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Abstract. In order to successfully perform automatic segmentation in
medical images containing noise and intensity inhomogeneities, mod-
ern algorithms often rely on a priori knowledge about the respective
anatomy. This is often introduced by statistical shape models (SSMs)
which are typically based on one-to-one point correspondences. In this
work, we propose a unified statistical framework for image segmentation
with shape prior information. The shape prior is an explicitely repre-
sented probabilistic SSM based on point correspondence probabilities,
and the segmentation contour is implicitly represented by the zero level
set of a higher dimensional surface. These two aspects are unified in a
Maximum a Posteriori (MAP) estimation where the level set is evolved
to converge towards the boundary of the organ to be segmented based
on the image information while taking into account the prior given by
the SSM information. The optimization of the MAP formulation leads
to an alternate update of the level set and an update of the fitting of the
SSM. We demonstrate the efficiency of our new algorithm with soft tissue
segmentation where adaptive weights ensure that the SSM constraint is
optimally exploited. Our experimental results show the well-posedness of
the approach on noisy kidney CT data impaired by breathing artefacts.

1 Introduction

Segmentation algorithms play a major role in medical image analysis, however,
due to typical medical image characteristics as poor contrasts, gray value in-
homogeneities, contour gaps and noise, the automatic segmentation of many
anatomical structures remains a challenge. To overcome these problems, models
incorporating a priori knowledge about mean and variance of shape and gray
levels as first proposed by [1] are often employed. However, a SSM is easily too
constrained for some segmentation tasks when the number of training obser-
vations is too small to represent all the probable shape variabilities. To lighten
this constraint, deformable models which balance between SSM and image infor-
mation are frequently proposed (e.g. [2–4]). These SSMs are typically based on



one-to-one point correspondences and the segmentation is explicitely parameter-
ized which makes them inflexible to topological changes. In this work, we propose
an automatic segmentation method that couples an implicit parameterization of
the segmentation with a probabilistic SSM based on point correspondence prob-
abilities [5]. We integrate the SSM information into a level set framework where
the contour of the segmentation is represented by the zero level set of a higher
dimensional function. This front propagation approach was first proposed by
[6] and later used for image segmentation by [7]. By choosing an implicit over
an explicit representation, our algorithm is kept flexible to different segmenta-
tion problems, no remeshing mechanisms have to be implemented, the algorithm
can be adapted easily to non-spheric topologies and the integration of regional
statistics is straightforward. As a result, the segmentation method does not suffer
from the limitations of SSMs while enjoying their benefits in yielding robust and
smooth segmentations. An elaborate overview of level set segmentation methods
and their advantages can be found in [8]. In recent work, a trend to add prior
knowledge to level set segmentation is to use a projection of the collection of
level set functions which represent the training data set onto the set of distance
functions in order to perform a statistical analysis on a well-posed set of surfaces
as first proposed by Leventon et al.[9] and later adapted by Tsai et al. [10] as
well as Rousson et al. [11]. In [12] Cremers extended the approach by dynamical
priors for tracking problems [12]. This approach is intuitive and the integration
of the priors on shape variation into the level set segmentation is straightfor-
ward. However, it is not obvious how to exploit the variation information for a
physical modelling of the shape variability. In contrast, by modeling the a priori
shape knowledge via an explicitly represented, point-based SSM, we are able to
incorporate variation modes with a physical significance which can be controlled
directly.
In order to put the implicit representation within a unified statistical framework,
we developed a MAP estimation of the level set which is optimized based on the
image information as well as the SSM information about probable shapes. The
MAP estimation is optimized by alternately updating the level set and updating
the SSM parameters to best fit the current zero level set. As our segmentation
method is focused on soft tissue in low quality images, we chose the level set
formulation presented by Chan and Vese [13]. We further refine this approach
by using a prior knowledge about grey value distributions inside and outside the
organ as presented in [14] in order to robustify against intensity inhomogeneities
across patients as well as inside the respective structures.
The remainder of this paper is organized as follows: The probabilistic SSM and
the development of the MAP estimation are presented in section 2. Results of
experiments on noisy kidney CT data are shown in section 3. Section 4 discusses
the algorithm and results and concludes the paper.



2 Method

2.1 Statistical Shape Model Based on Correspondence Probabilities

In order to develop a comprehensive statistical formulation, we chose to use
the probabilistic shape model proposed in [5]. In this model, the interest and
nuisance parameters are computed in a unified MAP framework which leads to
an optimal adaption of the model to the set of observations. The registration
of the model on the observations is solved using an affine version of the Ex-
pectation Maximization - Iterative Closest Point algorithm which is based on
probabilistic correspondences and proved to be robust and fast [15]. The alter-
nated optimization of the MAP explanation with respect to the observation and
the generative model parameters leads to very efficient and closed-form solutions
for (almost) all parameters. The SSM is explicitly defined by 4 model parameters

Θ = {M̄, vp, λp, n}:

– mean shape M̄ ∈ R
3Nm parameterized by Nm points mj ∈ R

3,
– variation modes vp consisting of Nm 3D vectors vpj ,
– associated standard deviations λp which describe - similar to the classical

eigenvalues in the PCA - the impact of the variation modes,
– number n of variation modes.

From the parameters Θ of a given structure, the shape variations of that struc-
ture can be generated by M = M̄ +

∑n
p=1 ωpvp with ωp ∈ R being the de-

formation coefficients. The shape variations along the modes follow a Gaussian
probability with variance λp:

p(Ω) =

n
∏

p=1

p(ωp) =
1

(2π)n/2
∏n

p=1 λp
exp

(

−

n
∑

p=1

ω2
p

2λ2
p

)

, Ω = {ω1, ..., ωn}. (1)

In order to account for the unknown position and orientation of the model in
space, we introduce the rigid or affine transformation T consisting of a matrix
A ∈ R

3×3 and a translation t ∈ R
3. A mean model point m̄j can then be

deformed and placed by T ⋆ mj = A(m̄j +
∑n

p=1 ωpvp) + t.

2.2 Level Set Segmentation Using a MAP Approach

The MAP Formulation Given a shape represented as a set of points with
model parameters Θ in our SSM, we first model the probability of the surface best
separating the interior and exterior of the object. This amounts to specify the
probability of a function φ whose zero level set is the object boundary knowing
the SSM deformation parameters Q = {T, Ω}. For the second step, we assume
the following image formation model: The intensity is assumed to follow a law
pin for the voxels inside the object and a law pout outside. Given this generative
model, the segmentation is the inverse problem: The MAP method consists of
estimating the most probable parameters φ and Q given the observation of an



image I : X → R. Hence, we evolve the level set function φ such that p(φ, Q|I)
is maximized.

MAP = argmaxp(φ, Q|I) = argmax
p(I|φ, Q)p(φ|Q)p(Q)

p(I)
. (2)

The shape prior does not add any information when the zero level set of φ is
known, so I and Q are conditionally independent events p(I|Q, φ) = p(I|φ), and
we can write

p(φ, Q|I) = p(φ, T, Ω|I) =
p(I|φ)p(φ|T, Ω)p(T, Ω)

p(I)
. (3)

p(I) is constant for a given image. Besides, we assume p(T ) to be independent
and uniform, so we derive the following energy functional:

E(φ, Q) = −α log(p(I|φ)) − τ log(p(φ|Q)) − κ log(p(Ω)) (4)

with introduced weights α, κ, τ ∈ R to normalize the scale of the distributions.
The first term of equation (4) describes the region-based energy with object
specific priors which are given by the normalized grey value distributions pin

inside the organ and pout outside the organ as found in the training data set
which leads to

log(p(I|φ)) = −

∫

X

Hǫ(φ(x)) log pin(I(x))dx −

∫

X

(1 − Hǫ(φ(x))) log pout(I(x))dx.

Hǫ(φ(x)) is a continuous approximation of the Heaviside function which is close
to zero outside the object and close to one inside the object.
The front propagation of φ is guided by the probabilistic SSM which models
all points x as a mixture of Gaussian measurements of the (transformed) model
points mj. The probability of a point x modeled by the SSM given Q equals

p(x|Q) = pΘ =
1

Nm

Nm
∑

j=1

exp(−
|x − T ⋆ mj |

2

σ2
θ

). (5)

For a contour Γ describing the zero level set of φ, the log of the probability is
computed by log(p(φ|Q)) = log(

∏

x∈Γ p(x|Q)) =
∫

x∈Γ log p(x|Q)dx. Integrating
over the whole length of the contour is then expressed by

log(p(φ|Q)) =

∫

X

δǫ(φ(x))|∇φ(x)| log p(x|Q)dx, (6)

with δǫ(φ(x)) having a small support > 0. We then add a normalization over the
length which leads to
log(p′(φ|Q)) = log(p(φ|Q)p(φ|l0)) =

∫

X δǫ(φ(x))|∇φ(x)|(log p(x|Q) − β)dx with

β = 1
l0

∈ R where l0 controls the normalization of the length.
(For p(x|Q) = const this equation is generalized to the classical smoothing term
∫

X δǫ(φ(x))|∇φ(x)|dx as used by [13].)
The definition of p(Ω) is given by the Maximum Likelihood in equation (1).



a) b)

Fig. 1. Illustration of the probabilistic SSM represented by a white contour slice. a)
Correspondence probability for image points x. b) Gradient magnitude of probability.

Segmentation Minimization of (4) is done by alternating a gradient decent
for the embedding function φ with an update of the parameters T and Ω which
serves to match the SSM to the current zero level set. The gradient descent for

computing ∂E(φ,Q)
∂φ with fixed Q is given by

∂φ

∂t
= δǫ(φ)

(

α1 log(pin) − α2 log(pout) − τ < ∇(log pΘ),
∇φ

|∇φ|
>

+div

(

∇φ

|∇φ|

)

(β − τ log pΘ )

)

. (7)

To fit the SSM to the current zero level set, T is computed by

∂E(φ, T, Ω)

∂T
=

∂

∂T

∫

X

δǫ(φ(x))|∇φ(x)| log





1

Nm

Nm
∑

j=1

exp(−
|x − T ⋆ mj |

2

σ2
θ

)



 dx = 0

with fixed φ and Ω. We employ a continuous version of the affine EM-ICP where
first the correspondence probabilities between the zero level set and the points
of the SSM are established in the expectation step and then T is computed in
the maximization step.

Subsequently, we fix φ and T and compute the Ω which solve ∂E(φ,Ω,T )
∂Ω = 0. This

leads to a matrix formulation in a closed form solution. For a detailed derivation
please refer to [5].
The constraints of the SSM on the level set propagation are twofold. The cur-

vature term log pΘ div
(

∇φ
|∇φ|

)

ensures that smoothness of the contour is more

important at locations of low SSM probability, see figure 1a). Hence, we use
a prior whose contour is length minimizing. In addition, the scalar product
< ∇(log pΘ), ∇φ

|∇φ| > ensures that the zero level set is actively drawn towards

the SSM shape, see figure 1b). The variance σ2
θ is a sensitive parameter and has

to be carefully adapted to the problem at hand.

2.3 Practical Aspects

Intensity Distribution In order to determine pin and pout, we sample the
intensities around the surface and estimate the density functions using a Parzen
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Fig. 2. Statistical Shape Model computed for a training data set of 10 segmented kid-
neys rendered with vtk. (a) shows the meanshape, (b-e) show the meanshape deformed
with respect to first and second mode of variation: M̄ − λ1v1, M̄ + λ1v1, M̄ − λ2v2,
M̄ + λ2v2.

window approach. We do this on the same training data set we built the proba-
bilistic SSM on.

Automatic Initial Positioning In order to determine the initial SSM defor-
mation parameters Q, we apply an evolutionary algorithm. A random population
of shapes is built by generating a random set of normally distributed transfor-
mations Tk and deformations Ωk and using them to deform the mean shape M̄ .
In each iteration, the fittest individuals are selected and Tk as well as ωkp are
modified randomly to again generate a random set until a good initial position
and shape are found. The fitness depends on the sum of distances between SSM
points and the nearest voxel with high image gradient magnitude. An example
is depicted in figure 3a).

3 Experiments and Results

We apply our method to the segmentation of the left kidney in CT images. The
images (512×512×(32−52) voxels with resolution 0.98×0.98×(2.9−5.0)mm3)
as well as the segmentations were kindly provided by the department of Com-
puter Science, UNC, Chapel Hill. The CT images are quite noisy, and the quality
lacks because of breathing artefacts.
Experiment Setup: The data set consists of 16 kidney CTs. The probabilistic
SSM for the kidney is built using a training data set of 10 segmented observa-
tions, see figure 2. The segmentation method is then tested on the remaining 6
kidneys. For the segmentation, we set the weights α1 = 1, α2 = 1, κ = 1, β = 0
and τ = {0.1, 0.2}. In most cases, the algorithm converged after 150 iterations.
Each data set is segmented once with the level set segmentation without shape
priors as proposed by [14] and once with the probabilistic SSM prior informa-
tion integrated in the level set segmentation. For comparison purposes, we also
add the segmentation results on the same data set using the SSM directly in an
Active Shape Model approaches proposed in [16].



ASM only LS LS + SSM

D(A,B) - 0.93 0.93
Pat1 J(A,B) - 0.88 0.87

H(A,B) 16.66 8.66 6.40

D(A,B) - 0.91 0.93
Pat 2 J(A,B) - 0.83 0.88

H(A,B) 7.34 9.94 5.0

D(A,B) - 0.89 0.91
Pat 3 J(A,B) - 0.81 0.84

H(A,B) 7.58 5.83 5.10

D(A,B) - 0.88 0.89
Pat 4 J(A,B) - 0.78 0.80

H(A,B) 10.11 8.01 6.40

D(A,B) - 0.92 0.92
Pat 5 J(A,B) - 0.86 0.86

H(A,B) 14.52 4.58 4.24

D(A,B) - 0.84 0.86
Pat 6 J(A,B) - 0.73 0.75

H(A,B) - 12.57 7.68
Table 1. Segmentation Results for six different data sets. Left: Level set segmentation
without SSM. Right: Level set segmentation using the probabilistic SSM constraint.
D(A,B): Dice coefficient. J(A,B): Jaccard coefficient. H(A,B): Hausdorff distance in
mm.

3.1 Experimental Results

We compare the results with the gold standard segmentations by evaluating the
Jaccard coefficient, the Dice coefficient and the Hausdorff distance, see table 1.
Using the SSM as an ASM does not lead to satisfying results. This is due to
the difficulty of determining reliable contour candidates in the noisy CT images
impaired by breathing artefacts. In contrast, the a-priori information on the grey
level intensities yields good segmentation results overall. The SSM constraint on
the level set evolution yields even better results in all cases. The advantage of
adding the prior shape information can be seen distinctly for patient 2 where the
Hausdorff distance diminished from 9.95mm to 5.0mm and for patient 6 where
the Hausdorff distance diminished from 12.57mm to 7.68mm. This is due to the
fact that the evolving zero level is attracted by a neighbouring organ with similar
grey value intensities as the kidney. This leakage can be successfully prevented
by integrating the SSM prior on shape probabilities. As an example, the effect
on patient 2 is shown in figure 3b).

3.2 The Role of the Parameters

As our functional in eq. (7) is derived by a MAP explanation, in theory all
coefficients should be equal to 1. Expanding on this probabilistic analogy, the
traditional coefficients of the variational methods (as e.g. in [13] or [11]) can
be seen as powering factors which flatten or peak the density distributions.



a) b)

Fig. 3. Segmentation Results on a kidney in CT data, sagittal slice. The blue contour
is the gold standard segmentation. Image (a) shows the initial contour in yellow and
the contour after applying the automatic evolutionary algorithm as described in section
2.3 in white. Image (b) shows the result of the unconstrained (red) and the result of
the SSM constrained (green) level set segmentation.

Concerning the SSM term (eq. (6)), the standard deviation σθ of the probabilistic
SSM controls the matching of the SSM to the zero level set. This means that in
practice, σθ should have values around 5mm to guarantee a successful matching.
However, the value of σθ also controls the strictness of the spatial constraint, so
the introduction of the coefficients τ, β and α is necessary in order to position
the influence of the SSM with respect to the other terms. What is more, β can

be equal to 0 as the smoothness term div
(

∇φ
|∇φ|

)

is also governed by τ as can

be seen in eq. (7). Moreover, employing −τ log pθ as weight has the advantage
of using a distance-dependent smoothing term. Figure 4a) shows the influence
of the choice of σθ for the Hausdorff distances obtained in the segmentation
experiments with α = 1, β = 0 and τ fixed to 0.1. These parameters lead to
satisfying results for all kidneys except kidney 1. As can be seen, the optimal
values for σθ are similar for all kidneys and should not exceed 5mm in this case.
The relation between the parameters τ and σθ are illustrated n figure 4b) where
the Hausdorff distances for 2 kidney segmentations are plotted with respect to σθ

for different values of τ . As can be seen, for a smaller τ the optimal σθ becomes
smaller as well which results in a left shift of the curve. This is due to the fact
that a smaller σθ as well as a greater τ result in a stricter constraint of the
level set front propagation. However, the best result for the Hausdorff distance
remains the same for both choices of τ .

4 Discussion

We proposed a novel algorithm for automatic segmentation of soft tissue. The
algorithm employs a probabilistic SSM which is explicitly represented as a point
cloud in combination with an implicitly defined evolving contour which makes
regridding mechanisms obsolete. The coupling between point-based statistical
shape models and level sets as proposed here is new to our knowledge of the
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Fig. 4. Hausdorff distances. a) shows the Hausdorff distances of the segmentation re-
sults under parameters α = 1, β = 0 and τ = 0.1 for all kidneys with respect to σθ.
b) illustrates the relation between the parameters τ and σθ and their influence on the
resulting Hausdorff distances.

literature on this subject and opens new insights on how to take the best of
both worlds. We developed a MAP estimation of the level set which is optimized
based on the image information as well as the SSM information about probable
shapes. The MAP explanation leads to a two-phase formulation where an en-
ergy functional is alternately optimized with respect to the embedding level set
and the deformation of the underlying SSM. The approach can be used for non-
spherical surfaces and can be adapted to applications on data sets with different
topologies as the connectivity between points does not play a role. First experi-
ments showed that the new method works well and improves for some cases the
approach of using an unconstrained level set segmentation. Especially when the
intensity patterns of the organs close by are similar to the organ of interest, the
level set segmentation can leak and produce erroneous results. The Hausdorff
distance in this case yields a large value. By integrating the SSM probabilities,
we greatly reduce this leakage. The leakage problem of level set algorithms can
be seen in different segmentation tasks such as the prostate. The proposed algo-
rithm offers a solution to this problem by including the SSM in a probabilistic
framework such that they bring robustness to the segmentation process. Even
from a low number of samples a prior on the probabilities can be extracted so
that no huge training data set is necessary. From a theoretical point of view, a
very powerful feature of our method is that we are optimizing a unique criterion.
Thus, the convergence is ensured. However, the practical convergence rate has
to be investigated more carefully as it depends on the choice of weights in the
functional as well as the variance σ2

θ which controls the probability of occurrence
with respect to the SSM. In the case of an organ shape which differs greatly from
the shapes in the training data set for the SSM, a great sigma is needed in order
to not constrain the contour evolution too much (as e.g. for Pat. 1, figure 4a)),
so σθ is momentarily used somewhat as interactive parameter which is not the
optimal solution. In current work, we want to extend the MAP formulation by
integrating a priori knowledge about the expected volume V0 which is given by



the probability p(φ|V0) and V0 can be determined by evaluating the training
data set. Further evaluation on other data includes the application on a coupled
segmentation of acetabulum et femural head.
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