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Abstract—In this paper, we propose a method for apply-
ing a probabilistic statistical shape model (SSM) to automatic
segmentation. We use a point-represented SSM which is based
on correspondence probabilities instead of point-to-point corre-
spondences as commonly used. In order to combine the a priori
knowledge of the SSM with the image information during the
segmentation, we employ a deformable surface whose deforma-
tion depends on on the shape prior given by the SSM on the
one hand and on the image information on the other hand. We
formulate this problem as an alternated minimization of an ex-
ternal energy term integrating the image information and an
internal energy term integrating the SSM probabilities. In or-
der to robustify the segmentation, we add statistical knowledge
about typical organ intensities. This method is applied to the
segmentation of the left kidney in noisy CT images with breath-
ing artefacts and evaluated in comparison to the results of an
active shape model (ASM).
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I. INTRODUCTION

Segmentation algorithms play a major role in medical im-
age analysis, however, due to typical medical image charac-
teristics as poor contrasts, gray value inhomogeneities, con-
tour gaps, and noise the automatic segmentation of many
anatomical structures remains a challenge. To overcome these
problems, often models which incorporate a priori knowl-
edge about mean and variance of shape and gray levels are
employed [1]. However, for segmentation tasks a statistical
shape model (SSM) might easily be too constrained as the
number of training observations is often too small to repre-
sent all probable shape variabilities. To lighten the constraint,
several authors proposed deformable models which balance
between SSM and image information, e.g. [2, 3, 4]. These
SSMs are based on one-to-one point correspondences and
contain statistical information about position and gray level
of each point. In this paper, we present a first approach to
employ a probabilistic SSM based onpoint correspondence
probabilitiesas proposed in [5] to automatic segmentation.
The SSM based on correspondence probabilities can be ad-
vantageous when dealing with varying shape details and is

able to represent non-spherical shapes [6]. Our method em-
ploys a deformable model and relies on the alternated mini-
mization of an external energy term representing the search
for edges and the minimization of an internal energy term
representing the deformation constraint given by the statisti-
cal information about the shape. In an experimental evalua-
tion, we apply the new method to the segmentation of the left
kidney in noisy CT images corrupted by breathing artefacts
which is not an easy task as the intensity differences between
the kidney and neighbouring organs as the liver and spleen
are very small. To cope with this, several (semi-automatic)
approaches integrate a priori knowledge about shape and gray
values [7, 8].

II. M ATERIALS AND METHODS

We introduce the surface objectO which is placed in the
image and deformed during the algorithm in order to fit the
contours of the structure to be segmented. The segmentation
algorithm consists mainly of the minimization of the two fol-
lowing energy terms:

1. Eint(M,O) which is described by the difference between
the SSMM and the surface objectO, e.g. their surface
distance.

2. Eext(O, I) which is described by the difference between
the surface objectO and the imageI , e.g. the distance
between the surface of the object to the nearest voxel with
high gradient magnitude.

Eext(O, I) is the term representing the external energy of the
segmentation problem. The deformation of the surface object
O is guided by the image information. In turn, the internal
energyEint(M,O) has to be minimized in order to ensure that
the shape of the surface object is not evolving too far from
the ’allowed’ shape space of the SSM.

A. Representation of the Probabilistic SSM

In this model, the interest and nuisance parameters are
computed in a unified MAP framework which leads to an op-
timal adaption of the model to the set of observations. The
registration of the model on the observations is solved using



an affine version of the Expectation Maximization - Iterative
Closest Point algorithm which is based on probabilistic cor-
respondences and proved to be robust and fast [9]. The alter-
nated optimization of the MAP explanation with respect to
the observation and the generative model parameters leads to
very efficient and closed-form solutions for (almost) all pa-
rameters. The SSM is explicitly defined by 4model parame-
tersΘ = {M,vp,λp,n}:

• mean shapēM ∈ R
3Nm parameterized byNm pointsmj ∈

R
3,

• variation modesvp consisting ofNm 3D vectorsvp j,
• associated standard deviationsλp which describe - simi-

lar to the classical eigenvalues in the PCA - the impact of
the variation modes,

• numbern of variation modes.

From the parametersΘ of a given structure, the shape vari-
ations of that structure can be generated byM = M̄ +

∑n
p=1ωpvp with ωp ∈ R being the deformation coefficients.

The shape variations along the modes follow a Gaussian
probability with varianceλp:
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In order to account for the unknown position and orienta-
tion of the model in space, we introduce the random (uni-
form) rigid or affine transformationT consisting of a ma-
trix A ∈ R

3×3 and a translationt ∈ R
3. A mean model point

m̄j can then be deformed and placed byT ⋆ mj = A(m̄j +

∑n
p=1ωpvp)+ t. In order to compute the SSM, a Maximum A

Posteriori (MAP) estimation of the model parameters and ob-
servation parameters is realized which leads to the following
unique criterion:
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given a training data set with observationsSk, k = 1, ...N.
Consequently, the SSM which best fits the given data set is
computed iteratively by optimizing the global criterion with
respect to all model and all observation parameters. For more
details please refer to [5].

B. Computation of the Internal and External Force

The associated surface modelO we are using in this de-
formable model approach is represented byNo triangulated

pointsoi ∈ R
3. During segmentation, an external forceFext

and an internal forceFint represented as vectors∈ R
3 control

the deformations ofO. The external force on each pointoi

is determined by the underlying image information. Gener-
ally, the external forceFext(oi) should attract the point close
to positions with high gradient values. Therefore, we evaluate
the gradient magnitude of the points lying in normal direction
~ni and determine voxels of high gradient magnitude as suit-
able candidates where the surface points should be moved
to. However, evaluating the gradient magnitude alone is nota
very robust approach. E.g. it would pose a problem in the case
of other organs lying close by as their contour might have a
higher gradient than the contour of the organ to be segmented.
Also, structures inside the organ might show high gradient
magnitude. Therefore, we employ an image force term which
depends on the value of three different parameters:

1. Gradient magnitude should be great.
2. Distance fromoi to voxel with high gradient magnitude

should not excess a given limit.
3. Grey values found on the way to a candidate should be

• similar to typical grey values the organ if candidate
lies outside the current surface.

• not similar to typical grey values of the organ if can-
didate lies inside the current surface.

The last distinction is made to ensure that the surface is nei-
ther attracted to contour points of organs lying nearby nor
attracted to structures that may be present inside the organ. If
the overstepped grey values match the typical organ intensi-
ties, we amplify the force attracting the surface pointoi to the
outside. If not, the force attracting the point to the insideis
preferred, for an illustration see figure 2a),b).

We computeFext(oi) = max{Finside(oi),Foutside(oi)} with

Finside(oi)= argmax
oi+k~ni

(

(1− p(ḡ|µ ,σ))
|grad(oi +k~ni)|

|k|
1
2

)

−oi,

(2)
for −r ≤ k < 0, k, r ∈ N and

Foutside(oi) = argmax
oi+k~ni

(

p(ḡ|µ ,σ)
|grad(oi +k~ni)|

|k|
1
2

)

−oi,

(3)
for 0 < k ≤ r, k, r ∈ N. µ and σ denote the average grey
value and associated standard deviation inside the organs of
our training data set. ¯g is the average grey value of the points
at positionsoi + k~ni , that is, the average grey value of the
overstepped voxels in order to reach the candidate.

The internal force on each pointoi is determined by the
probabilistic SSM. Here, we take advantage of the probabilis-
tic formulation of correspondences. First, we minimize the



criterion (1) givenk = 1,S1 = Ode f with ode f,i = oi +Fint(oi)
and determine the optimalT andωp in order to matchM on
Ode f. Next, we use the EM-ICP algorithm to compute the
correspondence probabilitiesγi j of all T ⋆ mj with all ode f,i

and find the forceFint(oi):

Fint(oi) =
Nm

∑
j=1

γi j

(

T ⋆ (m̄j +
n

∑
p=1

ωpvp)

)

−oi (4)

where∑Nm
j=1γi j

(

T ⋆ (m̄j + ∑n
p=1ωpvp)

)

is the most probable

position according to the SSM. Finally, the forceF(oi) guid-
ing the pointoi is computed by the weighted sum ofFint and
Fext and we determineoi,new= oi +F(oi):

F(oi) =
1
2

(αFint(oi)+ βFext(oi)) (5)

C. Algorithm

The algorithm performs as follows: First, in order to de-
termine the initial SSM deformation parametersQ, we apply
an evolutionary algorithm. A random population of shapes
is built by generating a random set of normally distributed
transformationsTk and deformationsΩk and using them to
deform the mean shapēM. In each iteration, the fittest indi-
viduals are selected andTk as well asωkp are modified ran-
domly to again generate a random set until a good initial po-
sition and shape are found. The fitness depends on the sum
of distances between SSM points and the nearest voxel with
high image gradient magnitude. For an example see figure
2d). Next, the associated surface objectO is registered to the
initial SSM by using an affine transformation determined by
the iterative closest points algorithm. Then,Fint andFext are
computed and the pointsoi of the surface object are moved
accordingly. In each iteration, the SSM is matched to the cur-
rent surface object by optimizing the criterion in (1) given
k = 1, S1 = Ode f with respect toT andΩ before the SSM
forces are computed. This is iterated untilO does not change
significantly anymore.

D. Experiments

We apply our method to the segmentation of the left kid-
ney in CT images. The CT images are quite noisy, and the
quality of the kidney visualization lacks because of breath-
ing artefacts, see figure 2c). The size of the images is 512×
512× (32−52) voxels with resolution 0.98×0.98× (2.9−
5.0)mm3 where the kidney is about 75×60×100mm3. The
probabilistic SSM for the kidney is built using a training data
set of 10 segmented observations (figure 1a)-e)).

As associated surface object we use a random kidney of
the training set for which a surface representation was gener-

ated. We choseα = 0.35,β = 1, µ = 30Hu, andσ = 20. Re-
garding the intensity distribution in the images, we extended
eq. (2) by penalizing ¯g ≪ µ for Foutside. We apply the seg-
mentation method to six new kidneys, for some examples see
figure 1,e) and f).

III. RESULTS

The segmentation results are evaluated by analyzing sur-
face distance measures between the deformed surface object
and the manual segmentation. Additionally, we evaluate the
distances between the resulting deformed SSM and the man-
ual segmentation which represents the results of the proba-
bilistic SSM used as an active shape model (ASM). The dis-
tance results are depicted in table 1. Some result examples
are shown in figure 2e) and f). The mean distances of the
new method lie between 1.32− 2.17mmwhich seem to be
reasonably good results with respect to the strong artefacts
present in the images. The values of the maximum distances
(7.02−11.80mm) are partly due to the region where the ure-
thra and the arteria a renalis connect to the kidney which
poses a problem in some cases because of the high grey value
variance without clear borders. Some medical experts include
those into the segmentation and others do not. Overall, the
method seems to successfully prevent the segmentation from
leaking into neighbouring organs with high gradient magni-
tudes and similar grey value intensities, for an example see
figure 2f). Furthermore, the results show the advantage of
the deformable model over an ASM approach as the mean
distances of our method are smaller than the distances ob-
tained when using the SSM directly to segment. However, in
two cases the maximum distances of the ASM approach are
smaller which means thatα should probably be> 0.35 in
those cases.

IV. D ISCUSSION

We proposed a method to employ a statistical shape model
based on correspondence probabilities for automatic segmen-
tation. In a deformable model framework, we alternate a min-
imization of an external energy term representing the search
for edges and the minimization of an internal energy term rep-
resenting the deformation constraint given by the SSM. We
take advantage of the probabilistic formulation of the SSM
when computing the SSM forces as each pointoi is drawn to
the most probable position with respect to the SSM, no point-
to-point correspondences are needed. The new segmentation
approach comes to promising results in a first experimental
evaluation on noisy kidney CT images with strong breathing



a) b) c) d) e) f) g)

Fig. 1: SSM computed for a training data set of 10 segmented kidneys. (a) shows the mean shape, (b-e) show the mean shape deformed with respect to first
and second mode of variation:̄M−λ1v1, M̄ +λ1v1, M̄−λ2v2, M̄ +λ2v2. e) and f) show to kidneys to be segmented, results see table 1(kidneys 3 and 5).
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Fig. 2: a) Candidate is determined only by highest gradient magnitude. b) Candidate is determined by a combination of gradient magnitude and evaluation of
overstepped grey values lying on the normal. In the case shown, position x is preferred over position y because the overstepped grey values indicate that the
surface is positioned outside the organ to be segmented. c) Kidney to be segmented in a noisy CT image with breathing artefacts. d) Initial positioning: SSM
contour (yellow), SSM contour after applying the automaticevolutionary algorithm (white), manual segmentation contour (blue). e,f) Segmentation results,

manual segmentation (blue), initial surface model (red), resulting surface model (green).

Table 1:Surface distances in mm between deformable surface and manual segmentation.

Kidney 1 Kidney 2 Kidney 3 Kidney 4 Kidney 5 Kidney 6
mean distance deformable model 1.32 1.79 1.97 1.87 2.17 1.46
max distance deformable model 8.06 11.80 10.88 8.31 9.91 7.02
mean distance deformed SSM (ASM) 1.63 2.53 3.25 2.05 2.55 2.69
max distance deformed SSM (ASM) 7.34 13.57 16.66 7.58 10.11 14.52

artefacts as we find mean distance measures around 2mmor
lower between the manual segmentation and our deformed
surface object. Especially in regions where the kidney lies
close to neighbouring organs with similar intensity, the prior
information about the shape prevents the surface object from
leaking. The comparison with the ASM results show the ad-
vantage of the deformable model approach as the less con-
strained segmentation becomes more accurate. For further
evaluation, we need to apply the algorithm to a larger data
set of kidney CT images as well as to the segmentation of
other anatomical structures with higher variabilities as e.g.
the liver.
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