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Abstract

Background and purpose: Conformal radiation therapy techniques require the delineation of volumes of interest, a
time-consuming and operator-dependent task. In this work, we aimed to evaluate the potential interest of an atlas-based
automatic segmentation software (ABAS) of brain organs at risk (OAR), when used under our clinical conditions.

Materials and methods: Automatic and manual segmentations of the eyes, optic nerves, optic chiasm, pituitary gland,
brain stem and cerebellum of 11 patients on T1-weighted magnetic resonance, 3-mm thick slice images were compared
using the Dice similarity coefficient (DSC). The sensitivity and specificity of the ABAS were also computed and analysed
from a radiotherapy point of view by splitting the ROC (Receiver Operating Characteristic) space into four sub-regions.

Results: Automatic segmentation of OAR was achieved in 7—8 min. Excellent agreement was obtained between
automatic and manual delineations for organs exceeding 7 cm®: the DSC was greater than 0.8. For smaller structures, the
DSC was lower than 0.41.

Conclusions: These tests demonstrated that this ABAS is a robust and reliable tool for automatic delineation of large
structures under clinical conditions in our daily practice, even though the small structures must continue to be

delineated manually by an expert.

© 2007 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 87 (2008) 93—99.
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During the last 10 years, an increasing number of patients
have been treated with three-dimensional conformal radia-
tion therapy (3D CRT) with ever more sophisticated tech-
niques such as intensity modulated radiation therapy
(IMRT) or proton therapy.

These techniques imply steeper dose gradients. Accurate
delineation of several volumes of interest such as the target
volume and organs at risk (OAR) is therefore mandatory.
This step in radiotherapy treatment planning is highly
time-consuming for radiation oncologists and remains oper-
ator dependent [5,12,13,20,21]. The use of automatic seg-
mentation could be a solution to such drawbacks.

Several teams have developed tools for automatic seg-
mentation of structures of interest in the brain, such as
white matter hyperintensities [1], white and gray matter,
cerebrospinal fluid [18], the tumour target volume [9,15],
and brain structures including ventricles, thalamus, central
nuclei [9,17], and the putamen and cortex for neurosurgical
purposes [11]. To our knowledge, only one work clinically

evaluated the results obtained with such a tool on human
brain images by comparing manual and automatic delinea-
tions of the brain stem in 6 patients [4]. Very recently,
one team presented the evaluation of a software for auto-
matic delineation of structures of interest of head-and-neck
images for 7 patients [23].

The French company, DOSIsoft, commercialises a treat-
ment planning system (TPS) designated ISOgray™. This system
includes an atlas-based automatic segmentation (ABAS) soft-
ware for the delineation of organs at risk (OAR) in the brain.
The performance of this software can be evaluated at two lev-
els, either in optimal conditions of use (slice thickness, image
quality, etc.) or under the clinical conditions of a given insti-
tution that could be different. We aimed to evaluate the pos-
sible interest of version 3.1 of this tool when used in our daily
practice which differs from the optimal conditions specified
by the developers of the ABAS. After reviewing the principle
of the ABAS, we will present the pre-clinical retrospective
study that was performed in 11 patients by quantitatively

0167-8140/S$ - see front matter © 2007 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.radonc.2007.11.030



94 Automatic segmentation of brain organs at risk

comparing manual and automatic contours in terms of vol-
ume, position and shape.

Materials and methods

Principle of the ABAS

The general principle of the ABAS was described by Bon-
diau et al. [4]. It is composed of an artificial MRI of the brain
[6,7] (http://www.bic.mni.mcgill.ca/brainweb) on which
each cerebral structure of interest, from a radiotherapy
point of view, was manually delineated by an expert accord-
ing to the Talairach atlas [22]. Six structures can be auto-
matically segmented: the eyes, optic nerves, optic
chiasm, pituitary gland, brain stem, and cerebellum.

The steps of the automatic segmentation procedure are
as follows:

Step A: an affine transformation (which includes rota-
tion, translation, shearing and scaling) is used to roughly
align the artificial MRI with the patient MRI that is to be seg-
mented into anatomical structures. To that end, the so-
called ‘'Block-Matching’’ algorithm, that locally optimises
a correlation coefficient, was used [16]. This yields a trans-
formed artificial MRI (t-MRI).

Step B: a second transformation is done to match the t-
MRI and the patient MRI.

At this point, the transformation is ‘‘multi-affine’’ [8]. At
each iteration, the algorithm searches local affine transfor-
mations, with the ‘‘Block-Matching’’ algorithm, for some
structures of interest of the brain, typically the organs at
risk that are delineated in the artificial MRI. Then, the fast
polyaffine framework [3] allows compounding them to yield
a global invertible transformation. The algorithm iterates
until stability is reached.

Step C: the transformations applied in step A and step B
are applied to the atlas to obtain the segmented cerebral
structures on the patient MRI.

The algorithm was developed for T1-weighted MR images
without injection of gadolinium contrast agent and the
developers recommend using 2-mm thick or smaller slices.

Clinical evaluation

Data acquisition

A retrospective study of a series of 11 adult patients who
were treated with conformal radiation therapy in our insti-
tution was conducted using the ABAS. These patients had
primary brain tumours including high-grade gliomas, unfa-
vourable low-grade gliomas or meningiomas (that were
either biopsied, partially or ‘‘completely’’ resected). The
median age was 47 years old.

Two specialists, a radiation-oncologist (FD), and a neuro-
radiologist (FB), together manually delineated the six previ-
ously described structures of the 11 patients. To help the
experts delineate the tumour and OAR, before treatment
planning for each patient, a CT/MR image registration (rigid
transformation) was performed on previously tested soft-
ware integrated into the ISOgray™ database [14].

The CT images were acquired on a LightSpeed 16 scanner
(General Electric Healthcare), with the patient’s head
immobilized in a thermoplastic mask. The MR images were
acquired on a GE Signa Excite 1.5 T scanner (T1-weighted
axial images, sequence AX 3D SPGR with gadolinium con-
trast injection) with a head coil. The two sets of images
(MR and CT) were acquired for each patient on the same
day in our department using 3-mm thick slices.

Data analysis

The performance of the automatic segmentation soft-
ware was assessed by quantitatively comparing manual
and automatically generated contours in terms of volume,
position and shape. A sensitivity and specificity study was
also conducted. Manual segmentation was used as the refer-
ence segmentation.

Regarding the volume, the difference between the auto-
matic volume (Vauto) and the manual volume, or reference
volume (V,f), was calculated for each structure, as follows:
AV (%) _ WVasto = Vierl 40, (1)

vref

Regarding the position, the three coordinates (x, v, z) of the
centres of gravity of the automatic and reference structures
were compared: AX = |Xauto — Xref|s AY = [Vauto — Vret|s AZ =
|Zauto — Zref|. TO quantitatively compare automatic and
reference structures in terms of shape, we computed the
Dice similarity coefficient (DSC) [10] defined as:

2TP
DSC= TP AN PPy @)
where TP (true positive) is the number of voxels common to
both automatic and manual segmentations, FN (false nega-
tive) is the number of reference volume voxels that are not
covered by the automatic segmentation and FP (false posi-
tive) is the number of voxels over-segmented by automatic
segmentation compared to manual segmentation (Fig. 1).
DSC values ranged from 0 to 1, and were identical to 1 if
automatic and manual volumes were equal and the intersec-
tion was complete.

Automatic
segmentation

Manual
segmentation

Fig. 1. Definition of true negative (TN), true positive (TP), false
negative (FN) and false positive (FP) voxels considering the
automatic and manual (reference) segmentations.
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The sensitivity (Se) and specificity (Sp) of the ABAS were
also computed as follows:

TP

i 3)
™

and Sp = NI (4)

where TN (true negative) is an image voxel not included
either in the automatic volume or in the reference volume
(Fig. 1). A Receiver Operating Characteristic (ROC) analysis
was done by plotting the sensitivity vs. (1 — specificity) for
each delineated structure. The best possible result was ex-
pected to yield a point in the upper left corner or coordi-
nate (0, 1) of the ROC space, representing 100% sensitivity
(all voxels are true positive) and 100% specificity (no false
positive voxel is present). This analysis allowed us to visual-
ize the distribution of the points for each structure in the
ROC space and to determine the satisfactory automatic
delineations and discard the suboptimal ones.

Given the large number of TN voxels in the images rela-
tive to FP voxels, when considering Eq. (4) and Fig. 1, the
Sp values would probably be close to 1 with weak variations.
To obtain consistent specificity results, the TN volume had
to be limited to a similar number of voxels to that of a given
manually or automatically delineated structure. In our
work, we decided to define the TN volume in relation to
the reference volume for each structure as follows:

TN+ FP = o Vyer, (5)

where « is a coefficient to be computed. One condition to be
fulfilled is 1 — Sp < 1 thus
FP
< 1.
TN-+FP ™ 1 (6)
When Egs. (5) and (6) were combined, we found that «
should not be below FP/V,e;. The ratio FP/V,es was com-
puted for all the structures and for the 11 patients. Sec-
ondly, the value of o was defined as the integer above the
maximum value of FP/V,es. Finally, the specificity, Sp, was
then computed as follows:

FP
o - Vier .

1-Sp=

7)

Results

The ABAS was used successfully in all the patients: the
process was robust, reliable and fast. To automatically
delineate the 6 structures, with no user intervention, the
average mean time required was 7—8 min using a computer
workstation with 4 x 2-GHz CPU and 4-G memory. The time
required for manual delineation of the same structures by a
radiation oncologist was estimated at about 30 min to one
hour.

Fig. 2 shows an example of manual and automatic delin-
eations. Fig. 2a shows a best case congruence for eyes, op-
tic nerves, the brain stem and cerebellum. Fig. 2b shows a
worse case congruence for optic nerves and the optic
chiasm.

Table 1 shows the comparison between manual and auto-
matic segmentations. The differences between the centre-
of-gravity coordinates of the manually and automatically
segmented structures were below or equal to 2 mm for
the 3 directions (left—right (x), cranio-caudal (y) and ante-
ro-posterior (z) directions), except for the optic nerves for
which the deviation was greater than 3.8 mm in x- and z-
directions. Regarding the volumes, the automatic segmen-
tation underestimated the volume of all the structures from
15% (brian stem) to 50 % (optic chiasm), except for the optic
nerves.

DSC values were 0.30 (range, 0—0.72) for the pituitary
gland, 0.41 (range, 0—0.58) for the optic chiasm, 0.38
(range, 0.4-0.53) for optic nerves, 0.81 (range, 0.78—
0.85) for the eyes, 0.84 (range, 0.79—0.86) for the cerebel-
lum and 0.85 (range, 0.80—0.88) for the brain stem. Fig. 3
shows that DSC values were high (greater than 0.80) for or-
gans larger than 7 cm?, and tended towards the optimal va-
lue of 1 for the eyes, cerebellum and brain stem.

Fig. 4 shows the ROC analysis of the performance of
automatic segmentation compared to manual segmenta-
tion. The ROC curves for the eyes, brain stem and cerebel-
lum exhibited the same behaviour: all the points were
localized in the upper left corner of the ROC space. This
means that under our clinical conditions, the ABAS exhib-
ited both high sensitivity and specificity for the larger or-
gans. In the case of the pituitary gland and optic chiasm,
the points were mainly localized in the lower left corner
of the ROC space: the sensitivity was therefore very low
for small structures. In the case of the optic nerves, the
points were more dispersed over the ROC space: the
results of the ABAS for the optic nerves among the 11
patients were inhomogeneous.

Discussion

In a fundamental study, Rohlfing et al. [19] proposed a
complete but complex methodology to assess the perfor-
mance of atlas-based automatic segmentation software
and applied it to images of bee brains. In our work, we tried
to estimate in clinical conditions the possible interest of a
commercial ABAS (ISOgray™ from DOSIsoft) by using a meth-
odology more adapted for clinical user.

The results obtained with the tested ABAS were satisfac-
tory for all the parameters evaluated (position, volume,
DSC) for the larger organs (eyes, brain stem and cerebel-
lum). Contour positioning of the optic chiasm with auto-
matic segmentation was satisfactory but the volume was
largely underestimated (—50.6%) and thus the DSC was
weak. The results obtained for the pituitary gland were
quite similar to those of the optic chiasm but with less
underestimation of the volume (—36.8%). All the parame-
ters evaluated for the optic nerves were unsatisfactory: dif-
ferences in their position exceeded several millimetres and
their volumes were overestimated. These results were well
correlated with the ROC analysis (Fig. 4).

However, these resulting volume differences must be
considered in the light of the following discussion. In the
case of the cerebellum, the difference in volume between
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Fig. 2. Manual (red lines) and automatic (green lines) delineations for 2 patients: (a) example of best case congruence for optic nerves, eyes,
brain stem and cerebellum (b) example of worse case congruence for optic nerves and optic chiasm.

Table 1

Comparison between automatic and manual segmentations in terms of centre of gravity and volume (mean values for the 11 patients)
Segmented organs Ax (mm) (SD) Ay (mm) (SD) Az (mm) (SD) AV (%) (SD)
Pituitary gland 1.3 (1.1) 2.0 (1.4) 1.6 (1.3) —36.8 (35.9)
Optic chiasm 0.8 (0.6) 0.8 (0.9) 1.2 (1.2) —50.5 (14.2)
Right optic nerve 4.4 (1.8) 1.5 (1.3) 5.3 (3.3) 32.6 (22.2)
Left optic nerve 3.8 (2.1) 1.8 (1.3) 6.5 (2.6) 30.0 (28.1)
Right eye 0.5 (0.3) 0.5 (0.3) 0.4 (0.4) —24.7 (6.7)
Left eye 0.5 (0.4) 0.5 (0.3) 0.3 (0.2) —27.8 (5.1)
Brain stem 0.2 (0.2) 0.8 (0.6) 0.6 (0.5) —14.8 (4.8)
Cerebellum 0.7 (0.8) 0.9 (0.6) 1.0 (0.6) —16.4 (8.7)

For volumes, a negative value means that the automatic segmentation underestimates the structure volume compared to the manual
segmentation.
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Fig. 3. Dice similarity coefficient values as a function of the manual segmentation mean volume.
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Fig. 4. ROC analysis of the performances of automatic segmentation compared to manual segmentation (=reference segmentation).

automatic and manual segmentations was about —16%. This
means that automatic segmentation underestimated the
volume compared to manual segmentation. If a 2 mm nega-
tive margin is applied to the initial manual contour
(Vi =131.0cm?), then the corresponding volume (Vi.2mm)
would be equal to 111.6 cm?®. The difference between V;
and Vi,mm in terms of volume would therefore be equal to
—15.5%. In other words, the volume errors for the cerebel-
lum correspond to small spatial errors which are equivalent
to a contraction of the manual volume by 2 mm. If the same
analysis is applied to the eyes, the 26% volume underestimation
by the ABAS corresponded to a margin that was slightly larger
than 1 mm. In the case of the brain stem, the 15% volume
underestimation corresponded to a margin lower than 1 mm.

The same analysis cannot be applied to the smallest
structures (optic chiasm, optic nerves, pituitary gland)
due to the complexity of the shapes.

Finally, if the ROC analysis is considered from a radio-
therapy point of view, the performance of automatic seg-
mentation could result in overirradiation of OAR voxels
(FN voxels) or possible underirradiation of target volume
voxels (FP voxels). Fig. 4 shows that the higher the sensitiv-
ity, the lower the risk of overirradiation of normal tissues
(OAR) and the higher the specificity, the lower the risk of
underirradiation of tumour tissue: any existing neoplastic
tissue would not be falsely considered as normal tissue
requiring protection. As suggested by Andrews [2], we sub-
divided the ROC space into 4 sub-regions, as represented
in Fig. 5:

(1) the ‘‘acceptable’’ region: both the sensitivity and
specificity are high. OAR are adequately segmented,
thus well protected, and the number of possibly
underirradiated target volume voxels is low,
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Fig. 5. Subdivision of the ROC space into four sub-regions following
the instructions of Andrews [2].

(2) the **poor’’ region: the specificity is high and the sensi-
tivity is low. OAR are not sufficiently protected, but the
number of underirradiated target volume voxels is low,

(3) the ‘‘high risk’’ region: the sensitivity is high and the
specificity is low. The contours of OAR are too large,
therefore a neighbouring target volume could be
underirradiated,

(4) the ‘‘unacceptable’’ region: both the sensitivity and
specificity are low. The automatic segmentation qual-
ity is completely unsatisfactory. OAR are not ade-
quately protected and a neighbouring target volume
could be underirradiated.

If this 4-sub-region scheme is applied to Fig. 4, then the
performances of the ABAS would be considered ‘‘accept-
able’’ for the eyes, brain stem, and cerebellum. The speci-
ficity of automatic segmentation is very satisfactory in the
case of the pituitary gland and optic chiasm but the sensitiv-
ity is low which corresponds to the ‘‘poor’’ region. In the
case of the optic nerves, most of the points were in the poor
region but the specificity was more variable.

The contours delineated with the ABAS were very satisfac-
tory for the larger organs with volumes exceeding 7 cm?.
However, one must bear in mind that the ABAS was developed
using non-contrast-enhanced MRI with 1-mm thick slice
images and that the developers recommend using 2-mm thick
or smaller slice images. In the present retrospective study,
we wanted to test the performance of the ABAS under our
clinical conditions, i.e., with a slice thickness equal to
3 mm. The pituitary gland and optic chiasm were often only
visible on one slice which explains why the results were not
as satisfactory as expected. The use of 1-mm thick slices
might improve the contour delineation of small structures.
However, the complexity of all the surrounding anatomical
information could only be analysed by an expert.

Another noteworthy point is that this atlas was developed
for adults. Whether the same atlas can be used in a pediat-
ric context (two additional structures, the cochlea and the
supra-tentorial parenchyma, would have to be included),
or whether a specific atlas should be constructed, warrants
investigation.

Conclusion

The aim of this work was to evaluate the possible interest
of version 3.1 of the ABAS, included in the TPS designated
ISOgray™, from DOSIsoft, for brain OAR when used under
clinical conditions of our daily practice, which are different
from those specified by the developers.

The present series of tests on the ABAS, used on T1-
weighted head MR images, demonstrated that it is robust
and reliable in our clinical practice for large structures
(brain stem, cerebellum, eyes), even though the small
structures (optic chiasm, optic nerves, pituitary gland) still
need to be delineated manually by an expert. This ABAS for
the brain can thus help radiation oncologists save time dur-
ing radiation therapy treatment planning and reduce the
variability in OAR delineation.
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