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Problem / Background: In order to help hepatic surgical planning wefeeted
automatic 3D reconstruction of patients from conigeral CT-scan, and interactive
visualization and virtual resection tools.

Tools and Methods: from a conventional abdominal CT-scan, we haveelbped
several methods allowing the automatic 3D reconstrn of skin, bones, kidneys,
lung, liver, hepatic lesions, and vessels. Thesthads are based on deformable
modeling or thresholding algorithms followed by tapplication of mathematical
morphological operators. From these anatomicalattiological models, we have
developed a new framework for translating anatohicawledge into geometrical
and topological constraints. More precisely, oppraach allows to automatically
delineate the hepatic and portal veins but aldaliel the portal vein and finally to
build an anatomical segmentation of the liver base&ouinaud definition which is
currently used by surgeons all over the world. fmave have developed a user
friendly interface for the 3D visualization of aaatical and pathological structures,
the accurate evaluation of volumes and distancegarthe virtual hepatic resection
along a user-defined cutting plane.

Results: A validation study on a 30 patients database ggenm of precision for
liver delineation and less than 1 mm for all otlsratomical and pathological
structures delineation. An in vivo validation perfeed during surgery also showed
that anatomical segmentation is more precise thandelineation performed by a
surgeon based on external landmarks. This surg&mgnmg system has been
routinely used by our medical partner, and thisreaslted in an improvement of the
planning and performance of hepatic surgery proeedu

Conclusion: we have developed new tools for hepatic surgiahning allowing a
better surgery through an automatic delineation\asdalization of anatomical and
pathological structures. These tools representsadiep towards the development of
an augmented reality system combined with compuassisted tele-robotical
surgery.

1. Introduction

One of the major stakes of computerized medicabingpanalysis is to automatically
identify and localize anatomical structures in 3@dical images. The tridimensional
models of these isolated structures can then beé bgea surgical planning tool. In the
hepatic surgery, the planning requires the locatinaof hepatic lesions and liver vascular
trees, especially the portal vein that definestiapatic functional anatomy consisting of
several anatomical segments [1,2]. There exisewifft definitions for dividing the liver
into functionally meaningful parts. Different autedhave proposed to divide the liver into
two hemilivers or into four segments based on the Goldsmith \&ieddburne definition
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[3] or into eight sub-segments based on the Codirdefinition [4] which is today the
international standard [1].

In order to detect lesions and to observe vasauttwvorks defining the anatomical
segments, radiologists currently use helical Coegbutomography scan images with
intravenous contrast infusion (helical CTI). Indemdhelical CTIl images, tumors appear as
dark nodules within bright hepatic tissues wheresssel trees appear as a network brighter
than the liver parenchyma. However, these imagesofien difficult to process due to a
variable image contrast between liver parenchynaavassels, and also due to an important
image anisotropy, the slice thickness being thiree targer than the pixel width.

One of the goals of computerized medical imagirgyais for hepatic surgery planning
is to automatically delineate liver, lesions, véssad anatomical segments from medical
imaging. Several authors proposed to delineatéitbecontours from CTI images with an
automatic [5,6,7,8,9], or semi-automatic procesy.[Eeveral methods use a deformable
model, either to directly delineate structures J[5¢of to improve the results of a previous
delineation technique [6]. Independently of thelidelineation, vascular tree segmentation
has been performed in different studies [11,12(]3,Eor instance, the method of [13]
allows to extract the portal vein from abdominal-€&n images, using a region growing
technique. This technique has the advantage to aite@pological information about the
venous tree, which is useful for building all amatcal segments [14]. However, since it
requires to manually set a threshold and an inged¢d point, this technique is not
automatic. Finally, there has been very few studiEs16] about the hepatic lesions
delineation. However, it can be performed by themeamethods used to isolate other
anatomical structures, as in [7].

Among all these studies, the work of [6] is besteslifor hepatic surgery planning
since it provides a general solution allowing tledirceation of the hepatic anatomy, even if
the vascular system may not be clearly delinea?sb, the work described in [13] and
[14] performs portal vein labeling and anatomicagments delineation, but it always
reconstructs eight sub-segments even if the patent different number of segments.

In this article, we propose an original three stapatomical segmentation method,
based on the translation of anatomical knowledge itopological, geometrical and
morphological constraints. We also present a hunmé@rface allowing an easy 3D
visualization and surgical planning. This methodstlallows to extract automatically and
visualizeskin, bones lungs kidneys, spleeriver, hepatic vesselhepatic lesionsand at
least theanatomical segmentd the liver with respect to the three mainly usedinitions:
hemiliver, Goldsmith and Woodburne definition anoui®aud definition.

2. Tools and methods
2.1 Patients data set

This study has been performed on a set of 30 Ciissaaquired after contrast agent
injection at portal phase, from an helical Siemgamatom 4 plus CT-scan. The database is
composed of 28 images with intravenous injectiomn &avo portoscans. It includes healthy
subjects, patients with lesions (Cyst or tumors)] also patients after segmentectomy.
Furthermore, the rate of contrast product invasigo hepatic venous systems is really
different from one patient to another, due to &dlift evaluation of the portal time.

All images have a well known noise pattern creatirignd of texture in all images. In
order to remove this textured aspect, we choodggtdo all images before any delineation
processing. Usually, this filtering is performedthwa Gaussian smoothing, but this filter
implies a loss of structure boundaries. In orderstive this problem, we use an
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“anisotropic diffusion”, which smoothes the imagelyowhere its gradient is low. We
choose a linear complexity algorithm developed bg#an et al. [17] that allows to perfect
this diffusion faster than current methods. As shamwthe figure below, resulting images
are much easier to process.

figure 1: Image before and after anisotropic difeus Internal boundaries are not removed by tHiefing.
2.2 Automatic delineation of skins, lung, bonesindys, spleen and liver

This first stage of our method extracts automdiicaep by step, the skin, lungs, bones,
kidneys, the spleen and the liver of a patientnfid CT-scan image. Our method consists
in translating knowledge into medical imaging, e tway of several simple intensity,
morphological, topological and geometrical consitsi The intensity in Hounsfield units of
air, fat tissue, water and bones are known andemgectively -1000 HU, -120 HU to -80
HU, 0 HU, and 500 HU to 3000 HU. Air is mainly owls the patient and into the lungs
(some air may be eventually found into the digestiystem too). Isolating the air allows us
to extract easily the skin and the lung boundaries.

A simple threshold does not allow to isolate theds Because of the contrast agent,
others structures, such as the aorta, appear bilightvercome this, we first isolate the fat
tissue (thresholding followed by morphological agem). The bones are then
characterized as the brightest structures clofieetéat tissue.

Kidneys and spleen delineation is more difficuledio their intensity variation. We
then propose a solution based on the gray-levébdnasm analysis of the image limited to
regions including the spleen and kidneys. Indebd,right inferior quarter of the image
contains essentially a part of the liver and tightrkidney, whereas the left inferior quarter
of the image contains only the right kidneys arelgpleen. Thus, a comparative analysis of
the gray-level histograms allows to find the intgnsange of kidneys, spleen and liver
parenchyma, identically localized on both histoggaive then delineate the kidneys and
the spleen by performing a thresholding followedmyrphological operators.

Once all these anatomical structures are remowad the original image, we finally
extract the liver using Montagnat and Delingettasthod [5]. It is based on a 3D reference
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liver model embedded that deforms automatically aimls patient liver contours by
applying local and global constraints (figure 2).

2.3 Automatic delineation of internal liver struag: lesion and vascular systems

According to our knowledge, we consider that therkwof [6] presents the only
technique approaching a general solution for digsg internal hepatic structures by
recovering the intensity distribution of hepatisitms, parenchyma, and vessels. We
improved their approach by considering that thasgiblutions follow a normal law and by
estimating these distributions with an efficierdde squares minimization (Levenberg and
Marquardt's [18]). Such a procedure requires anaiiation of the three distributions to
be estimated. However, only one peak, which comedp to the liver parenchyma, can be
seen in the original histogram. Therefore, we fiitsthe liver parenchyma distribution and
then subtract it from the original histogram. Thewnhistogram reveals two peaks, that
correspond to respectively the lesions and theel®s$issues. We are then able to compute
initial parameters for these two distributions. d&fy, we adjust the three Gaussians with
the initial histogram. The crossing intensities tbe Gaussians define the thresholds
between the three classes.

The result of this thresholding implies severalafassification. First, due to the image
anisotropy, several branches are disconnecteddir ¢to remove these mistakes, we apply
a new hysteresis thresholding technique baseddstance map and thresholds computed
from the Gaussian distribution parameters. Sectmfinal result includes false lesions,
due to fat tissue appearing inside the liver pargm@, and also wrong connections
between the two venous systems of the liver, théapwein and sus-hepatic vein. In this
case, the characteristic shape of the lesions,tla@dopological properties of vascular
systems are two information allowing the physidiametect potential mistakes. In order to
use this anatomical knowledge, we have charactetize lesion shapes using axial inertia
moments of the lesions and the vessels topologthbyskeleton of the vascular tree. We
then apply topological and geometrical constraimm$éo each structures removing thus
nearly all misclassifications. This method allowsautomatic delineation of lesions and a
better topological portal vein segmentation dis@m@d from neighbor vascular networks.

2.4 Automatic portal vein labeling and anatomsmgmentation

In practice, the current procedure for radiologialineation of anatomical segments is
based on the concept of three vertical planesdivate the liver into four segments, and of
a transverse scissura that further subdivides ¢genents into two subsegments each [2].
The three planes are defined from landmarks basesi®-hepatic veins, and the transverse
scissura is defined from landmarks based on peeial But, as Fasel et al. [2] showed, this
delineation brings too much errors and must besegkiMoreover, them results show that
only procedures that account for all the portalatendistribution pattern, will result in
correct depiction of the anatomic reality.

From this conclusion, we defined an anatomical sggras the influence area of a set
of portal vein branches. Thanks to this definititre anatomical segmentation becomes a
labeling problem that consists to merge portal tinas in two, five or height sets, with
respect to hemiliver, Goldsmith and Woodburne'€ouinaud's segmentation (see figure
3). Selle et al. [15] already propose this kinddeffinition, but their merging method
consists in considering the eight major sub-trée the portal networks. Thus, their system
will not be able to correctly label a patient’s @brvein after a segmentectomy, or a
patient’s portal vein with some topological exceptas defined by Couinaud [4].
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Figure 3: the three anatomical segmentations \eispe&ct to hemiliver (right and left liver), Gold$im&
Woodburne (lateral, paramedian and dorsal rig¢fbsegments) and Couinaud (numbe

We choose to defined a new merging system thaanamical knowledge translated
into topological, geometrical and morphological staints. This system firstly separate the
liver in two hemiliver, secondly separate each hieer in three segments (paramedian,
lateral and dorsal), and at least separate sesegahents in subsegment with respect to the
Couinaud’s definition. Each of these labeling islimed respectively with the same
procedure. Firstly, we compute the influence aredhie liver of all branches. We then
obtain one volume of hepatic tissue per branch twatesponds to the more precise
anatomical sub-segmentation. But, this precisiotodsimportant for surgeons, and does
not correspond to their usual anatomical segmematVe then merge these areas by
giving the same label to branches having the samgenan the portal tree if the resulting
volume of the merging areas verifies some condfatranslated from definition of
anatomical segmentation. These constraints allowedluce the number of subsegments
without merging two anatomical segments with respethe usual definitions. In order to
give to each subsegment the same label than the dsfinitions, we register an initial
segmented model onto the patient’s liver usingMioatagnat and Delingette’s method [5].
We thus obtain a totally automatic labeling andtamécal segmentation of the patient’s
liver with respect to the three usual anatomicéihiteons.

2.5 Friendly user Interface

In order to exploit all the results provided by onethod, we developed a friendly use
interface that allows for a easy learning. Thigifgce and all the available tools have been
elaborated, tested and validated in collaboratidh vadiologist and surgeons. Thus, this
interface allows easy visualization of CT-scan aflld3D anatomical and pathological
structures automatically delineated, 3D navigat@ma zoom, view by transparency and
color definition of each 3D model, a precise antbmatic volume and distance evaluation,
and also virtual resection (figure 4). It is a coet@ tool for surgical planning.

::::: e

Figure 4: examples of views provides by the frigndier interface onto a patient’s 3D reconstruction
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3. Results

In order to have a quantitative and objective eatiom of the quality of our method, we
have performed a validation by comparison of owultewith a radiologist manual
delineation. Firstly, where a manual delineatioguisees more than 11 hours to delineate
portal vein and lesions, our method takes only iButes. Comparison onto 5 patients
shows that our method provides a precision of 2 fomtiver delineation and of less than 1
mm for other anatomical and pathological structuddereover, our automatic lesion
segmentation has given all hypo-dense lesions wem of thickness (to be compared to
the 5 mm required by the radiologist). Last, resglhow that the automatic portal vein
labeling provides exactly the same result than auakone, including the case of a patient
after a segmentectomy.

From these first results, we have then verified donlifferent patients undergoing
surgery that reconstruction results of our methetbde the surgery precisely guide and
improve the surgical procedure. Furthermore, in ohéhe 4 cases, a small lesion of 5.2
mm of thickness, detected and delineated by ouhadebut missed by the radiologist, has
totally modified the initial planning (figure 5)nlanother of these 4 cases, our anatomical
segmentation has truly localized a large tumothnee of the height anatomical segments
while the standard landmark-based anatomical segti@m found the tumor in only two of
these segments (figure 6): this also results inodified surgical planning. In all cases,
clinical validation during surgery has shown thasuits obtained by our automatic 3D
segmentation were correct and add really usefalmétion for surgical planning.

DISTANCE: .12 mm %

Figure 5: automatic delineation of tumors showsthtumors not detected b the radilogist
(the smallest ones). Right image shows a zoomtbatieft tumors and its thickness of 6 mm.

Figure 6: automatic delineation of a tumor and #reatomical segments. The result shows that the eseigBn
contains a part of the tumor which was initiallytmisible from the CT-scan but verified after susge
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4. Conclusion

The originality of this work lies in the full autation of the methods due to original
translation of anatomical knowledge in topologiead geometrical constraints. We thus
offer the first fully automatic 3D reconstructiomots for liver surgery, providing not only
anatomical and pathological structures visibleh@ €T-scan, but also invisible functional
information. These original tools thus provide alrlelp in hepatic surgical planning
through the automatic delineation and visualizatioih anatomical and pathological
structures. Thanks to these tools which representitst step towards an augmented reality
system, computer assisted tele-robotical surgelhb@iavailable in the near future.
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