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Abstract—In this paper, we propose a method for apply-
ing a probabilistic statistical shape modd (SSM) to automatic
segmentation. We use a point-represented SSM which is based
on correspondence probabilitiesinstead of point-to-point corre-
spondences as commonly used. In order to combinethea priori
knowledge of the SSM with the image information during the
segmentation, we employ a defor mable surface whose deforma-
tion depends on on the shape prior given by the SSM on the
one hand and on the image information on the other hand. We
formulate this problem as an alternated minimization of an ex-
ternal energy term integrating the image information and an
internal energy term integrating the SSM probabilities. In or-
der to robustify the segmentation, we add statistical knowledge
about typical organ intensities. This method is applied to the
segmentation of theleft kidney in noisy CT images with breath-
ing artefacts and evaluated in comparison to the results of an
active shape model (ASM).
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|. INTRODUCTION

able to represent non-spherical shapes [6]. Our method em-
ploys a deformable model and relies on the alternated mini-
mization of an external energy term representing the search
for edges and the minimization of an internal energy term

representing the deformation constraint given by thesttati

cal information about the shape. In an experimental evalua-
tion, we apply the new method to the segmentation of the left

kidney in noisy CT images corrupted by breathing artefacts

which is not an easy task as the intensity differences betwee

the kidney and neighbouring organs as the liver and spleen
are very small. To cope with this, several (semi-automatic)

approaches integrate a priori knowledge about shape agd gra
values [7, 8].

II. M ATERIALS AND METHODS

We introduce the surface obje@twhich is placed in the
image and deformed during the algorithm in order to fit the
contours of the structure to be segmented. The segmentation
algorithm consists mainly of the minimization of the two-fol
lowing energy terms:

1. Eint(M, O) which is described by the difference between

Segmentation algorithms play a major role in medical im- the SSMM and the surface obje@, e.g. their surface

age analysis, however, due to typical medical image charac- distance
teristics as poor cqntrasts, gray vaI_ue inhomoge_neittm}, C 2 Eext(O |).WhiCh is described by the difference between
tour gaps, and noise the automatic segmentation of many the su’rface objecd and the image, e.g. the distance

anatomical structures remamnsac hallenge. To overcorse the between the surface of the object to the nearest voxel with
problems, often models which incorporate a priori knowl- . . ;
high gradient magnitude.

edge about mean and variance of shape and gray levels are

employed [1]. However, for segmentation tasks a statisticaEext(oJ) is the term representing the external energy of the
shape model (SSM) might easily be too constrained as thggmentation problem. The deformation of the surface bbjec
number of training observations is often too small to repreg js gyided by the image information. In turn, the internal
sent all probable shape variabilities. To lighten the c@rist, energyEin: (M, O) has to be minimized in order to ensure that

several authors proposed deformable models which balangge shape of the surface object is not evolving too far from
between SSM and image information, e.g. [2, 3, 4]. Thesg,e 'allowed’ shape space of the SSM.

SSMs are based on one-to-one point correspondences and

contain staystlcal m_formatlon about position and graxele A. Representation of the Probabilistic SSM
of each point. In this paper, we present a first approach to
employ a probabilistic SSM based point correspondence In this model, the interest and nuisance parameters are
probabilitiesas proposed in [5] to automatic segmentationcomputed in a unified MAP framework which leads to an op-
The SSM based on correspondence probabilities can be agimal adaption of the model to the set of observations. The
vantageous when dealing with varying shape details and iggistration of the model on the observations is solvedgusin



an affine version of the Expectation Maximization - Iterativ pointso; € R3. During segmentation, an external forEg
Closest Point algorithm which is based on probabilistic corand an internal forcE; represented as vectogsR?3 control
respondences and proved to be robust and fast [9]. The alteahe deformations 00. The external force on each poiot
nated optimization of the MAP explanation with respect tois determined by the underlying image information. Gener-
the observation and the generative model parameters leadsdlly, the external forcé.y:(0;) should attract the point close
very efficient and closed-form solutions for (almost) alt pa to positions with high gradient values. Therefore, we extdu
rameters. The SSM is explicitly defined bynbdel parame- the gradient magnitude of the points lying in normal diresti
ters© = {M,vp,Ap,n}: fi; and determine voxels of high gradient magnitude as suit-
_ able candidates where the surface points should be moved
e mean shap® € R3\m parameterized b}, pointsmj € to. However, evaluating the gradient magnitude alone isinot
R3, very robust approach. E.g. it would pose a problem in the case
e variation modes,, consisting ofNy, 3D vectorsvy, of other organs lying close by as their contour might have a
e associated standard deviatiohswhich describe - simi-  higher gradient than the contour of the organ to be segmented
lar to the classical eigenvalues in the PCA - the impact of|so, structures inside the organ might show high gradient
the variation modes, magnitude. Therefore, we employ an image force term which
e numbem of variation modes. depends on the value of three different parameters:

From the paramete® of a given structure, the shape vari- 1. Gradient magnitude should be great.
ations of that structure can be generated My= M + 2. Distance fronp; to voxel with high gradient magnitude

> p—1 WpVp With wp € R being the deformation coefficients._ should not excess a given limit.
The shape variations along the modes follow a Gaussiarg. Grey values found on the way to a candidate should be
probability with variance\p: « similar to typical grey values the organ if candidate

_[n _ 1 no @ lies outside the current surface.
P(Q) = Mp- P(wp) = (2m"2 131 Ap exp(— 2p-1 75) e not similar to typical grey values of the organ if can-
In order to account for the unknown position and orienta- didate lies inside the current surface.
tion of the model in space, we introduce the random (uni-
form) rigid or affine transformatiof consisting of a ma- The last distinction is made to ensure that the surface is nei
trix A € R3<3 and a translatioh € R®. A mean model point ther attracted to contour points of organs lying nearby nor
m; can then be deformed and placed By m; = A(m; +  attracted to structures that may be presentinside the olfgan
Z%:1 wpVp) +t. In order to compute the SSM, a Maximum A the overstepped grey values match the typical organ intensi
Posteriori (MAP) estimation of the model parameters and obties, we amplify the force attracting the surface pajrib the
servation parameters is realized which leads to the foligwi outside. If not, the force attracting the point to the insisle
unique criterion: preferred, for an illustration see figure 2a),b).

_ We computéFext(0i) = maxX Finside(0i), Foutsidd 0i) } with
CglobaI(M va/\paTkch(p) (1)

n o R B grad(oi + k)| |
Z [Z <|Og 2/\;) Finsiae(01) a;gf;;fX((l P(gIK, 0)) K3 Oi,
k=Ll &)

T 2 B
—Zlog(Zexp< M))] for —r <k <0, k,r € N and

Foutsiad 0i) = argmax| p(q| 0)w -0
given a training data set with observatidhs k=1,...N. outside ™/ = Ogrkﬁi PLGIH, |k|% '

Consequently, the SSM which best fits the given data set is (3)

computed iteratively by optimizing the global criteriontvi  for 0 < k < r, k,r € N. u and o denote the average grey
respect to all model and all observation parameters. Foemokajue and associated standard deviation inside the ordans o

details please refer to [5]. our training data sety is the average grey value of the points
at positionso; + ki, that is, the average grey value of the
B. Computation of the Internal and External Force overstepped voxels in order to reach the candidate.

The internal force on each point is determined by the
probabilistic SSM. Here, we take advantage of the probsabili
tic formulation of correspondences. First, we minimize the

The associated surface mod&iwe are using in this de-
formable model approach is representedNgytriangulated



criterion (1) giverk =1, S; = Ogef With Ogetj = 0j + Fint(0;)  ated. We chose =0.35,3 =1, u = 30Hu, ando = 20. Re-

and determine the optimal andw, in order to matciM on  garding the intensity distribution in the images, we extshd
Oget- Next, we use the EM-ICP algorithm to compute theeq. (2) by penalizingy < u for Foysige We apply the seg-
correspondence probabilitigg of all T xm; with all 0gef; mentation method to six new kidneys, for some examples see

and find the forcéin (0;): figure 1,e) and f).
Nm n
Fint(0) = > ¥ (T*(m,- +3 wpvp)> -0 (4) [1l. RESULTS
=1 p=1

The segmentation results are evaluated by analyzing sur-
WhereZ'j\l':“l Yij (T* (m; + Z?):lwpvp)) is the most probable face distance measures beMeen th_e_ deformed surface object
and the manual segmentation. Additionally, we evaluate the
distances between the resulting deformed SSM and the man-
ual segmentation which represents the results of the proba-
bilistic SSM used as an active shape model (ASM). The dis-

position according to the SSM. Finally, the fof€éo;) guid-
ing the pointo; is computed by the weighted sumgf; and
Fext and we determing; new= 0; + F(0;):

1 tance results are depicted in table 1. Some result examples
F(o) = > (aFint (01) + BFext(0i)) (5)  are shown in figure 2e) and f). The mean distances of the
new method lie between.32— 2.17mmwhich seem to be
C. Algorithm reasonably good results with respect to the strong artefact

present in the images. The values of the maximum distances

. . . (7.02— 11.80mm) are partly due to the region where the ure-
termine the initial SSM deformation paramet@swe apply  thra and the arteria a renalis connect to the kidney which

an e\_/olut|onary a'go”thm- A random population 9“ S,hapesposes a problem in some cases because of the high grey value
is built by generating a random set of normally distributed, 5 jance without clear borders. Some medical expertsiteclu
transformationsl and deformations and using them 10,6 jnto the segmentation and others do not. Overall, the
deform the mean shape. In each iteration, the fittest indi- 64hod seems to successfully prevent the segmentation from
viduals are selected anil as well asuxp are modified ran-  1oaxing into neighbouring organs with high gradient magni-
domly to again generate a random set until a good initial pPog,jes and similar grey value intensities, for an example see
smo_n and shape are found. The fitness depends on the S_Lﬂaure 2f). Furthermore, the results show the advantage of
of distances between SSM points and the nearest voxel Witfl o qeformable model over an ASM approach as the mean

high image gradient magnitude. For an example see figuigistances of our method are smaller than the distances ob-
2d). Next, the associated surface obj@as registered to the  (aineq when using the SSM directly to segment. However, in

initial SSM by using an affine transformation determined by, ..o cases the maximum distances of the ASM approach are
the iterative closest points algorithm. Théf andFex are g aller which means that should probably be> 0.35 in
computed and the points of the surface object are moved y,1ce cases.

accordingly. In each iteration, the SSM is matched to the cur

rent surface object by optimizing the criterion in (1) given

The algorithm performs as follows: First, in order to de-

k=1, S; = Oges With respect toT andQ before the SSM IV. DISCUSSION
forces are computed. This is iterated uftiloes not change o
significantly anymore. We proposed a method to employ a statistical shape model

based on correspondence probabilities for automatic segme
tation. In a deformable model framework, we alternate a min-
imization of an external energy term representing the $earc
We apply our method to the segmentation of the left kid-for edges and the minimization of an internal energy term rep
ney in CT images. The CT images are quite noisy, and theesenting the deformation constraint given by the SSM. We
quality of the kidney visualization lacks because of breathtake advantage of the probabilistic formulation of the SSM
ing artefacts, see figure 2c). The size of the images i©512 when computing the SSM forces as each poing drawn to
512x (32— 52) voxels with resolution ®8x 0.98x (2.9—  the most probable position with respect to the SSM, no point-
5.0)mn? where the kidney is about 7560 x 100mn?. The  to-point correspondences are needed. The new segmentation
probabilistic SSM for the kidney is built using a traininga@a approach comes to promising results in a first experimental

set of 10 segmented observations (figure 1a)-e)). evaluation on noisy kidney CT images with strong breathing
As associated surface object we use a random kidney of

the training set for which a surface representation wasrgene

D. Experiments
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Fig. 1: SSM computed for atraining data set of 10 segmenteukdiel (a) shows the mean shape, (b-e) show the mean shapmelfoith respect to first
and second mode of variatiomM — A1vi, M+ A1vi, M — Aovo, M + Aovs. €) and f) show to kidneys to be segmented, results see tgkiénkeys 3 and 5).
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Fig. 2: a) Candidate is determined only by highest gradiergmitade. b) Candidate is determined by a combination ofigradnagnitude and evaluation of

overstepped grey values lying on the normal. In the casershposition x is preferred over position y because the oeppstd grey values indicate that the

surface is positioned outside the organ to be segmenteddngilto be segmented in a noisy CT image with breathingamtefd) Initial positioning: SSM

contour (yellow), SSM contour after applying the automatiolutionary algorithm (white), manual segmentation oan{blue). e,f) Segmentation results,
manual segmentation (blue), initial surface model (rezjulting surface model (green).

Table 1:Surface distances in mm between deformable surface andansegmentation.

Kidney 1 | Kidney 2 | Kidney 3 | Kidney 4 | Kidney 5 | Kidney 6
mean distance deformable model 1.32 1.79 1.97 1.87 2.17 1.46
max distance deformable model 8.06 11.80 10.88 8.31 9.91 7.02
mean distance deformed SSM (ASM) 1.63 2.53 3.25 2.05 2.55 2.69
max distance deformed SSM (ASM 7.34 13.57 16.66 7.58 10.11 14.52

artefacts as we find mean distance measures arounnud? 2. Weese J., Kaus M., C Lorenz et al. Shape Constrained DafdenMod-

" bi E ially i . h he kid lies Heimann T., Miinzing S., Meinzer H.-P., WolIf I.. A Shapei@d De-
surface object. Especially in regions where the kidney lies formable Model with Evolutionary Algorithm Initializatio for 3D Soft

close to neighbouring organs with similar intensity, thopr Tissue Segmentation IPMI 2007.LNCS 4584:1-12 2007.
information about the shape prevents the surface objeat fro 4. Kaus M.R., Berg J., al W. Niessen. Automated Segmentaitine Left

. . . Ventricle in Cardiac MRI ifMICCAI 2003LNCS 2878:432-439 2003.
leaking. The comparison with the ASM results show the ad+ Hufnagel H., Pennec X., Ehrhardt J., Handels H., AyacheSKape

vantage of the deformable model approach as the less con- Analysis Using a Point-Based Statistical Shape Model BuiltCorre-
strained segmentation becomes more accurate. For further spondence Probabilities MICCAI'07;1:959-967 2007.

| . d v th | ith | d 6. Hufnagel H., Pennec X., Ehrhardt J., Ayache N., Handel§&Eneration
evaluation, we need to apply the algorithm to a larger data of a Statistical Shape Model with Probabilistic Point Cependences

set of kidney CT images as well as to the segmentation of and EM-ICPInternational Journal for Computer Assisted Radiology and
other anatomical structures with higher variabilities ag e _ Surgery (JCARS)2008. To appear. _
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