F}{\partial P} dt^2 \\ Y = M^{-1} F(P_t, V_t) + M^{-1} \frac{\partial F}{\partial P} V_t dt^2 \end{aligned}$$

Backward differential formulas (BDF) : Use of previous states

 $\rightarrow$  Unconditionally stable for any time-step

- ... But requires the inversion of a large sparse system
  - □ Choleski decomposition + relaxation
  - □ Conjugate gradient
  - □ Speed and accuracy can be improve through preconditioning (alteration of **H**)

#### **Towards Realistic Interactive Simulation**

- Surgery Simulation must cope with several difficult technical issues :
  - □ Soft Tissue Deformation
  - Collision Detection
  - Collision Response
  - Haptics Rendering
- Real-time Constraints :
  - □ 25Hz for visual rendering
  - □ 300-1000 Hz for haptic rendering

## Example of Soft Tissue Models

|                             | Pre-computed<br>Elastic Model | Tensor-Mass and<br>Relaxation-based<br>Model | Non-Linear<br>Tensor-Mass<br>Model |
|-----------------------------|-------------------------------|----------------------------------------------|------------------------------------|
| Computational<br>Efficiency | + + +                         | +                                            | -                                  |
| Cutting Simulation          | -                             | ++                                           | ++                                 |
| Large Displacements         | -                             | -                                            | +                                  |

#### Precomputed linear elastic model



9517 Tetrahedra

#### Tensor-Mass Models (low resolution)



N = 1394 (6342 Tétraèdres)



#### Simulation of surgical gestures



Gliding



Gripping



Cutting (pliers)



Cutting (US)



## **Cardiac Simulation**

Pressure Field in the 4 Cardiac Phases: endocardium Filling Isovolumetric Constraint of **Isovolumetric Contraction** myocardium □ Ejection ls Slowed 6 times Aortic pressure VOLUME PRESSURE

2 Volumetric Conditions:

## More Information in ...

• Asclepios : 3D Segmentation, Simulation Platform, Soft Tissue Modeling

http://www.inria.fr/asclepios

• CardioSense3D : Cardiac Simulation,

http://www.inria.fr/CardioSense3D

•SOFA : Open Software Plateform for Medical Simulation

http://www.sofa-framework.org/