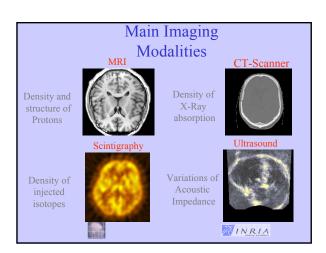
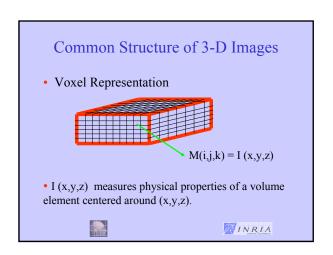
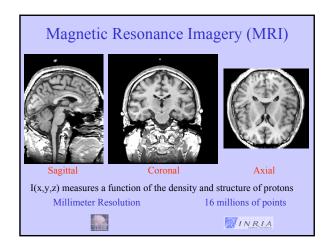
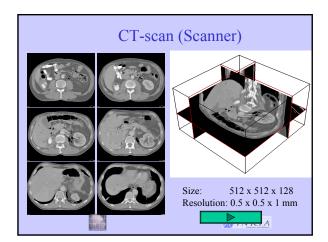


Characteristics of medical images (1) Intensity values are related to physical tissue characteristics which in turn may relate to a physiological phenomenon Anatomy Physics Physiology









Other 3-D Modalities

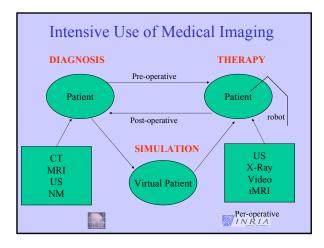
- Functional MRI (fMRI), DT MRI
- Interventional MRI (iMRI)
- MR Angiographies (MRA)
- Spectroscopic MRI
- US Angiographies, Perfusion US,
- Magneto-EncephaloGraphies (MEG)
- Electro-EncephaloGraphies (EEG)

INRIA

Visual Examination • Difficult task, mainly qualitative

Digital Image Analysis

- To improve diagnosis
 - quantitative and objective measurements
 - Fusion and comparison of images, patients
- To improve therapy
 - planning before
 - control during
 - evaluation after



Digital Image Analysis: Classes of *Generic* Problems

- 1. Enhancement 2. Visualization
- 3. Segmentation 4. Compression
- 5. Registration6. Statistics
- 7. Morphometry 8. Motion
- 9. Simulation 10. Robotics,

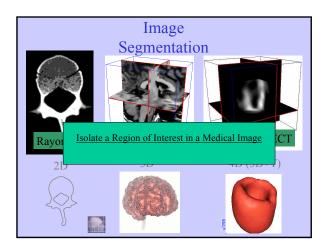
...

INRIA

Segmentation

1. Introduction

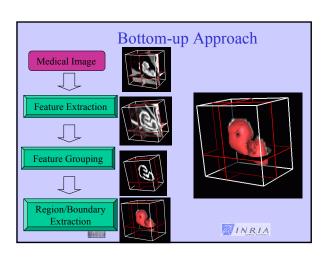
ZINRIA

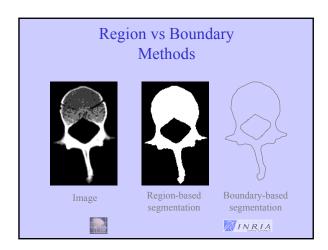


Segmentation Task

- Large number of available algorithms
- Possible classifications:
 - · Generic vs task-oriented
 - Bottom-up vs Top-down approaches
 - Boundary vs Region approaches
 - Explicit vs Implicit A priori knowledge
- Validation

No Universal Segmentation Algorithm • A segmentation algorithm has a limited range of application • Example : deformable models | Bony Structures in MR in CT | | High Contrast | Low Contrast | | Low Contrast | | Liver | | Non typical Shape | | Typical Shape | |





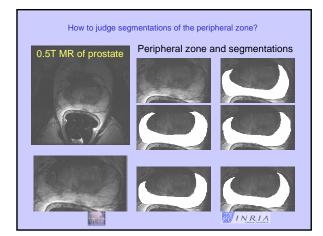
Computational vs Explicit A priori knowledge • A priori knowledge about the structure to segment is the key to enhance robustness • Computational knowledge : statistical analysis Statistical classifier Neural Networks Principal Component Analysis Training Training

Explicit knowledge • Explicit knowledge: expert system • Define rules of delineation from expert • Translate predicate into high/low level image processing • Combine rules in a probabilistic framework

INRIA

Validation of Segmentation Algorithm

- Intrinsic Validation : comparison against
 - · Observation of Physical Phantoms
 - · Difficult and expensive to build
 - May not be representative of real data
 - Simulated images (MNI Brain Atlas,...)
 - Difficult to simulate artefacts
 - Segmentation of experts
 - Large inter and intra variability of segmentation across experts
 - May not be representation of population variability



Validation of Segmentation Algorithm (2)

- Extrinsic Validation : comparison against other segmentation algorithms
 - Only possibility when no ground truth exists (Inter-patient registration of images) or when it not available
 - Estimate consistency, repeatability and size of convergence basin

Two Segmentation Methods Focus on 2 segmentation methods: •Bottom-up: Thresholding/Classification •<u>Top-down</u>: 3D and 4D deformable models INRIA

Segmentation

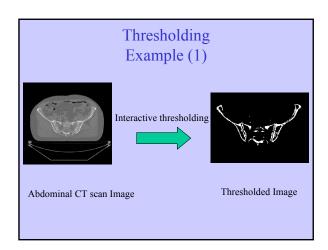
2. Thresholding and Classification

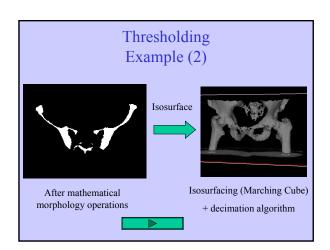
VINRIA

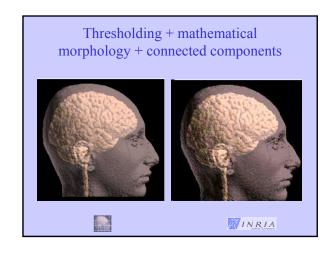
Thresholding and classification

- Basic idea :
- a structure is uniquely characterized by its intensity values in the image
- Valid for highly contrasted structures
- Basic thresholding algorithm :
 - Thresholding between two grey-levels (windowing)
 - Mathematical morphology operations [Serra82]
 - Erosion and Dilation
 - Closure and Opening
 - Connected components extraction

Res	8					
R	7	r	NI	D	1	1







Limitation of thresholding

Thresholding:

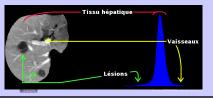
- Choice of threshold can be computed from grey-level histogram
- Does not assume any spatial correlation of voxel intensity
- Does not take into account the effect of partial volume effect (PVE)

Use of classification methods

Classification Method

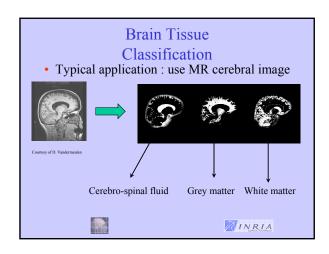
- It is often not valid to consider that a voxel belongs to a single tissue type.
- It is therefore reasonable to estimate that each voxel x has a probability $p_k(x)$ of belonging to a tissue class $k (1 \le k \le K)$

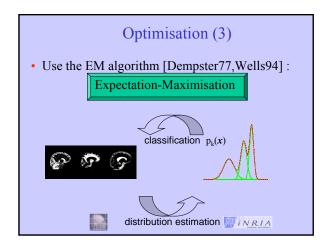
CT scan image of the Liver with 3 tissue classes

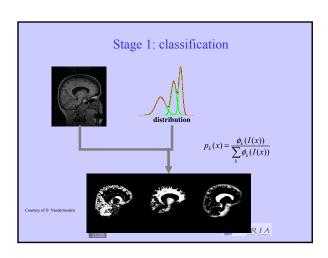


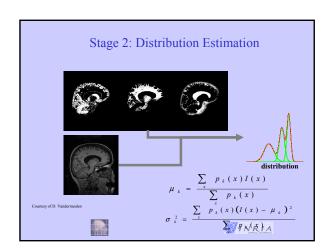
Classification Method (2)

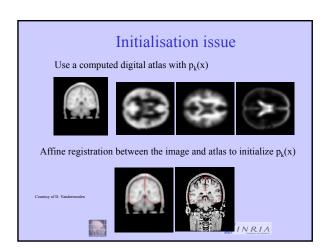
- Various classification methods:
 - Fuzzy c-means
 - General classification approach
 - Non parametric
 - EM Algorithm
 - Parametric approach (mixture of Gaussians)
 - Can take into account bias field
 - Curve fitting
 - Use a hierarchical approach
 - Non-linear optimization

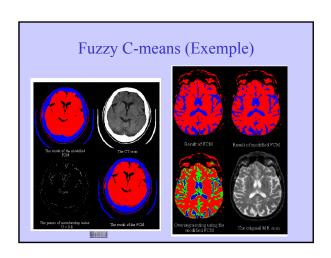


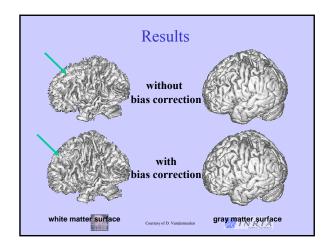












Segmentation

3. Deformable Models

ZINRIA

Deformable model

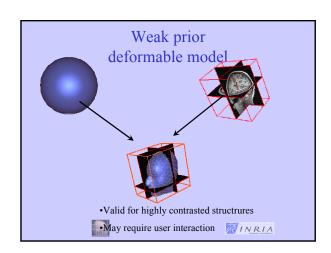
- Snake / active contours
 - Minimisation of a two/three terms energy:

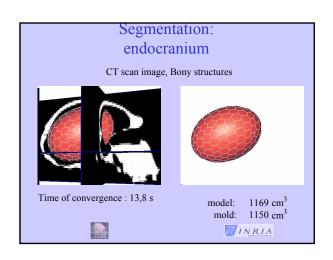
$$E(v(s)) = \int_{1}^{1} \underbrace{E_{in}(v(s)) + \underbrace{E_{im}(v(s))} + \underbrace{E_{con}(v(s))} ds}$$

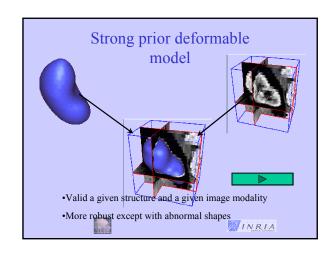
 $\begin{array}{l} \mathbf{E_{tim}}: \text{intermal quantity} \text{ (for early is ation)} \\ E_{in}\left(\mathbf{v}(\mathbf{E})\right) \left(\mathbf{v}(\mathbf{x})\right) \mathbf{v}_{s}|\mathbf{\nabla}|^{2}\mathbf{v}_{s}|\mathbf{\nabla}|^{2}\mathbf{v}_{s}|\mathbf{v}_{s}|^{2}\right) \left|\mathbf{v}_{ss}\left(s\right)\right|^{2} \end{array}$

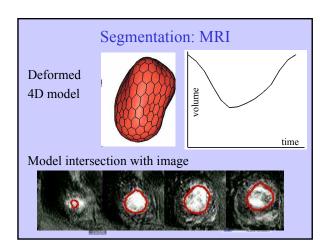
Deformable Model Segmentation • A deformable model is a container of prior knowledge about the Shape and Appearance of anatomical structures in medical images • Two levels of prior knowledge: Weak Prior Shape Clor C2 continuity constraint Initialize with generic shape (sphere, ...) Appearance Use gradient, edge or region information Use intensity profile or block matching information

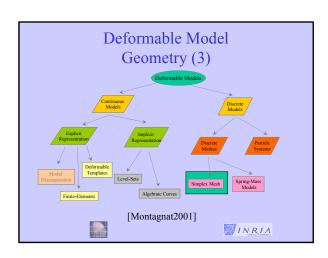
INRIA

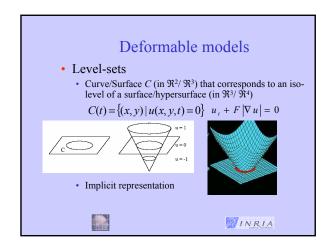












Main difficulties in segmentation algorithms

- Ill-posed problem
 - Boundaries between structures may not be seen on images
 - Strong variability between experts for validation
- Most algorithms are dependent on the acquisition protocole and image modality
- Robustness required in the presence of pathologies

Use of Image Segmentation Software

- Segmentation software is not widely available in current medical practice :
 - Diagnosis (low demand):
 - Currently almost no quantitative analysis in performed even in oncology
 - Therapy planning (high demand)
 - Bottleneck stage in radiotherapy or surgery planning

Perspectives (1)

- · Current trends in medical imaging
 - Number of image modalities is exploding
 - · Image resolution is increasing
 - Image quality is improving
 - IT is invading hospitals (PACS)
 - More patients less doctors

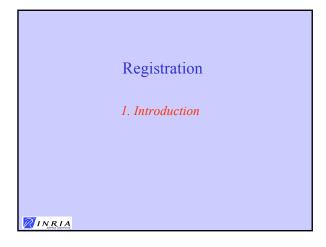
Perspectives (2)

- Applications of segmentation :
 - Diagnosis
 - demand for very fast and automated algorithms with degree of confidence
 - Planning Prediction -Prevention
 - demand for accurate but potentially not fully automated algorithms combined with high quality meshing
 - Clinical Research
 - demand for automated and accurate algorithm for use with large database (grid computing)

Perspectives (3)

- Segmentation techniques is more and more split between :
 - Registration techniques :
 - registration with a anatomical/physical/physiological model
 - registration with a set of images (data fusion)
 - Low-level techniques :
 - anisotropic filtering, watershed, mathematical morphology

Need to define a unifying framework



Registration

- A central problem
- Survey by Maintz and Viergever in Medical Image Analysis journal (MedIA) (300 references)

[vol 2, No 1, pages 1-36, 1998]

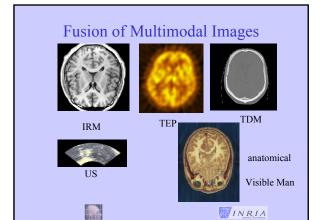
Objective of Registration • Find the best geometric transformation T which superimposes homologous points between two 3-D images Image 1 x | Image 2 | x'=T(x)

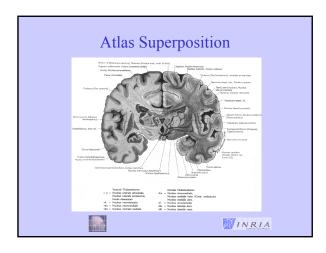
Main Applications

- Temporal Evolution
- Fusion of multimodal images
- Inter-patients comparaison
- · Atlas Superposition

Temporal Evolution

- Precise comparison of images of a given patient, taken at different times.
- One must suppress the apparent motion of the patient.





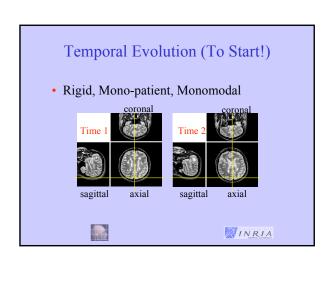
Classes of Problems

- Mono- or multimodal images
- Intra- or Inter-patients
- Rigid or Deformable

Classes of Problems vs. **Applications**

- Temporal Evolution
- Intra Patient Monomodal
- Fusion multimodal images Intra Patient Multimodal
- Inter-patients comparaison
- Inter Patients Monomodal
- Atlas Superposition
- Inter Patients Multimodal
- Intra Patient: Rigid or Non-Rigid
- Inter Patients: Non-Rigid

Classes of Solutions • Geometric Registration (or feature-based) • Iconic Registration (or intensity-based) INRIA Registration 2. Geometric Approaches **VINRIA** Principle of Geometric (Feature-Based) Approaches • Extract geometric landmarks • Find correspondences and best transformation T INRIA



Choosing a Class of Transformations

- In the case of brain images of the same patient, one can restrict the geometric transformation to the group of rigid transformations (3-D displacements)
- Combination of Rotation and Translation (6 parameters)

Issues

- Not a one to one mapping between images (occlusions)
- For an accurate solution, one must find explicitly correspondences (matches) between images
- High computational complexity

Artificial Landmarks • Stereotactic Frame • Invasive • External markers • Brain motion • Limited period

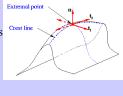
Anatomical Landmarks • Search for geometric invariants to characterize a limited number of singular points and lines on anatomical surfaces

• Generalization of edges and vertices on differentiable surfaces (Monga-Ayache-Sander, Thirion)

INRIA

Crest Lines and Extremal Points

- Defined from differential properties of the anatomical surfaces;
- Correspond to extremal values of one or two principal curvatures



Stage 1: Anatomical Surfaces

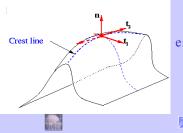
$$f(x, y, z) = I$$

$$\nabla^2 f(x, y, z) = 0$$

- Iso-surfaces defined by an implicit equation
- Zero-crossings of the Laplacian of the intensity

Stage 2: Crest Lines

 Maximum principal curvature (in absolute value) must be extremal in the associated principal direction (not defined at umbilics)

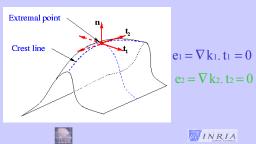


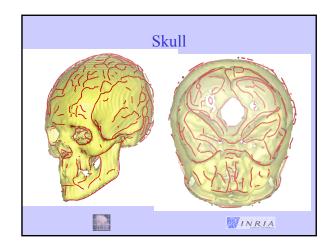
 $e_1 = \nabla \, k_1, \, t_1 = 0$

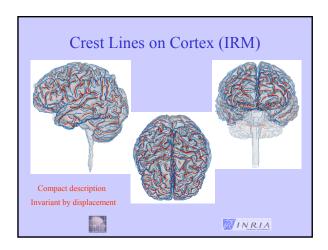
NRIA

Stage 3: Extremal Points

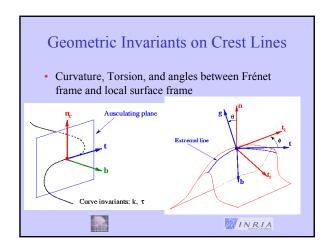
• Second principal curvature is also extremal in the second principal direction.

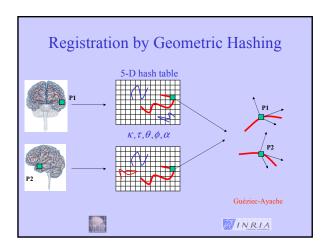


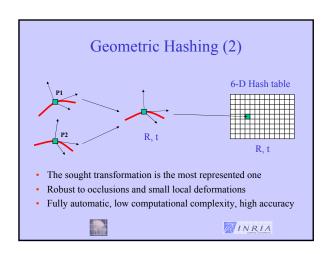


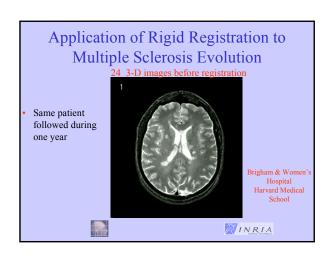


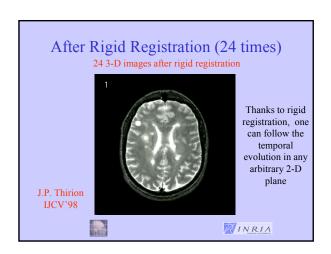
Rigid Registration • Geometric Hashing algorithms establish correspondences between homologous points and the best rigid transformation between the 2 images (Rigoutsos-Wolfson, Guéziec-Pennec-Ayache-IEEE Trans. Computers) • These algorithms use additional invariants computed along crest lines and on the underlying anatomical surface

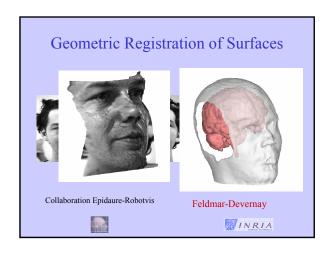


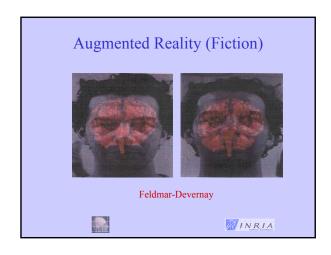


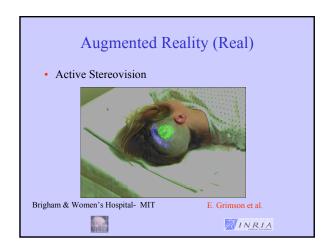


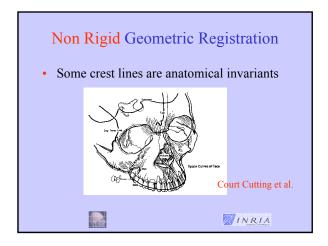


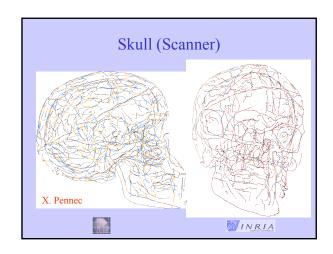


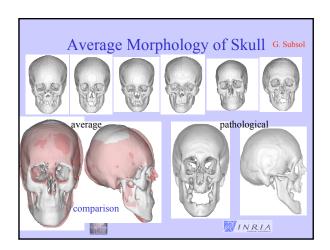


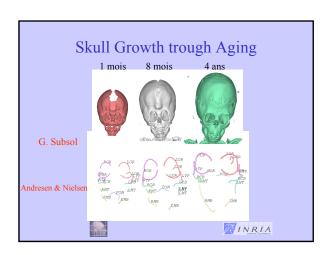












Geometric Registration

- Can be applied to surface registration in augmented reality problems
- Fuse per-operative images with pre-operative images

Limitations of Geometric Registration

- Previous geometric invariants not valid in general to compare multimodal images, or arbitrary homologous structures between different patients (e.g. brain)
- Problems with low-resolution or noisy images.
- Distribution of geometric invariants might be too sparse to handle local deformations

Registration

3. Iconic Approaches

ZINRIA

Principle of Iconic (Intensity-Based) Registration

- Use all voxels and their intensity to guide the registration process
- Energy minimization between registered images

Energy Minimization

• Energy with two components:

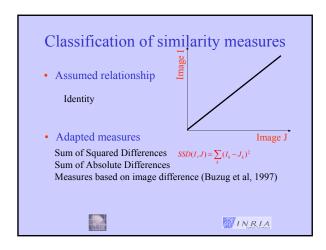
$$W(T) = \iiint f(I, J \circ T)^2 dx dy dz + W_d(T)$$

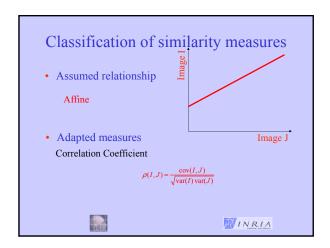
- **f**: Measure of intensity similarity between homologous points;
- W_d: Measure of deformation to insure a regular solution (Tikhonov, linear elasticity, viscous fluid, etc.). Bajesy, Christensen, Bro-Nielsen, Thirion, Pennec, Cachier, Ourselin....

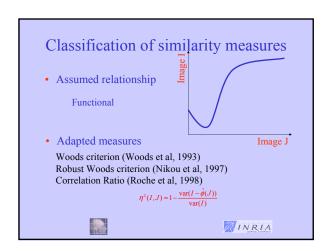
Minimization Algorithms

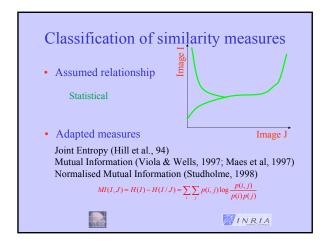
- Non Convex Energy
- Convergence towards a Local Minimum
- Important Stages:
 - Good initialization (rigid registration)
 - Multi-scale analysis
 - Hierarchy of deformations
 - similitude, affine, polynomial, free-form, etc.

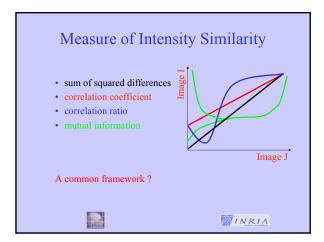
//	7	ı	N	R	ı	,
7/49	₩-	i.	I W	11	ž.	7





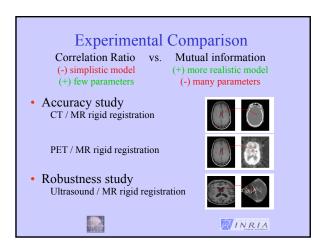






A General Framework • [Roche-Malandain-Ayache-Prima, MICCAI '99, pp.555-566] • A Dependence Model between images and a Maximum Likelihood approach • Following the pioneering work of (Costa et al, 1993), (Viola, 1995), (Leventon & Grimson, 1998), (Bansal et al, 1998)

Choosing the right similarity measure Requires a good knowledge of the physics of image formation Choosing the model with the lowest number of parameters tends to lead to higher robustness

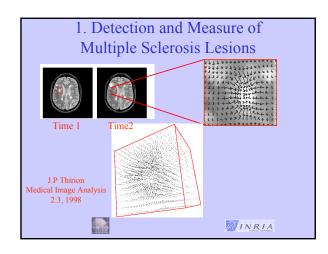


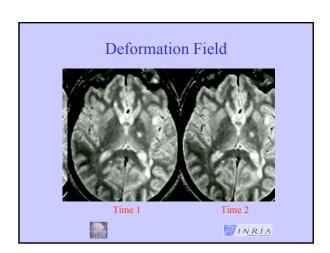
Some Applications of Iconic Registration

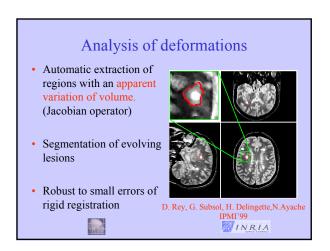
- 1. Detection and Measure of Lesions
- 2. Inter-patient comparisons
- 3. Superposition of an Atlas
- 4. Measure of Asymmetry
- 5. Superposition MRI-Ultrasounds
- 6. Stress-Rest Comparisons

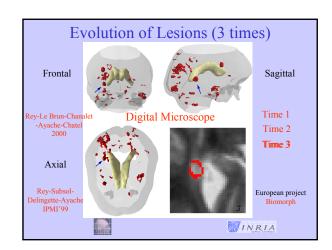
80	5000	700
8		
100		

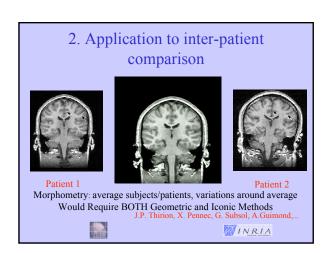
00275					
12	1	N	R	I	1

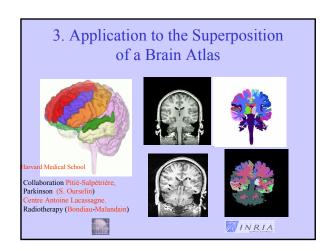


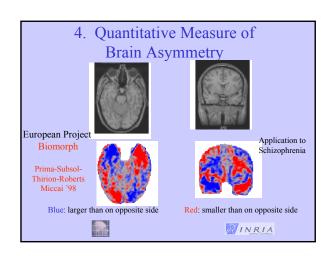


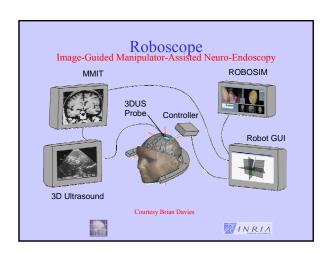


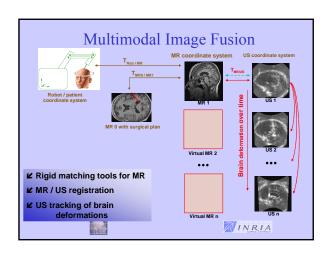


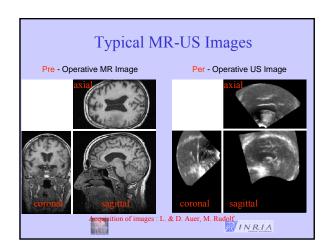


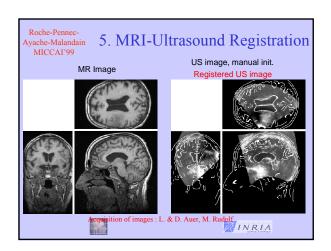


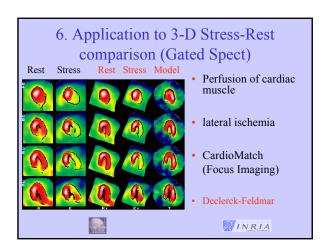






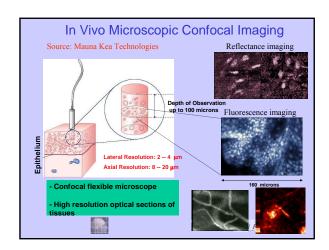


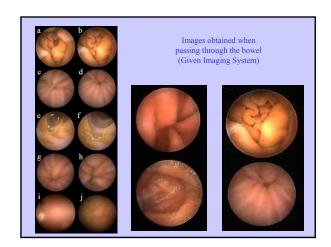




Conclusion

- Medical Imaging is nearing maturity
- New image modalities across scale and function
- Validation of algorithms sometimes impossible always difficult
- Growing availability of large image databases





Credits • Members and Collaborators of the Epidaure group: J. Bertot, S. Cotin, P. Cachier, J.Declerck, H. Delingette, J. Feldmar, A. Guimond, K. Krissian, J.C. Lombardo, G. Malandain, J. Montagnat, S. Ourselin, F. Pezé, G. Picinbono, S. Prima, X. Pennec, D. Rey, A. Roche, G. Subsol, L. Soler, J.P. Thirion,... • Medical and Academic Partners • Gilles Kahn Conclusion • Digital Image Processing increases potential use of medical images in medicine, as microscope in 17th century.

Pharmacy, biology, neuroscience, paleontology, anthropology,

NINRIA

geology, non destructive control, etc.