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A b s t r a c t  

This article proposes a new approach to segment a discrete 3-D object into a structure of characteristic topological 
primitives with attached qualitative features. This structure can be seen itself as a qualitative description of the 
object, because 

--  it is intrinsic to the 3-D object, which means it is stable to rigid transformations (rotations and translations); 
- -  it is locally defined, and therefore stable to partial occlusions and local modifications of the object structure; 
- -  it is robust to noise and small deformations, as confirmed by our experimental results. 
Our approach concentrates on topological properties of discrete surfaces. These surfaces may correspond to 

the external surface of the objects extracted by a 3-D edge detector, or to the skeleton surface obtained by a new 
thinning algorithm. Our labeling algorithm is based on very local computations, allowing massively parallel com- 
putations and real-time computations. 

An indirect result of these topological properties is a new characterization of simple points. 
We present a realistic experiment to characterize and locate spatially a complex 3-D medical object using the 

proposed segmentation of its skeleton. 

1 I n t r o d u c t i o n  

Three-dimensional (3-D) images may come from sev- 
eral fields, the most popular one being the medical 
field, where images are produced by X-ray Computed 
Tomography (C-T), Magnetic Resonance Imaging (MRI) 
(see figure 1), Positon Emitting Tomography (PET), 
and more recently by Ultrasound Echography. Auto- 
mating the interpretation of these images is an awkward 
but important task for many applications where ex- 
tremely accurate quantitative results are required or/and 
a large volume of data must be processed. A large class 
of interpretation tasks involves a matching stage, an ac- 
curate geometric registration between two 3-D images, 
or between a 3-D image and a 3-D geometric and 
semantic model (Ayache et al. 1990). 

Prior to matching, a preliminary segmentation stage 
is necessary to reduce the original image into a more 
compact highly structured representation useful for in- 
terpretation (Ayache et al. 1989). 

Here, we propose a new segmentation process which 
transforms a discrete binary 3-D object into a struc- 
ture of characteristic topological primitives (such as 
volumes, surfaces, curves, etc.) with attached qualitative 
features. This structure can be seen itself as a qualitative 
description of the object, because 

- -  it is intrinsic to the 3-D object, which means it 
is stable to rigid transformations (rotations and 
translations); 

- -  it is locally defined, and therefore stable to par- 
tial occlusions and local modifications of the 
object structure; 
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- -  it is robust to noise and small deformations, as 
confirmed by our experimental results. 

The idea of characterizing 3-D shapes with quali- 
tative primitives was introduced by Sander (1989) who 
studied diftbrential singularities of 3-D object surfaces. 

Our approach is complementary and original be- 
cause we concentrate on different topological proper- 
ties of discrete surfaces instead of geometrical proper- 
ties. Finally, the core of our approach is based on very 
local computations, allowing massively parallel com- 
putations and real-time computations. 

Let us consider a 3-D image (like in figure 1). We 
can segment it by using classical algorithms of edge 
detection (Monga 1990) (see figure 2). These edges are 
surfaces in 3-D. In figure 3 we have the same object 
(made of surfaces) in two different positions. Using the 
proposed topological segmentation, we will be able to 
extract these surfaces and their junctions, and there- 
fore to have a structured description of them in terms 
of surfaces and junctions. This description will be a 
precious help for any further stage (like matching). An 
indirect result of this topological segmentation is a new 
characterization of 3-D simple points, which leads to 
a new thinning algorithm. 

This article is organized as follows. First we pre- 
sent the concept of topological segmentation. Second, 
we recall previous work done on digital topology. 
Third, we describe our approach which is twofold, (a) 
local labeling of object points using a classification tree 
with two local measures, and (b) detection of junctions 

Splitting 

Matching I - -  

Fig. 1. Two sections of a 3-D MRI image of a head, 

F/g. 2. Two sections of edges detected in the 3-D MRI image of 
figure 1. 

Splitting 

Fig. 3. Topological segmentation gives us a description of each object, by splitting it into simple surfaces. This description can be useful 
for a later step of matching. 
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using a new characterization of simple surfaces. Fourth, 
after discussing the need for a thinning preprocess- 
ing before the topological segmentation, we propose 
a new characterization of simple points derived from 
our classification and a new thinning algorithm. Fifth, 
we propose the use of mathematical morphology to 
refine the detection of simple surfaces. Sixth, we 
describe two applications of this work, one using our 
thinning algorithm and the other using our classifica- 
tion for the segmentation and the spatial localization 
of the skeleton of a c6mplex 3-D medical object. We 
conclude with a study of the advantages of this approach 
and some short and medium term future research 
topics. 

2 Topological Classification in IR 3 

Before giving an introduction to digital topology, we 
first present the concept of topological segmentation 
in IR 3. This will help the reader to grasp the ideas 
developed in sections 3 and 4. We have a binary parti- 
tion of the real space in two parts: the object X and 
the background ~7: An illustration of such an object is 
shown in figure 4. The goal of the topological classifica- 
tion is to characterize each point of a binary 3-D im- 
age by its topological type. 

Each point may belong to one of the following 
categories: 
volume: one can find a neighborhood of the point that 

contains no point of the background. 
surface: one can find a neighborhood of the point such 

that the background is divided in two parts by the 
object. 

curve: one can find a neighborhood of the point such 
that the deletion of the point involves the division 
of the object in two parts, 

isolated point: one can find a neighborhood of the point 
such that the deletion of the point involves the dele- 
tion of the object. 

Or a point may be a combination between two or more 
of these categories (for example, it may be a junction 
point between a curve and a surface). Note that a point 
may also be a border point (a border point is a point 
that can be suppressed without changing the topology 
of the object). 

Each category is self-defined and is simply charac- 
terized by the number of connected components in a 
neighborhood (connected components of the back- 
ground for volumes and surfaces and of the object for 
curves and isolated points). 

Let us consider a point x of the object X, and a 
neighborhood V of x (in a topological sense: V con- 
tains an open set which contains x). Let V* = V\{x}  
be the same neighborhood without the point x. We can 
compute four numbers of connected components, two 
for the object and two for the background by consider- 
ing the point x either in the object or in the background. 
We denote these four numbers by: 

C number of connected components of the object 
in V 

C* number of connected components of the object 
in V* 
number of connected components of the back- 
ground in V 

C* number of connected components of the back- 
ground in V* U {x } (x is considered as a point 
of the background) 

,,borders 

between curves \ 
F 

J ! ,  
curve ~" l ~  ~unct ion between surfaces 

~..~ unction between a surface and a curve 

Fig. 4. Different topological types. 
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These numbers depend on the choice of  the 
neighborhood V. This choice must then satisfy some 
properties. 

In order to count connected components, we choose 
a neighborhood V that verifies the following: 

P roper ty  1. V must be connected (and then V* is 
connected). 

P rope r ty  2. For any connected neighborhood Wofx 
included in V, the values of C, C* C, and C* are the 
same. 

If  the object is "topologically regular enough" (and 
so are all the objects we usually have in a digital space), 
we can find such a neighborhood for any point. 

We can easily prove that, in such a neighborhood, 
we have: 

Proposi t ion 1. In a neighborhood V that satisfies 
properties 1 and 2, we have 

C = C * = I  

Then, only two numbers are necessary for the topo- 
logical classification, C* and C. C* is used for char- 
acterizing isolated points and curves. 

C* = 0 there is no connected component 
of  the object in V*, x is isolated. 

C* = 1 x is neither an isolated point nor 
a curve point. 

C* = 2 locally, the deletion of  x divides 
the object in two parts; x belongs 
to a curve. 

C* _> 3 locally, the deletion ofx  divides the 
object in three or more parts; x be- 
longs to a junction between curves. 

and C is used for characterizing surfaces and volumes: 

= 0 there is no connected component 
of  the background in I1, x is an in- 
terior point of  a volume. 

= 1 x belongs neither to a volume, nor 
a surface. 

= 2 locally, the background is divided 
in two parts; x belongs to a surface. 

_> 3 locally, the background is divided 
in three or more parts, x belongs 
to a junction between surfaces. 

We can thus propose a topological classification for 
each point o f  a bi_rmry partition of IR 3 using the two 
numbers C* and C (see table 1). 

Table I. Toplogical classification of a point using the two numbers 
C ' a n d  C. 

Type A interior point C = 0, 
Type B isolated point: C* = 0 
Type C border point: C = 1, C* = 1 
Type D curve point: (~ = 1, C* = 2 
Type E curves junction: C = 1, C* > 2 
Type F surface point: C = 2, C* = 1 
Type G surface-curve(s) junction: C = 2, C* _> 2 
Type H surfaces junction: C > 2, C* = 1 
Type I surfaces-curve(s) junction: C > 2, C* > 2 

3 IBgital Topology 

We present some basic definitions of 3-D digital 
topology--see (Rosenfeld 1980; Kong & Rosenfeld 
1989; Nakamura & Aizawa 1985; Toriwaki et al. 
1982). 

3.1 Neighborhoods and Connectivities 

A 3-D digital image ~ is a subset of 7/3. We consider 
only cubic lattices so that, for each point x = (i, j ,  k),  
three types of  neighbors may be defined: 
6-neighbors: two points are 6-neighbors if they share 

a face. 
18-neighbors: two points are 18-neighbors if they 

share a face or a vertex. 
26-neighbors: two points are 26-neighbors if they 

share either a face, or a vertex, or a corner. 
Each of these three types defines a connectivity 

denoted by n-connectivity (for n E {6, 18, 26}). We 
have then three different neiglaborhoods of  a point x 
(see figure 5) denoted by Nn(x). We note Nn*(x) = 
Nn(x)\{x }. Let us remark that 6-connectivity and 
26-connectivity correspond to two distances of IR 3 often 
denoted D 1 and D~.  

Let x = (Xl, x2, x3) and y = (Yl, 3'2, Y3) be two 
points, these two metrics are defined by 

DI(x, y) = ~ l Yi - xil 
i=1 , . . .  ,3 

D~ (x, y) = max [ Yi -- Xi I 
i = l , . . . , 3  
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Fig. 5. The different neighborhoods in 3-D. From left to right: 6-neighborhood, 18-neighborhood, and 26-neighborhood. 

their associated neighborhoods are defined by 

V~(x) = {y ~ Z3/D~(x, y) < i} 

Vi (x) = {y ~ Z3/D~(x, y) < i}. 

We have then N6(x) = Vl(x), N26(x) = V~(x), and 
Nls(X) = V~(x) O V~(x). 

As in the 2-D case, different connectivities should 
be used in a binary image for the object X and the 
background 3~ in order to avoid any connectivity 
paradox. 

3.2 Other Definitions 

Let n be in {6, 18, 26}. 
Two subsets X C ~ and Y C E are said to be n- 

adjacent if there exists x E X and y ~ Y, x and y being 
n-neighbors. 

An n-path is a sequence o0, o l . . . . .  pi . . . . .  Ok of 
points such that Pi is n-adjacent to pi-~, for 1 < i < 
k. An object X C ~ is n-connected if an n-path lying 
in X can be found between each pair of points of X. 

An n-connected component of X is a set Y C X 
which is n-connected and which is maximal for this 
property. 

Let us introduce the notions of hole and cavity. The 
notion of hole is not simple to define--see (Park & 
Rosenfeld 1971; Morgenthaler 1980). For example a 
torus has one hole. The notion of cavity is intuitive: 
for example a ball has one cavity, its interior. 

The genus of X, G(X) is the number of X-connected 
components plus the number of its cavities minus the 
number of its holes. Gn(X) is the genus of X computed 
with the n-connectivity. 

If  X is finite, we have the following relations (Mor- 
genthaler 1980): 

a26(X ) - G6(X ) = 1, a 6 ( x  ) - a26(X)  = 1 

A method for obtaining the genus of a 3-D object 
by local pattern matching is given for the 6-connectivity 
case in Park and Rosenfeld (1971). Morgenthaler 
(1980) gives a method for the 26-connectivity case. 

A point x E X is called simple if its removal does 
not change the topology of the image. Kong and 
Rosenfeld (1989) give a characterization of simple 
points which is an improvement of the one given by 
Morgenthaler (1981). A point x is simple if 

NCa[X n N2~(x)] = 1 (1) 

NCa[X O N2~(x)] = 1 (2) 

a26[X O N26(x)] = G26[X n N2'~(x)] (3) 

where NCa(A) stands for the number of connected 
components of A adjacent to x. 

4 Topological Classification in 7 s  

Let ~ be a 3-D binary digital image made of the object 
X and the background X. In the-following, we assume 
that 26-connectivity is used for X and 6-connectivity 
is used for X. 

In this section, we adapt the definitions of the real 
case (see section 2) to the discrete case. Then we 
discuss the choice of the neighborhood where numbers 
of connected components will be computed. 

4.1. Numbers of Connected Components 

We change the previous definition of the numbers of 
connected components for the discrete case. We define 
C* and C in a neighborhood V of an object point x by 
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C* number of 26-connected components of X O 
V* 26-adjacent to x 
number of 6-connected components of)~ 71 V 
6-adjacent to x 

By using the same type of definition, the two other 
numbers of connected components, C and C* are 

C number of 26-connected components of X f) V 
26-adjacent to x 

C* number of 6-connected components of (X (3 
V) U {x} 6-adjacent to x (x is considered as 
a background point_.) 

By definition of C and C* we have C = C* = 1 
(proposition 1 is always verified). 

4.2 Neighborhoods 

Unlike the real case, we cannot choose an arbitrary 
smaU neighborhood Vin order to count connected com- 
ponents. We have only neighborhoods of fixed size. 

If we consider the 26-connectivity, it is obvious that 
the smallest neighborhood we can choose for computing 
C* is the 26-neighborhood N26. Because all points of 
the 26-neighborhood are 26-adjacent to the central 
point, it is not necessary to check the 26-adjacency to 
x of the 26-connected components. 

If we consider now the 6-connectivity, we can count 
the 6-connected components in the 26-neighborhood 
too--see (Malandain, Bertrand, & Ayache 1991a; 
t991b). 

We have already seen (in section 3.1) that the 
26-connectivity corresponds to the Doo metric while 
the 6-connectivity corresponds to the D 1 metric. The 
26-neighborhood is a sphere of radius 1 for the D~ 
metric (N26(x) = V~), and verifies the properties 1 
and 2. The sphere of radius 1 for the D1 metric is the 
6-neighborhood N 6. But N6* is not connected and thus 
the 6-neighborhood does not verify the properties 1 and 
2. Let us consider now the sphere of radius 2 for the 
D1 metric, V2(x) = { y ~ 7]3/Dl(x, y) < 2} (see fig- 
ure 6). It verifies the properties 1 and 2. It is an octa- 
hedron which differs from the 18-neighborhood by its 
six comers (since N18(x) = V2(x) N V~(x)). Each of 
these six corners has only one 6-neighbor (which 
belongs to the 18-neighborhood); then it belongs to a 
6-connected component 6-adjacent to x if and only if 
this 6-neighbor belongs to the 6-connected component 
too. Thus, the number of 6-connected components 
6-adjacent to x is the same in the 18-neighborhood 
Nls(x) and in V~(x). These six corners do not bring 
any additional topological information. 

6. The sphere of radius 2 for the D 1 metric (V2(x)) is Fig. a n  

octahedron. 

Because the 18-neighborhood is smaller than the 
26-neighborhood, it will bring a more precise 
topological information--see (Malandain 1992; Ber- 
trand & Malandain 1992b). 

4.3 Conclusion 

Because of the different connectivities used for both the 
object and the background, we use different neighbor- 
hoods for counting numbers of connected components. 

For each point of a 3-D binary digital image, we 
can apply the classification given in table 1 by using 
the following two numbers: 

C* number of 26-connected components of X f') 
N2'~(x) 
number of 6-connected components of )~ N 
Nls(x) 6-adjacent to x 

It should be pointed out that we assign a class to 
every possible value of C and C* It means that there 
will not remain any unclassified point, whereas this was 
the case previously (Morgenthaler & Rosenfeld 1980). 

These two numbers can be efficiently computed by 
using the a priori knowledge of the possible adjacen- 
cies in such neighboroods (Malandain 1992). 

5 Detection of Junctions 

After the topological classification presented in the 
previous section, each point of a 3-D binary digital 
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image is labeled with its topological type (see table 1). 
However, some junctions can not be locally detected, 
because of the discretization of  the space. 

5.1 Junctions 

Some troubles occur with the detection and the 
classification of  junction points (between curves or sur- 
faces) depending on their " thickness" The following 
figures (figures 7, 8, 9), which represent a slice of  a 
3-D binary image, may be considered either as a junc- 
tion between curves (with empty lower and upper 
slices) or as a junction between surfaces (with iden- 
tical lower and upper slices). I f  we consider figure 7, 
which represents a "thin" junction, the junction point 
is well classified by the local topological classification. 

If  we consider figure 8, which represents a "thick" 
junction, the junction point is misclassified: it is 
classified as a surface point if the figure represents a 
junction between curves, or as an interior point if the 
figure represents a junction between surfaces. In this 
case, the junction between curves is considered by the 
local classification as a little surface from which curves 
are emanating, and the junction between surfaces as 
a little volume (like a cylinder) from which surfaces 
are emanating. 

nI IB I E  
I I I  I I  I..,III.. 
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I I I  I I I  
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Fig. 7. The junction point is detected by the classification. 

i| 

I I ! ! ! I I I  
i I'.i!'.I i I I 

i | i i i | | |  
IIiii III 

Fig. 8. The junction point is classified either as a surface point for 
curves junction, or as an interior point for surfaces junction. 

Finally, if we consider figure 9, which represents 
two other types of "thick" junctions, the junction points 
are undetected by the local classification: all points are 
classified either as curve points or as surface points. 

5.2 Curves Junctions 

The detection of  the missed curves junction points can 
be easily made by counting for each curve point the 
number of  neighbors that are curve points too. I f  this 
number is greater than two, then the curve point is a 
missed curves junction point. 

5.3 Surfaces Junctions 

The detection of  the missed surfaces junction points 
is more difficult. 

We call surface a connected set of points with a 
thickness of 1 (the deletion of any surface point will 
create a hole). A surface can consist of several simple 
surfaces linked together by junction (T-junctions, cross- 
junctions, . . . ) .  

As discussed above the connected components 
numbers do not allow, in a complex figure, to separate 

i. Immmiii | i |  |i-.- I,..Immm, I 
i n l i n L ,  I I  ; ; ; ; ; ;  
nm ...... m i  
Ii'iii I I : i ' . i ! I  
II IIl . . I n I I i i ,  I I  i n l  

I 1 I 

iiIi.ii Ei i 

I l l l  

I I  I n l I  I 

I : : : |  O I l I  

17:1 | I I I  

I : ' H  

i 

Fig. 9. All points are classified as curve points or as surface points. 
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simple surfaces from each other (see figure 9 for ex- 
ample): if we delete all junction points of an image the 
remaining connected components are not necessarily 
simple surfaces. 

Some work has been done previously to characterize 
simple surfaces (Morgenthaler & Rosenfeld 1980; Kim 
1984; Keskes & Faugeras 1981). We consider the 
definition of a simple surface proposed in (Morgenthaler 
& Rosenfeld 1980) because a simple surface is consid- 
ered here as a set of voxels rather than a set of faces as 
in (Keskes & Faugeras 1981). We first compare this 
definition with our classification, then we show that this 
definition is not appropriate, finally we propose an algo- 
rithm for the complete extraction of simple surfaces. 

A point x E X is a simple surface point, according 
to Morgenthaler and Rosenfeld (1980), if the follow- 
ing conditions are all satisfied: 

1. X r) N2*6(x) has exactly one component adjacent 
to x (in the X sense). 

2. X r) N2*6(x) has exactly two components adja- 
cent to x (in the X sense); call these components 
B x and Cx. 

3. For every y E X adjacent to x (in the X sense), 
y is adjacent (in the X sense) to some point in 
B x and to some point in C~. 

If we use 26-connectedness for X, we can see that 
condition 1 is equivalent to C* = 1, condition 2 is 
equivalent to C = 2 (but computed in the 26-neigh- 
borhood) hence these two conditions characterize what 
we call surface points. Let us consider now figure 9: 
all points except the four (or the three) central one will 
be simple surface points. So this characterization suc- 
ceeds in segmenting the complex surface into simple 
ones. 

However we did not retain this definition because 
it is not always appropriate. In figure 10 one can see 

I I I I I l l l l l l l l l l ;  
I I I I I I I I I I I I I I I I  
I I I I l l l l l l l l l l l l  

m,l 
m | |  

I I I I I I I I i I I l 
I I I I  I l l l l l l l l l l  
I l i a  i m n u l u l a l u m  

I l l l  I I I  I t  I 1 .  u l  
I I I I  I I I I ! 1 1 1 1 1 1  
t i l l  I 1 [  I ! 1 1 1 1 1 1  

! ! 1 1  

!1 i 
l l l l l l . , i .  . i f .  

. . . . . . . .  1 ~ ,111"1111,,, 

i - 2  

i - 1  

i + 1  

i + 2  

Fig. 10. The point at the center of the window of the ith plane is 
not a simple surface point: the point at the upper right corner of the 
window in the (i + 1)th plane does not satisfy condition 3. See figure 
11 for a 3-D display of the surface. 

a set of points which should normally be interpreted 
as a simple surface (see figure 11): the central point 
of the ith plane is not a simple surface point according 
to the above definition. 

Fig. 11. 3-D display of the surface of figure 10. 
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To overcome this difficulty, we propose to use an 
approach based on an equivalence relation. The basic 
idea is to detect the simple surfaces defining a missed 
junction instead of the junction itself. 

Let x be a surface point: We call B x and Cx the two 
connected components of X 71 N1~(x) 6-adjacent to x. 
We say that two surface points x and y are in relation 
if there is a 26-path Xo, xl ,  • . . ,  xi, • • . ,  xn with x0 = 
x and xn = y such that for i E [0 . . . .  , n - 1]: 

- -  Bxe f l  Bxi+l ;~ 0 and Cxi f) Cxi+~ ~ O, or 
--Bxi f3 Cxi+l ;e 0 and Cx~ fl Bxi+~ ;e 0 

It is eas T to check that this relation is reflexive, sym- 
metric and transitive, that is, it is an equivalence rela- 
tion. We call simple surface any equivalence class of 
this equivalence relation. 

Using this equivalence relation, we are able to detect 
the undetected junctions. Let x be a point of a simple 
surface S C X. If  x has a 26-neighbor y which is a 
surface point and does not belong to S but to another 
simple surface S', we say that x is a junction point be- 
tween S and S'. 

A problem can still exist if  a junction is generated 
by several parts of the same simple surface (see figure 
12 where one simple surface generates a junction iden- 
tical to the one of figure 9). 

Fig. 12. Example of a single simple surface (in white) which generates 
a junction (in black). 

Let us define S(x) as the set of the surface points 
in Nz6(x ). We say that a surface point x is a junction 
point if S(x) is not included in a single simple surface 
(according to the above definition). It is obvious that 
we must work in a 5 x5 ×5 neighborhood of x for check- 
ing if x is (or is not) a junction point. 

5.4 Conclusion 

By using the numbers C* and C we have obtained a 
first topological classification of each object point of 
a 3-D binary image. Since some junction points are 
undetected, we use a less local approach to detect them. 
After these two steps, we have a topological segmenta- 
tion of a 3-D object into surfaces and surface junctions. 

6 Thinning and Topological Classification 

As we have seen, we have obtained a topological classifi- 
cation for each object point of a 3-D binary image. This 
classification provides us with a segmentation of this 
object in volumes, surfaces, curves, and junctions be- 
tween surfaces and/or curves. Because these last two 
categories are more powerful for describing an object 
than volumes, the topological classification is then ap- 
propriate for complex objects made of surfaces and 
curves. These surfaces and curves have to be one pixel 
thick to be well classified (all points of a two-pixels 
thick surface will be classified as border points). 

Objects that are more than one pixel thick can be 
found in edge images. In 3-D, edges are surfaces 
(because they separate volumes) which are rather thin 
if obtained by suppression of nonmaxima of the gra- 
dient or by extraction of the zero-crossings of the lapla- 
cian. However, it is safbr to apply a thinning algorithm 
to these edges in order to be sure to have one-pixel- 
thick surfaces. 

Such objects may also be found in skeleton images 
obtained by applying a thinning algorithm until stability. 
There is two types of thinning algorithm: the first is 
designed for thinning surfaces, the second is designed 
for thinning curves. We obtain then a complex set of 
surfaces or a complex set of curves. 

In both cases, thinning is an important step before 
the topological classification. Several algorithms have 
been proposed for thinning 3-D objects--see (Morgen- 
thaler 1981; Lobregt, Verbeck, & Groen 1980; Tsao 
& Fn 1982; Hafford & Preston 1984; Gong & Ber- 
trand 1990). Two kinds of methods have been con- 
sidered: one reduces objects to surfaces and curves, the 
other transforms objects solely into curves. The basic 
idea is to remove in parallel simple points which satisfy 
some "geometrical" properties. 

6.1 New Characterization o f  Simple Points 

A point is called simple if its removal does not change 
the topology of the image. Kong and Rosenfeld (1989) 
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present a characterization with three conditions (see 
section 3.2) using the genus--as mentioned in their 
article, it is essentially due to (Tsao & Fu 1982). 

According to our topological classification (see table 
1), we get indirectly a new characterization of simple 
points which does not need the computation of the 
genus. 

Proposition 2. A point x is simple if and only if it 
verifies 

C* = NCa[X N N2~(x)] = 1 

and 

(? = NCa[X CI Nls(X)] = 1 

The proof of this proposition may be found in Bertrand 
and Malandain (1992a). 

6.2 A Thinning Algorithm 

The above definition of simple points can be used for 
designing a new thinning algorithm. Instead of propos- 
ing such an algorithm, we prefer to refer to (Tsao & 
Fu 1981), where thinning algorithms are characterized 
by two criteria: one of them can be easily modified for 
using the new definition of simple points. 

7 Detection of Significant Simple Surfaces 

Let us consider a complex object made of surfaces. If 
we delete all junction points, the remaining connected 
components are necessarily simple surfaces. These sim- 
ple surfaces with their adjacencies (given by the junc- 
tions) constitute a topological description of the object. 

j 

However, some of these simple surfaces are not signifi- 
cant, because they are too small. 

In order to detect only significant simple surfaces, 
we use a mathematical morphology approach--see 
Serra (1982; 1988). 

Given a set of simple surfaces, we "erode" them by 
suppressing their borders (the borders are detected by 
the topological classification). Be repeating this opera- 
tion, we perform an erosion of order two, etc. 

Then, we can either dilate the eroded simple surfaces 
into the original ones (the dilation has the same order 
as the erosion): we perform an opening of the simple 
surfaces; or reconstruct significant simple surfaces by 
dilating the eroded simple surfaces into the original 
ones until stability. In both cases, we obtain the signif- 
icant simple surfaces of the original complex object. 

An erosion of a great order requires topological clas- 
sification of all points at each iteration. Then, in order 
to decrease the computational cost, it is better to imple- 
ment the erosion of greater order by using a distance 
transformation--see Borgefors (1984)--followed by a 
thresholding. 

8 Experimental Results 

8.1 Vertebrae 

We consider two X-Ray C]? scanner 3-D images of a 
vertebra scanned in two different positions (see figures 
13 and 14). They contain about 256x256x50  voxels 
(each voxel is 0.5*0.5* 1 mm 3) whose intensity is coded 
with 256 discrete values. 

The two images of vertebrae can be registered by the 
application of a geometric transformation which is the 

"t , 2 

Fig. 13. A few slices of the vertebra scanned in the first position, and the corresponding skeleton. 
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Fig. 14. A 3-D representation of 

combination of  a translation, rotation and three dif- 
ferent scalings along three orthogonal principal axes. 
This transformation was computed by matching globally 
the sets of  data points: the rotation angle is 30 degrees 
along an axis that is tilted 11 degrees with respect to 
the vertical axis and scaling is close to 0.9 in two 
directions. 

We applied the thinning algorithm to the entire 
vertebra as a 3-D object, producing a skeleton shown 
in figure 13. These skeletons each contain about 14,000 
points, a figure which must be compared to the 170,000 
original data points in each 3-D image. These skeletons, 
despite their instability to noise, are good examples for 
our method because of the complexity of  the surfaces 
they are made of. 

Then, we applied our classification and simple- 
surface extraction algorithm to label each skeleton 
point. This computation takes 40 seconds of  CPU time 
on a DEC 5000. We show in figures 15 and 16 the main 

vertebra in both positions. 

topological structures extracted for the two vertebrae. 
We extracted from these structures the junction points 
of both vertebrae, then we applied the geometric trans- 
formation found between them (see figures 17 and 18). 
It is easy to check the accurate superposition of the ex- 
tracted structures between the two vertebrae. This shows 
the astonishing stability of  the segmentation: a single 
quasi-rigid transformation can superimpose most of the 
structures within a tolerance of _+1 voxel. 

Instead of  junctions, one can use extracted simple 
surfaces. In order to obtain a robust segmentation of 
our surfaces, we perform an erosion of  order 2 of  the 
simple surfaces from their border toward their interior. 
We use for that computation a thresholding of  the result 
of the distance transformation on simple surfaces. We 
apply our characterization and simple surface extrac- 
tion algorithm to the result of  erosion. 

After this step of  erosion, we apply a conditional 
dilation of order 2 of the remaining simple surfaces with 

Fig. 15. Upper view of the skeleton of the vertebra in both positions. Surface points are dark grey, junction points are light grey, and edge 
points are medium grey. 

Fig. 16. 3-D representations of the skeleton of the vertebra in both positions (with rescaling in the third dimension). Surface points are dark 
grey, junction points are light grey and edge points are medium grey. 
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Fig. 17. Projections on the XY-plane of the junction points of the skeleton of (from the left to the right) the first vertebra (1), the second vertebra 
(2), the first vertebra after the computed transformation (3), and the intersection of the dilated set of junction points of the second vertebra 
with the set of junction points of the first vertebra after transformation (4). 

<2 '" " 7" ~-----_ -__ - -  f - x  

Fig. 18. Same as figure 12 with projections on the IrZ plane. 

respect to the original skeleton. This is an opening of 
simple surfaces. We extract the simple surfaces of this 
result and we label them. The result of the labeling step 
is shown in figures 19 and 20. It is easy 
to check that we succeed in segmenting the complex 
surfaces into several simple surfaces which are 
stable (for more than 80% of them) from one object 
to the other. This can be used in a 3-D matching 
algorithm. 

8.2 Skulls 

Then, we consider two X-Ray CT scanner 3-D images 
of a skull scanned in two different positions (see figure 
21). They are made of about 51 slices (each slice con- 
tains 512×512 pixels, each pixel is 0.4"0.4 mm2), with 
a gap of 3 mm between two consecutive slices. As the 
vertebrae, both skulls can be registered by the applica- 
tion of a geometric transformation. 

Fig. 19. Upper view of the skeleton of the vertebra in both positions after the labeling of simple surfaces remaining after an opening of order 2. 

Fig. 20. Front view of the skeleton of the vertebra in both positions after the labeling of simple surfaces remaining after an opening of order 2 
(without rescaling in the third dimension). 
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,O ,q  
Fig. 21. A few slices ofthe skull scanned in the first position (to the left) and in the second position (to the right). 

We interpolated the data to obtain quasi-isotropic 
voxels of 0.8.0.8"1 m m  3, and we applied the thinning 
algorithm (see figures 22 and 23). We applied our 
classification algorithm to these objects to label each 
point. We shown in figure 24 the main topological 
structures extracted of the two skulls. They demon- 
strate, perhaps better than the vertebra example, the 
stability of the topological segmentation. 

9 C o n c l u s i o n  

We have proposed a new approach to segment a discrete 
3-D object into different classes of points which represent 
structures. The basic idea of this segmentation is the use 
of  two local measures based on very local computations 
which allow massively paraUel implementation. We ob- 
tain therefore a very fast segmentation of 3-D objects. 

Fig. 22. A 3-D representation of skull in both positions. 

Fig. 23. A 3-D representation of a skull in both positions after thinning. 
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Fig. 24. 3-D-representation of the labeled skulls in both positions. Surface points are light grey, junction points are grey, and edge points are black. 

The proposed classification gives a set of structures, 
junctions, or simple surfaces, which allows efficient 
registration of complex 3-D objects. 

We applied our method for the segmentation into 
simple surfaces of the 3-D skeleton of a complex 3-D 
object, and the result appears to be remarkably accurate 
and stable with respect to quasi-rigid transformation, 
despite the relative instability of the skeleton itself. 

Our method can be applied to the segmentation of 
3-D edges, provided that the edge detector preserves 
the topology of junctions, which is not the case for 
known 3-D edge detectors. 

Our future work will include a new 3-D edge detec- 
tor, and the application of our segmentation method to 
3-D edges, as well as its use to demonstrate robust 
matching of quasi-rigid complex 3-D objects. 
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