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Physically-based simulation of 
biological tissues

Towards the virtual 
physiological human



Soft Tissue Characterization

� Biomechanical behavior of biological
tissue is very complex

� Most biological tissue is composed of 
several components : 
�Fluids : water or blood

�Fibrous materials : muscle fiber, neuronal 
fibers, …

�Membranes : interstitial tissue, Glisson 
capsule 

�Parenchyma : liver or brain



Soft Tissue Characterization

� To characterize a tissue, its stress-
strain relationship is studied   
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Linear Elastic Material
� Simplest Material behaviour
� Only valid for small deformations (less

than 5%)
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Biological Tissue
� Many complex phenomena arises
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Continuum Mechanics

Continuum Mechanics 

Structural

Mechanics

Linear Elasticity 
(Anisotropic, heterogeneous)

Fluid 
Mechanics

Plasticity
Hyperelasticity

Elasticity



Basics of Continuum Mechanics

� Deformation Function  
�

� Displacement Function
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Basics of Continuum Mechanics

� The local deformation is captured by the 
deformation gradient :

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂=

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

XXX

XXX

XXX

X
F

j

i
ij

φφφ

φφφ

φφφ

φ
X

F
∂
∂= φ

Ω

X φφφφ(X)

Rest Position Deformed Position

F(X) is the  local affine 
transformation that 
maps the neighborhood 
of X into the 
neighborhood ofφ(X)



Basics of Continuum Mechanics

� Distance between point may not be preserved

� Distance between deformed points

� Right Cauchy-Green Deformation tensor

Ω

X φφφφ(X)

Rest Position Deformed Position

X+dX φφφφ(X+dX)

( ) ( ) ( ) ( )dXdXXdXXds TT φφφφ ∇∇≈−+= 22

φφ ∇∇= TC Measures the change of metric in the deformed body



Basics of Continuum Mechanics

� Example : Rigid Body motion entails no 
deformation

� Strain tensor captures the amount of 
deformation
� It is defined as the “distance between C and 

the Identity matrix”
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Strain Tensor
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� Diagonal Terms : εi
�Capture the length variation along the 3 axis

� Off-Diagonal Terms :γi
�Capture the  shear effect along the 3 axis



Linearized Strain Tensor

� Use displacement rather than deformation

� Assume small displacements
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Hyperelastic Energy
� The energy required to deform a body is a 

function of the invariants of strain tensor E :
�Trace E = I1
�Trace E*E= I2
�Determinant of E = I3
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Linear Elasticity
� Isotropic Energy

� Advantage :
� Quadratic function of displacement

� Drawback :
� Not invariant with respect to global rotation 

� Extension for anisotropic materials
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Shortcomings of linear elasticity

� Non valid for « large rotations and 
displacements »



St-Venant Kirchoff Elasticity
� Isotropic Energy

� Advantage :
� Generalize linear elasticity
� Invariant to global rotations

� Drawback :
� Poor behavior in compression
� Quartic function of displacement

� Extension for anisotropic materials
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St Venant Kirchoff vs Linear Elasticity
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Other Hyperelastic Material

� Neo-Hookean Model

� Fung Isotropic Model

� Fung Anisotropic Model

� Veronda-Westman

� Mooney-Rivlin : 
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Estimating material parameters

� Complex for biological tissue :
�Heterogeneous and anisotropic materials

�Tissue behavior changes between in-vivo and 
in-vitro

�Ethics clearance for performing experimental 
studies

�Effect of preconditioning

�Potential large variability across population



Soft Tissue Characterization

� Different possible methods
� In vitro rheology

� In vivo rheology
�Elastometry

�Solving Inverse problems



Soft Tissue Characterization

� In vitro rheology
�can be performed in a laboratory. 

Technique is mature
�Not realistic for soft tissue (perfusion, …)



Soft Tissue Characterization

� In vivo rheology
�can provide stress/strain relationships at 

several locations 
� Influence of boundary conditions not well 

understood

Source : Cimit, Boston USA



Soft Tissue Characterization

� Elastometry (MR, Ultrasound)
� mesure property inside any organ non invasively 
� validation ? Only for linear elastic materials

Source Echosens, Paris



Soft Tissue Characterization

� Inverse Problems
� well-suited for surgery simulation (computational 

approach)
� require the geometry before and after deformation



Soft Tissue Characterization
� Still difficult to find “reliable” soft tissue 

material parameters
� Example : Liver soft tissue characterization



Discretisation techniques

� Four main approaches :
�Volumetric Mesh Based

�Surface Mesh Based 
�Meshless

�Particles



Different types of meshes

� Surface Elements :

� Volume Elements

Tetrahedron
4, 10 nodes

Prismatic
6, 15 nodes and more

Hexahedron
8, 20 nodes and more

Triangle
3, 12 nodes and more Quad

4, 8 nodes and more



Structured vs Unstructured meshes

3 months work 
(courtesy of ESI)

Automatically 
generated (1s)

� Example 1 : Liver meshed with hexahedra

� Example 2: Liver meshed with tetrahedra



Volumetric Mesh Discretization

� Classical Approaches :
�Finite Element Method (weak form)

�Rayleigh Ritz Method (variational form)
�Finite Volume Method (conservation eq.)

�Finite Differences Method (strong form)

� FEM, RRM, FVM are equivalent when 
using linear elements



Rayleigh-Ritz Method

� Step1 : Choose 
�Finite Element (e.g. linear tetrahedron)

�Mesh discrediting the domain of computation
�Hyperelastic Material with its parameters

�Boundary Conditions

Tetrahedron
4 nodes

Fixed nodes
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Rayleigh-Ritz Method

� Step2
�Write the elastic energy required to deform a 

single elementP1
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Rayleigh-Ritz Method

� Step3
�Sum to get the total elastic energy

�Write the conservation of energy
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Rayleigh-Ritz Method

� Step3
�Write first variation of the energy :
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Surface-Based Methods

� Only consider the mesh surface under some 
hypothesis :
� Linear Elastic Material (sometimes homogeneous)
� Only interact with organ surface 

� Pros :
� No need to produce volumetric meshes
� Much faster than volumetric computation

� Cons :
� Only linear material
� No cutting



Surface-Based Methods

� Possible approaches :
�Boundary Element Models (BEM)

� Based on the Green Function of the linear elastic 
operator

� Requires homogeneous material

�Matrix Condensation
� Full Matrix inversion

� Iterative Precomputed Generation
� Solve 3*Ns equations F=KU



Other Methods

� Meshless Methods
�Use only points inside and specific shape 

functions
�Can better optimize location of DOFs

�Can cope with large deformations
�Deformation accuracy unknown

� Particles
�Smooth Particles Hydrodynamics that interact 

based on a state equation



� Dynamic evolution
� Discrete models = lumped mass particles submitted to forces

� Newtonian evolution (1st order differential system):

δP= V.dt

δV= M-1F(P,V).dt

� Explicit schemes:

� Euler:     δP= Vt .dt

δV= M-1F(Pt  ,Vt ).dt

� Runge-Kutta:  several evaluations to better extrapolate the new state  [press92]

→ Unstable for large time-step !!

� Semi-Implicit schemes:

� Euler:     δP= Vt+dt .dt Pt+dt= 2Pt – Pt-dt.+M-1F(Pt  ,Vt ).dt2

δV= M-1F(Pt  ,Vt ).dt Vt+dt= (Pt+dt – Pt.)dt-1

� Verlet [teschner04]
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Dynamic evolution and numerical 
integration



� Implicit schemes [terzopoulos87], [baraff98], [desbrun99], [volino01], [hauth01]

� First-order expansion of the force: 

F(Pt+dt ,Vt+dt ) ≈ F(Pt ,Vt ) + ∂F/∂P δP + ∂F/∂V δV

� Euler implicit 

δP= Vt+dt .dt H = I - M-1 ∂F/∂V dt - M-1 ∂F/∂P dt2

δV= H-1Y Y = M-1 F(Pt ,Vt ) + M-1 ∂F/∂P Vt dt2

� Backward differential formulas (BDF) : Use of previous states

→ Unconditionally stable for any time-step

… But requires the inversion of a large sparse system

� Choleski decomposition + relaxation

� Conjugate gradient

� Speed and accuracy can be improve through preconditioning (alteration of H)

{→ with

Evolution



Towards Realistic Interactive Simulation

� Surgery Simulation must cope with several 
difficult technical issues :
� Soft Tissue Deformation
� Collision Detection
� Collision Response
� Haptics Rendering

� Real-time Constraints :
� 25Hz for visual rendering
� 300-1000 Hz for haptic rendering



Example of Soft Tissue Models

Pre-computed

Elastic Model

Tensor-Mass and

Relaxation-based

Model

Non-Linear

Tensor-Mass

Model

Computational

Efficiency

+ + + + -

Cutting Simulation - ++ ++

Large Displacements - - +



Precomputed linear elastic model

9517 
Tetrahedra



Tensor-Mass Models (low resolution)

N = 1394   (6342 Tétraèdres)



Non-linear Tensor-Mass Models



Simulation of surgical gestures

Gliding Gripping

Cutting (pliers) Cutting (US)



Hepatic Surgery Simulation
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Cardiac Simulation

� 4 Cardiac Phases:
� Filling

� Isovolumetric Contraction

� Ejection

� Isovolumetric Relaxation

Color: 

Action

potential  

� 2 Volumetric Conditions:
� Pressure Field in the 

endocardium

� Isovolumetric Constraint of 
myocardium

Slowed

6 times



More Information in …
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