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Abstract— Although numerous methods to register brain-
s of different individuals have been proposed, no work has
been done, as far as we know, to evaluate and objectively
compare the performances of different non-rigid (or elas-
tic) registration methods on the same database of subjects.
In this paper, we propose an evaluation framework, based
on global and local measures of the relevance of the regis-
tration. We have chosen to focus more particularly on the
matching of cortical areas, since inter-subject registration
methods are dedicated to anatomical and functional nor-
malization, and also because other groups [7] have shown
the relevance of such registration methods for deep brain
structures. Experiments were conducted using 6 methods
on a database of 18 subjects. The global measures used
show that the quality of the registration is directly related
to the transformation’s degrees of freedom. More surpris-
ingly, local measures based on the matching of cortical sulci
did not show significant differences between rigid and non
rigid methods.
Key words: Evaluation, non-rigid registration, atlas match-
ing, neuroanatomy, MRI, cortical sulci.

I. Introduction

The comparison of brains of different individuals is an
ancient objective in medicine. It has been traditionally
treated by paper-based atlases with simple transformation-
s. However, over the last ten years, electronic brain atlases
[11], [17], [23], [30], [31], [42] have emerged and overcome
some limitations of traditional atlases [14]. To build such
an atlas, it is necessary to compare brains of different in-
dividuals so that each new subject contributes to the evo-
lution and the relevance of the atlas. The comparison of
brains is accomplished by registering one brain image vol-
ume to another using a non-rigid transformation. The re-
sult of the registration - which in general is a dense defor-
mation field - is used to project data from one subject to
another one. This projected data can be of different types
such as acquired or estimated, 2D or 3D, dense or sparse,
anatomical or functional.

An increasing number of authors study this registration
problem. As it would be a huge task to quote them al-
l, we refer the reader to [12], [26], [28] for a survey on
that subject. These methods are generally divided into t-
wo groups: photometric, or intensity-based, methods, that

exploit a relationship between voxels’ luminance, and geo-
metric methods that rely on the extraction and matching
of sparse landmarks. Geometric methods dramatically de-
pend on the extraction of features and are only relevant in
a neighborhood of these features. On the contrary, pho-
tometric methods use the entire available information and
make it possible to estimate transformations with high de-
grees of freedom. This rapid comparison may explain the
popularity of photometric methods which are used in rigid
multimodal fusion [45], [46].

Nevertheless, the superiority of photometric methods has
not been proved in the context of inter-individual fusion.
As a matter of fact, these methods usually rely on the min-
imization of an appropriate cost function that often relies
on the assumption that two corresponding voxels have com-
parable luminance. The different methods mainly differ by
the regularization scheme and optimization strategy which
have a crucial influence on the registration process. Un-
fortunately, it is not straightforward to determine whether
the formulation of the problem and the way it is solved
leads to anatomically consistent transformations. Is it rel-
evant to deform one subject toward another? Does a con-
sistent anatomical transformation exist? What should be
the “ideal” transformation between the brains of different
subjects? Does it even exist? What can we expect from
the different registration methods? These questions are
the starting point and the motivation of our work. It is
challenging to answer these questions, especially since the
“ideal” transformation surely depends on the application
(e.g., anatomical and functional normalization, automatic
segmentation of deep structures, automatic segmentation
of cortical structures).

In the context of this paper, the evaluation framework is
based on the assumption that some anatomical structures
are present in all individuals and registration algorithms
should aim at aligning these features. In this paper, we
have chosen to focus on the matching of cortical region-
s since the methods are dedicated to the anatomical and
functional normalization. Furthermore, other groups have
already shown relevant evaluation on deep brain structures
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[7].
The evaluation project was first granted under a French

national project and was extended to 6 registration me-
thods on a database of 18 subjects. The Vista project
(INRIA-CNRS, Rennes) gathered the registration results,
i.e., the deformation fields that were used to deform spe-
cific anatomical landmarks. The goal of this project is to
evaluate how well anatomical features are matched using
different registration methods using global and local crite-
ria.

This paper is organized as follows: section II presents
briefly the methods that were evaluated, section III
presents the data and the evaluation framework. Results
for global measures (based on the matching of dense and
global features) and local measures (based on the matching
of sparse and local features) are presented in sections IV
and V respectively. Conclusions are drawn in section VI.

II. Participants

This evaluation project was inspired by the Vanderbilt
evaluation project [45], [46] in which all participants down-
loaded the data and performed the registration processes
in their laboratory without knowing the evaluation crite-
ria. The results, i.e., the deformation fields, were sent to
IRISA (INRIA-CNRS, Rennes, France) and evaluated us-
ing criteria unknown to the participants of the evaluation
project. That means that the evaluation group did not re-
program the different methods. Consequently, it has not
been feasible to compare the methods on the basis of com-
putation time, sensitivity to parameters, difficulty to im-
plement, etc...

Six methods have been evaluated so far. We do not
describe extensively the different methods, but refer the
reader to the appropriate references. We have adopted the
following notation for the methods:

• Method A refers to the ANIMAL algorithm developed
by L. Collins et al. at the MNI [7]. This registration is
performed in two steps: a rigid transformation is first es-
timated to align the subject in the stereotaxic coordinate
system. A non-rigid transformation is then sought through
a multiresolution scheme. At each node of the grid, a trans-
lation is estimated that maximizes the correlation of image
gradients. In the present experiments, the finest resolution
of the method A is 4 mm.
• Method D refers to the Demons’ algorithm developed
by J.P. Thirion in the Epidaure Group at INRIA Sophia-
Antipolis [41]. Two transformations are first estimated,
one rigid and one affine. A dense grid of demons (that
is to say, one demon per voxel) is then used to estimate
a non-rigid transformation. The algorithm alternates be-
tween estimating forces for each demon and smoothing the
deformation field by a Gaussian filtering. More recently,
coworkers of the Epidaure group related the demon’s algo-
rithm to a second-order gradient descent of the Displaced
Frame Difference [33].
• Method I refers to the inverse consistent linear elastic
image registration algorithm developed by G. Christensen
and H. Johnson [5]. Given two subjects A and B, the

method jointly estimates transformation from A to B and
from B to A. The inverse consistency error is zero when
the forward and reverse transformations are inverses of one
another. Furthermore, the transformations obey the rules
of continuum mechanics and are parameterized by Fourier
series.
• Method M refers to a rigid transformation obtained by
maximization of the mutual information [27], [44] with a
Powell optimization scheme. This method does not appear
to be adequate when registering brains of different sub-
jects. However, it was included to serve as a comparison
basis since we expect to perform worst in this study. This
method has been implemented by IRISA (INRIA-CNRS,
Rennes) based on the published work [27], [44].
• Method P refers to the proportional squaring of Talairach
illustrated on figure 1. The method is based on the identi-
fication of the anterior comissure AC and posterior comis-
sure PC, as well as 5 brain extrema which makes it possible
to specify a partition of the volume into 12 sub-volumes
[39]. This defines a piecewise affine transformation. Al-
though semi-automatic (AC-PC and 5 extremal points of
the brain have to be located manually), the expertise need-
ed to accomplish this task is limited. This method has been
implemented by the IDM Laboratory (faculty of Medecine,
Rennes).

AC−PC plane

A C D E F G H IB

interhemispheric plane

Left hemisphere

Right hemisphere

ACV plane

Fig. 1. Principle of the Talairach proportional squaring system.

• Method R refers to the algorithm developed at INRIA
Rennes by P. Hellier et al. [19]. This method consists of a
robust estimation of the optical flow with a multiresolution
and multigrid minimization scheme. We note that there
may be questions to the validity of the evaluation of the
authors method since the evaluation criteria were know to
us. Despite this, we hope that the reader believes that we
acted in an unbiased manner.

III. Data and evaluation framework

For this evaluation, the underlying assumption is the
following: the anatomical structures that we use can be
retrieved among all individuals and the registration algo-
rithms should aim at aligning these features. In case of
“dense” features (i.e., tissues), the evaluation criterion is
an overlap measure after registration which is refered to as
a “global” measure. In case of “sparse” features (i.e., cor-
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tical sulci), the evaluation criterion is a distance measure
after registration which we refer to as a “local” measure.

We have acquired a database of 18 subjects (male, age
35+/−10, right handed and healthy). Each subject under-
went a T1-MR SPGR 3D study (GE 1.5T system, sagittal
slices). The raw MR data have been linearly interpolated
so that the voxel resolution is isotropic (the voxel resolu-
tion is 0.9375mm, except for 4 subjects where the voxel
resolution is 0.976562mm). The dimension of an image s-
lice is 256 × 256 for all subjects and the number of slices
are subject specific.

We chose an arbitrary subject as the reference subject.
For all methods, each subject (source image) was registered
to the reference subject (target image) so that all the reg-
istration results could be compared in the same reference
frame. Figure 2 (bottom) presents different views of the
reference subject. Although the image dimensions and res-
olutions are different, the deformation fields are expressed
in the voxel coordinate of each subject. Convolutions that
are necessary for the evaluation (i.e., computation of Lvv)
take into account the voxel resolution (typically, to cope
with Shannon’s criterion, the standard deviation of the
Gaussian kernel was taken as twice the voxel resolution).

One could think of using simulated data based on a mod-
el for the inter-subject variability to provide a gold stan-
dard deformation field to directly compare registration me-
thods. However no such data are currently available since
the modeling of inter-subject deformations is a highly chal-
lenging research area. Consequently, we use real image da-
ta and use independent evaluation measures derived from
the data.

Features extracted from all MR image volumes were used
to assess the quality of the registration processes. These
features were selected to be anatomically meaningful since
we wanted to determine how well the registration algo-
rithms align anatomical structures. Furthermore, the fea-
tures were selected so that they were not related to the
similarity, or the “forces” used to drive the registration pro-
cess. To be fair and objective, the evaluation was designed
to be independent of the registration algorithms involved
in this study.

We note that the extracted features on which the eval-
uation criteria are based might not be perfect and might
even be erroneous because of acquisition noise, limited pre-
cision of the extracting algorithms, interpolation schemes,
etc.. This is inevitable despite the robustness and accura-
cy of the extracting procedures. Therefore, these results
should only be considered as relative values and should not
be taken as “absolute” values of the performances of the
methods. Therefore, we consider this work as an “evalua-
tion” and not a “validation” of the methods. Despite this,
we think that (a) the errors can be averaged out by the size
of the database (assuming the errors are independent) and
(b) the methods are treated equally with respect to these
errors (assuming the evaluation features and registration
methods are independent).

IV. Global measures

A. Average volume

For each method, each subject is deformed toward the
reference subject using the transformation and trilinear in-
terpolation. It thus becomes possible to compute, for each
method, a mean volume by averaging the 17 deformed sub-
jects. Cut-planes through the average volumes are present-
ed in Figure 2. For each view, the average volume can be
visually compared to the reference subject. Furthermore,
we compute the Mean Square Error (MSE) of intensities
between the average volume and the reference volume (see
table I). Let R denote the reference volume, S̃p denote
the pth registered and interpolated subject, N denote the
number of subjects registered and #R denote the number
of voxels where the error is computed. Then, the MSE is
defined as :

MSE =
1

#R

∑

i,j,k

(

R(i, j, k) −

(

1

N

N
∑

p=1

S̃p(i, j, k)

))2

The MSE is not a good measure to evaluate the qual-
ity of the registration of one subject (first it is more or
less related to similarity measure used to drive all registra-
tion methods but P, and second it assumes that the MR
scanner calibration was identical for all acquisitions), but
it is still a useful measure for evaluating average volumes.
We only compute the MSE for the voxels belonging to the
brain’s segmentation mask of the reference subject (see sec-
tion IV-B), since some methods limit the computation of
the registration to a subset of voxels (e.g., stereotaxic space
for method A, segmentation mask for method I).

It must be noted that the registration of the subject 9
failed for the method A. Therefore, and for all the exper-
iments, subject 9 has been removed of method A’s results
(i.e. the evaluation is performed on 16 subjects for this
method).

From the visual and numerical results, we are tempted
to distinguish two classes of methods: D and R on one side
and A, I, M and P on the other. These results are ap-
parently directly related to the degrees of freedom (DOF)
of each method and this point will be discussed further in
section IV-E.

B. Overlap of grey and white matter tissues

The most straightforward way to assess the quality of
the registration is to evaluate how the tissues are deformed
from one subject to the other. Furthermore, if the evalu-
ation was only based on MSE, it would not be complete,
as the MSE is more or less related to the similarity used
to drive the registration processes, at least for methods A,
D, I, M and R. We extract grey matter and white matter
tissues from the MR volume using the method described
in [24]. This segmentation algorithm performs a 3D tex-
ture analysis using a clustering technique to give a rough
classification and is refined using a Bayesian relaxation.

This classification was used to measure how well grey
matter and white matter overlapped after registration. For
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Method A

Method D

Method I

Method M

Method P

Method R

Reference subject

Fig. 2. For each method, the mean volume (sagittal, axial and coro-
nal cut-planes) is obtained by averaging the deformed subjects
(17 for all methods except method A) and can be compared to the
corresponding view of the reference subject (bottom).

Method MSE MI Correlation
A 987.9 0.55 0.79
D 491.1 1.12 0.94
I 1067.9 0.59 0.82
M 1389.9 0.47 0.78
P 1064.4 0.45 0.74
R 385.6 0.91 0.92

TABLE I

Various similarity measures between the average volume and the

reference subject. Three different measures have been computed:

mean square error (MSE), mutual information (MI) and

correlation. These measures have been computed only for voxels

belonging to the segmentation mask of the reference subject’s brain.

Results for the three measures are roughly comparable and are

discussed in section IV-E.

each subject, the grey and white matter classes were de-
formed toward the reference subject using the deformation
field (or the registration parameters, see section II) and tri-
linear interpolation. The deformed classes were compared
to the classes of the reference subject by computing the
total performance overlap measure [1]. Let T1 denote the
tissue (grey or white) of a given subject deformed toward
the reference subject and T2 denote the corresponding tis-
sue of the reference subject. T1 and T2 are compared in
the volume Ω of the reference subject. For any set A, let

us note Ac 4

= Ω \ A, and #A the number of voxels of set
A. For brevity, we only keep the total performance mea-

sure [1] defined by the ratio (TP+TN)
(TP+FP+TN+FN) where TP

is the number of true positives (TP
4

= #(T1 ∩ T2)), TN

is the number of true negatives (TN
4

= #(T c
1 ∩ T c

2 )), FP

is the number of false positives (FP
4

= #(T1 ∩ T c
2 )) and

FN is the number of false negatives (FN
4

= #(T c
1 ∩ T2)).

For each method, the mean and variance of this measure is
computed over the database of 17 subjects, and the results
are given in table II.

These values must be interpreted carefully since we use
only binary segmentation classes which were deformed us-
ing trilinear interpolation. Higher order interpolation [25],
combined with fuzzy classes, would certainly give better
results. We have previously mentioned that the quantita-
tive measurements should not be taken as absolute values.
Method M does not give very satisfactory results, whereas
methods D, I, P and R seem to give better and similar re-
sults. Method A appears to perform worse than the other
methods, but is computed only down to 4 mm isotropic
image grid resolution.

We have performed an ANOVA (ANalysis Of VAriance)
on these overlap measures results. Conceptually, the goal
of ANOVA is to determine the amount of variability in
groups of data and to see if the variability is greater be-
tween groups than within groups. For the ANOVA anal-
ysis, we have as many groups as methods (i.e. we have
6 groups). In each group, the number of samples is the
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Methods Tissue Mean Standard deviation
A grey 91.9 0.08

white 89.6 0.07
D grey 95.8 0.04

white 96.7 0.04
I grey 93.0 0.07

white 95.0 0.03
M grey 88.8 0.13

white 87.5 0.17
P grey 93.5 0.06

white 95.1 0.04
R grey 93.9 0.07

white 95.2 0.07

TABLE II

Overlap, computed by the total performance measure, between grey

and white matter tissues after registration in percent. For each

method, the mean and standard deviation of the measure is

computed over the database of subjects.

number of subjects and each sample being the result of
the overlap between tissues after registration. For brevity,
we have combined results for grey matter and white matter
(i.e., the number of sample is twice the number of subjects).
The strength of ANOVA is to provide a compact measure
of the inter-group variance divided by the intra-group vari-
ance (more compact than the student t-test which would
have been needed to be performed for each subject). A
high F value of the ANOVA test indicates that the groups
can be distinguished from the distribution of samples.

For the overlap of tissues, we have obtained F = 225.8,
with p = 0.0001, indicating that there is a significant sta-
tistical difference between the methods. Figure 3 presents
the distribution of samples for each method, and the stan-
dard deviation. One can therefore visually appreciate in
this figure the difference between the methods.

Fig. 3. Distribution of tissue overlap after registration for each
method. The ANOVA has been performed on these groups.

C. Correlation of Lvv

We extract differential characteristics from the subjects
with the Lvv operator, introduced by Florack et al. [13].
This operator is related to the principal curvatures k1, k2 of
the iso-intensity surface I0 = I(x, y, z). It can be computed
by

Lvv(x, y, z) = −
1

2||w||2
[(I2

x(Iyy + Izz) − 2IyIzIyz)

+(I2
y (Ixx + Izz) − 2IxIzIxz) + (I2

z (Ixx + Iyy) − 2IxIyIxy)],

where

Ixiyjzk =
∂u(I(x, y, z))

∂ix∂jy∂kz
with u = i + j + k

and
||w||2 =

(

I2
x + I2

y + I2
z

)1/2
.

Partial derivatives are computed with a Gaussian filter
with a scale-space parameter fixed at 2 millimeters. The
sign of Lvv has a very precise interpretation: it can be
demonstrated that when limited to the cortical ROI the
crest of a gyrus corresponds to a negative value of the Lvv,
while a deep fold like a sulcus corresponds to its positive
part. Therefore, the sign of the mean curvature can be
used to distinguish between sulci and gyri [15].

For each subject, we deform the corresponding Lvv ac-
cording to the results of a given registration method using
trilinear interpolation. We then compared the deformed
Lvv with the Lvv volume of the reference subject by com-
puting a simple correlation. As the Lvv is relevant on the
brain only, we restrict the computation of the correlation
coefficient on the brain’s segmentation mask of the refer-
ence subject obtained with the method described in the
section IV-B. For each method, we compute the mean and
variance of this measure over the database of 18 subjects
and results are given in table III.

Method Mean Standard deviation
A 0.17 0.003
D 0.43 0.005
I 0.16 0.003
M 0.01 0.001
P 0.16 0.003
R 0.32 0.008

TABLE III

Mean and standard deviation of the correlation coefficient between

the reference Lvv and deformed Lvv.

We observe that the mean value of the correlation coef-
ficient is quite low for all the registration methods. This
might indicate that the matching of cortical features is not
very good, but that point will be studied more extensively
in section V. The difference between the rigid method M
(mean value of 0.01) and the other methods is significan-
t. Method D seems to give a slightly better result with a
mean correlation of 0.43.
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Fig. 4. For each method, distribution of Lvv correlation after reg-
istration. The ANOVA analysis has been performed on these
groups.

On this measure, we have also performed an ANOVA,
as laid out in section IV-B. We have obtained F = 395.6
with p = 0.0001 indicating that the methods provide signif-
icantly different results. As a matter of fact, the difference
between rigid method M (mean value of 0.01) and the oth-
er methods is large. This difference can be also observed
in figure 4 where the distribution of Lvv correlation after
registration has been plotted for each method.

D. Consistency of the deformation field

A key problem in registering brains of different subjects
is the consistency of the estimated deformation field. The
various ways in which the registration problem is modeled
lead to different properties of the deformation field: con-
tinuous, differentiable, one to one, onto, etc... In this work,
we did not try to exhibit differential properties of the field
(this study is not straightforward because the deformation
fields are defined in discrete space), but we want to exhibit
possible singularities of the field.

As noted in [5], the Jacobian of the transformation char-
acterizes these singularities especially zero-crossings. Re-
call that the Jacobian is the determinant of the first partial
derivatives of the transformation, thus leading to the fol-
lowing expression:

J(i, j, k) = (1 +
∂u

∂x
)(1 +

∂v

∂y
)(1 +

∂w

∂z
) +

∂u

∂y

∂v

∂z

∂w

∂x
+

∂u

∂z

∂v

∂x

∂w

∂y

−

�
(1 +

∂u

∂x
)
∂v

∂z

∂w

∂y
+ (1 +

∂v

∂y
)
∂u

∂z

∂w

∂x
+ (1 +

∂w

∂z
)
∂u

∂y

∂v

∂x �
where (u, v, w) are the components of the deformation field

ω (the transformation h is defined as h(x)
4

= x+ω(x)). The
partial derivatives were computed using a convolution with
a Gaussian derivative filter with standard deviation equal
to twice the spatial resolution of the voxels.

First, we compute for each method the percentage of
subjects for which we encounter voxels having a negative
Jacobian. All methods have a positive Jacobian except for

method D where 13 out of 17 (76.5%) transformations were
subject to folding as detected by zero-crossings of the dis-
crete Jacobian. Furthermore, we have computed, for each
subject and only for method D, the percentage of voxels
where the Jacobian is negative. We have found that 0.6%
on average of voxels had a negative Jacobian which repre-
sents less than 105 voxels in a volume of size 2562 × 176.
This number represents the average number of singularities
of the deformation field.

In addition to this, we would like to stress the following
statements:

• We have computed the Jacobian in the discrete domain.
The positivity of the Jacobian in the discrete domain does
not necessarily ensure that the Jacobian is positive in the
continuous domain. However, when the Jacobian goes neg-
ative in the discrete domain, it is likely to be true also in
the continuous domain.
• The positivity of the Jacobian does not ensure that the
transformation computed from volume A towards volume
B is the inverse of the transformation computed from vol-
ume B towards volume A.

E. Partial conclusion

In this part, global measures have been used to evaluate
the registration algorithms. Except for the MSE (Mean
Square Error) between the average volume and the refer-
ence volume, it must be noted that the measures rely on
anatomical features (grey and white matter tissues, Lvv

volume) that are not linked to the similarity used to drive
the registration process.

As expected, method M, which is only a rigid transfor-
mation, gives the poorest results for inter-subject match-
ing. These measures make it possible to distinguish rigid
and non rigid methods. More precisely, we think that the
results are very related to the degrees of freedom (DOF)
of the estimated transformations. A gross classification of
the methods, from the lowest DOF to the highest, would
be: M(rigid), P (piecewise affine), A (grid of 4 mm) and I
(the inverse consistency constraint reduces the DOF of the
transformation), R and D (dense deformation field with
similar DOF). The results for global measures follow more
or less the same order.

However, one should be careful when increasing the de-
grees of freedom of the estimated transformation. As noted
in section IV-D, the Jacobian of the transformation might
go negative, expressing a singularity of the field. It is d-
ifficult to affirm which properties of the deformation field
are realistic. One could imagine that the Jacobian would
tend to zero in areas where anatomical structures under-
go a modification of topology (for instance, a sulcus being
present or interrupted for different subjects).

V. Local measures

A. Segmentation of cortical sulci

Descriptive anatomy of the cerebral cortex is based on its
subdivision in a set of sulci and gyri. The sulci are of great
interest in this paper since they are relevant anatomical
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and functional landmarks. Due to the inter-individual cor-
tical variability, the matching of sulci is crucial to evaluate
different registration methods.

Different authors have studied the detection and segmen-
tation of cortical sulci [15], [29], [35], [36], [38], [43], [47],
but we will only describe briefly the method we use in this
paper [15]. The sulci shapes are extracted with the help of
differential geometry and more precisely the curvature in-
formation. The “active ribbon” method makes it possible
to model sulcal patterns by a set of surfaces in 3D space,
defined as B-splines, representing the buried part of the
cerebral cortex.

A compact numerical description of a sulcus can be ob-
tained by modeling this sulcus with a surface representing
its deep part. The method used is based on the active
contour paradigm evolving from a 1D curve located at the
external part of the brain to a 2D surface modeling the
medial axis of the sulcus. Since a detailed description of
this method can be found in [15], we only recall its main
stages below.

A.1 Segmentation of cortical regions

Prior to the extraction of cortical features we use a coop-
eration between contour-based and region-based segmenta-
tion methods in order to extract the brain and to label the
gray and white matter and CSF regions [24]. From this
brain tissue classification procedure, a mask representing
the cortex with the CSF included in its folds is computed
[15]. Two different anatomical structures belong to this
mask: the gyri and the sulci. This mask is called cortical
ROI.

A.2 Segmentation of cortical folds

The goal is to characterize sulci and gyri within the cor-
tical ROI. As long as we deal with these highly convoluted
shapes, one natural way to characterize sulci from gyri is to
analyze the curvature information of all iso-intensity sur-
faces belonging to the ROI. Differential geometry allows
us to describe the shape of an iso-surface by its two prin-
cipal curvatures and by a combination of them, namely
the Gaussian and the mean curvatures. The operator used
to compute curvature information is a 3D extension of the
Lvv operator introduced by Florack [13], which has already
been described in section IV-C.

A.3 Numerical modeling of sulci using “Active Ribbons”

A compact and parametric description of a sulcus can be
obtained by a medial surface representing the buried part
of this sulcus. The method used here consists of modeling
this surface by using an “active ribbon” which evolves in
the three-dimensional space from a 1D curve at the learning
stage to a 2D surface at the final step. “Active ribbons”
are based on the active model paradigm and simulate the
behavior of a physical object submitted to a set of forces.
Forces are defined such that a curve evolves from its initial
position at the surface of the brain to the bottom of the
sulci.

For each subject of the database, we extract 12 major
sulci with the method described above. The sulci used
for the evaluation project are the central sulcus, precentral
sulcus, postcentral sulcus, sylvian fissure, superior frontal
sulcus and superior temporal sulcus. Figure 5 shows a vol-
ume rendering of the left cortex of the reference subject
with the segmented sulci. It is well known that cortical
sulci may be interrupted [32]. The “active ribbon” method
makes it possible to extract topologically varying sulci with
each part of a sulcus being described by a B-spline.

Fig. 5. Extracted sulci on the left hemisphere of the reference subject.
The central sulcus is in red, the precentral sulcus in yellow, the
postcentral sulcus in orange, the superior frontal sulcus in blue,
the lateral sulcus in green, and the superior temporal sulcus in
cyan. The deep parts of the sulci are also segmented but not
visible on that figure due to the volume rendering of the subject’s
brain.

We used these extracted sulci to assess locally the reg-
istration of the different methods. For each subject, each
sulcus is deformed toward the reference subject using the
transformation from the given registration method. Since
the sulci are modeled by 3D B-splines and their associated
control points, we deform each control point of the spline
using trilinear interpolation. The deformed control points
naturally define the deformed sulcus which can be com-
pared to the corresponding sulcus of the reference subject.

We visualize how sulci deform toward the correspond-
ing sulcus of the reference subject in section V-B. Beyond
visualization, a numerical evaluation is performed in sec-
tion V-C by computing distances between deformed sulci
and corresponding sulci of the reference subject.

B. Visualization of deformed sulci

We have chosen to visualize how the left central sulci of
the 17 subjects deform toward the left central sulcus of the
reference subject. Figure 6 shows the left central sulcus of
the reference subject in yellow, the left precentral sulcus of
the reference subject in red, and the left postcentral sulcus
of the reference subject in green. The left central sulci
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of the different subjects are deformed toward the reference
subject and are drawn in blue. Ideally, the blue sulci should
be superimposed on the yellow sulcus.

It can be observed that (a) the different registration me-
thods seem to give a significant dispersion around the refer-
ence sulcus and (b) it seems difficult to distinguish visually
the performances of registration methods. The postcentral
and precentral sulci of the reference subject (in red and
green) give the order of magnitude of the dispersion and
indicate that deformed central sulci are located in between
these two sulci. However, in most cases, a crude identi-
fication algorithm (i.e. labeling deformed sulci as central
sulci) based on the position of deformed sulci with respect
to the left central reference sulcus would probably not give
satisfactory results.

Method A Method D

Method I Method M

Method P Method R

Fig. 6. Left central sulci (in blue) of the database deformed toward
the reference subject. The deformed sulci should ideally be su-
perimposed to the left central sulcus of the reference subject (in
yellow). The left precentral sulcus (in red) and postcentral sulcus
(in green) of the reference subject are also drawn. One should
note that although deformed sulci are almost always in between
the postcentral and the precentral sulci, the variability and dis-
persion of deformed sulci around the central sulcus is quite large.

C. Numerical evaluation

Beyond visualization, a numerical evaluation is needed.
In this section, we investigate two measures that reflect
more or less two aspects: the global positioning of sulci on
the one hand (section V-C.1) and the similarity of shapes
on the other hand (section V-C.2).

C.1 Distance between registered sulci

To assess how well sulci are matched, we compute the
distance between a sulcus deformed toward the reference
subject and the corresponding sulcus of the reference sub-
ject. It is an interesting but challenging question to know
how sulci should be matched. Therefore, we compute four
distances :

• As explained in section V-A, sulci are modeled by B-
splines, and may be resampled. It is possible to associate
the distance between sulci to the distance between control
points. This distance assumes that there is a one-to-one
correspondence between sulci control points. There might
be cases where homologous sulci are interrupted. In this
case, we use the following procedure (see figure 7) : (a) If
we note pm as the maximum depth (pm = max{p0, p1, p2}),
the sulci are resampled along the depth direction in or-
der to obtain the same number of control points (pm)
for all the sulci segments on their depth axis. (b) Note
lm = max{l1 + l2, l0} (l0 is the length of the uninterrupted
sulcus and l1 and l2 and the length of the interrupted sul-
cus). If lm = l1+l2, the sulcus S0 is resampled by a factor of
lm
l0

and sulci Si, i ∈ {1, 2} remain identical. If lm = l0, then

the sulci segments Si, i ∈ {1, 2} are resampled by a factor of
lm

l1+l2
while sulcus S0 remains identical. When two homolo-

gous sulci are both interrupted, we match each segment as
if they were continuous. This is possible because we have a
labeling of each piece, Inferior-Superior (for the precentral
sulcus for instance) or Anterior-Posterior (for the superior
temporal sulcus for instance). We have presented an ap-
proach for a sulcus described by two distinct segments, but
this method can easily be extended if we have to deal with
sulci having more segments. This distance between control
points is referred to as distance D1.
• A distance between sulci can be given by the distance
between centers of gravity. This distance between sulci
gravity centers is referred to as distance D2.
• The assumption of control points correspondence is ques-
tionable. Consequently, we compute a distance based on
the assumption that a point of a sulcus should correspond
to the nearest point on the other sulcus. This distance
between sulci closest points is referred to as distance D3.
• A classical distance between shapes is the Hausdorf-
f distance. Between two point sets A and B, the
symmetric Hausdorff distance is defined as D(A, B) =
max{h(A, B), h(B, A)}, where h(A, B) = maxa minb ||a −
b||. This measure is a priori sensitive to noise. This sym-
metric Hausdorff distance is referred to as distance D4.

� �

� �

� �

� �

���

�
	�� 
�	
���

�
	�� 
�	
���

� �

� �

�
	�� 
�	
���
��� ���

Fig. 7. Left: distances of two homologous sulci, one being interrupt-
ed.

To present a compact measure, the mean of each distance
is computed for all the subjects and all the sulci (we have
12 sulci extracted for each of the 18 subjects). Results are
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presented in table IV where the distances are expressed in
fractional voxels (the resolution of the voxels is 0.93mm,
see section III for more details).

Method D1 D2 D3 D4

A 9.9 7.3 4.2 16.4
D 10.3 7.7 4.3 17.9
I 11.4 9.0 5.4 19.1
M 11.5 9.1 5.8 18.7
P 10.7 8.2 4.9 18.2
R 10.8 8.3 4.8 17.7

TABLE IV

Average distance in fractional voxels between registered sulci and

corresponding sulci of the reference subject. Four distances have

been computed: D1 distance between sulci control points; D2

distance between sulci gravity centers; D3 distance between sulci

closest points; D4 symmetric Hausdorff distance. For all distances,

the mean is computed for all the subjects and all the sulci.

We have performed an ANOVA on the distance measure-
ment D1, as laid out in section IV-B. The following results
have been obtained: F = 2.001 with p = 0.085. Based
on these results, it seems difficult to distinguish clearly the
registration methods. In other words, the variability with-
in groups (intra-method variability) is quite comparable to
the variability between groups (inter-method variability).
Both variances are shown in figure 8 where the distribution
of mean sulci distance has been plotted for each method.

Fig. 8. Distribution of mean sulci distance D1 after registration.
Since the distances give the same classification, we have retained
distance D1 for the ANOVA.

It is also interesting to compute the distance for par-
ticular sulci. We chose to restrict the computation of D1

to the central sulci, superior frontal sulci and sylvian sulci
(left and right hemisphere). These results are presented
in table V. It can be seen that the distances for the cen-
tral sulci are significantly lower which could be explained

by the stability of the central sulcus over individuals [32].
A surprising result comes from the superior frontal sulcus
for which the method M (rigid registration), gives a better
matching than non-rigid methods.

Method Central Superior frontal Sylvian
A 6.5 10.4 9.5
D 6.9 11.1 9.9
I 8.3 12.0 10.8
M 8.5 10.5 11.8
P 7.1 11.9 10.2
R 7.4 10.8 9.6

TABLE V

Mean distance between deformed sulci and corresponding sulci

computed on sub-groups of extracted sulci (central sulci, superior

frontal sulci and sylvian fissure).

C.2 Statistical study of deformed shapes

The distance between registered sulci is not a sufficient
measure to characterize how sulci deform. This is illus-
trated in figure 9, where two sulci 1 and 2 are deformed
toward the reference sulcus. Sulcus 1 is probably the best
in terms of positioning, but sulcus 2 may be better in terms
of shape. To characterize shape similarity, we use the Prin-
cipal Components Analysis (PCA) technique [8].

��

�

Fig. 9. The sulcus R is the reference sulcus, and sulci 1 and 2 are
deformed sulci that should ideally match the reference sulcus.
Which one is the best?

For each method, we have a population of shapes that are
computed from the sulci of the different subjects deformed
toward the reference subject according to the transforma-
tion of the considered registration method. The purpose
of PCA is to analyze the variations of each shape x with
respect to the reference shape xref (the reference sulcus).
The main idea of PCA is to decompose the displacement
x̃ = x − xref on the eigenvectors of the covariance matrix
(C = E[(x−xref )(x−xref )T ]). This decomposition induces
a metric of the shape space.

For brevity, we have chosen to consider the trace of the
covariance matrix. This measure reflects the entire varia-
tion of the population around the reference sulcus along all
the axes of the decomposition. Furthermore, traces can be
compared since it is invariant when the axes of the decom-
position change (under the condition that the referential
spaces are orthogonal). These results are given in table VI
for the left central sulci left superior frontal sulci and left
sylvian sulci. For each method, the trace is normalized by
the number of subjects involved.
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Method central superior frontal sylvian
A 547 736 1172
D 675 767 1046
I 723 907 1121
M 621 622 1373
P 510 859 1233
R 735 741 1064

TABLE VI

For three different populations of sulci, the variations of deformed

sulci can be analyzed by principal component analysis. The trace of

the covariance matrix, normalized by the number of subjects,

expresses the entire variation of deformed sulci around the reference

sulcus in the shape space. The lower the trace, the lower the

variation around the reference sulcus.

In addition to the total variation along all axes, it is
possible to compute the percentage of total variation that
is explained by each mode. Figure 10 presents the relative
importance of variation modes for the first few modes (the
next modes are not relevant since they explain less than 1%
of variation). We observe that the importance of the first
modes for non-rigid methods is greater (the two first modes
explain more than 75% of the dispersion for methods A, D,
I and R). The variation modes for rigid methods seem to
be more equally distributed.

Fig. 10. Relative importance of variation modes for each registration
method. Non-rigid methods A, D, I and R are characterized by a
strong first mode (almost 70% of total variation) while methods
M and P have more equally distributed modes.

D. Partial conclusion

In this section, we used local measures based on matching
sulci to evaluate different registration methods. These local
measures are based on matching cortical sulci extracted
with the method described in [15]. We have provided visual
inspection and numerical evaluation of the registration of
sulcal patterns.

These measures do not make it possible to affirm that
non-rigid methods used in this paper perform better in reg-
istering major cortical sulci from different subjects. This
result is quite surprising.

In addition, average distances between deformed sulci
and reference sulci should be compared to average distances
between neighboring sulci of the reference subject. Let us
note that for the reference subject, the distance between
the precentral (respectively postcentral) sulcus and the cen-
tral sulcus is 25 voxels (30 voxels respectively). These dis-
tances are 4 times larger than the distances between de-
formed left central sulci and the reference left central sulcus
displayed in table V. In other words, the left central sulci
of the subjects deformed towards the reference subject are
on average 4 times closer to the central sulcus than they
are to postcentral and precentral sulci. This result com-
bined with topological knowledge about the sulci (i.e. the
central sulcus is in between the precentral sulcus and the
postcentral sulcus) could be used to automatically identify
sulci on the basis of a non-rigid registration method.

VI. Conclusion

The questions that motivated our study (relevance, ex-
istence and expectations of inter-subject registration me-
thods) are challenging issues. In this paper, we have pro-
posed an evaluation framework for methods that aim at
registering brains of different subjects. Global and local
measures of the registration have been used to evaluate six
registration methods on a database of 18 subjects. The
relevance of various methods to register anatomical struc-
tures has been investigated. More precisely, we focused on
the matching of cortical patterns which are relevant in the
context of anatomical and functional normalization. On
one hand, global measures show the efficiency of non-rigid
methods and indicate that the quality of the registration in-
creases with the degrees of freedom of the estimated trans-
formation. On the other hand, rigid and non-rigid methods
give surprisingly similar results for local measures which
are based on the matching of major cortical sulci.

We computed the Jacobian of the transformation to in-
vestigate whether singularities of the deformation field are
present. This study has revealed that all methods except
method D produce positive Jacobians of the transforma-
tion. We first state that the Jacobian measure has been
computed in the discrete domain. In order to affirm that
the transformation can be inverted, the transformation has
to be continuous, piecewise differentiable and have a posi-
tive Jacobian in the continuous domain. The positivity of
the Jacobian at discretization nodes does not necessarily
ensure that this property is true in the continuous domain.

To explain the surprising results concerning the match-
ing of cortical sulci, we must first keep in mind that the
variability of cortical patterns between individuals is very
high [32]. We could be tempted to affirm that the model-
ing of the problem, based on the matching of voxels having
comparable luminance, might not be adapted to address
this huge variability. All methods would benefit by com-
bining landmarks with intensity-based registration. Some
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methods have been proposed to explicitly introduce sparse
constraints in the registration process [2], [4], [6], [20], [22].

A questionable issue is the choice of the reference subject.
In this study, it is quite difficult to assess the impact of that
choice on the results. However, we note that some studies
have been conducted [18] indicating that this choice has a
minimal influence on the result. Ideally, this study should
have been conducted 18 times using a different reference
subject each time. The major problem would then be the
resource management (the data to be transfered would then
be larger than 1300 GB).

Future work should focus on functional data. It would be
interesting to know what the impact of non-rigid anatomi-
cal registration has on the variability (spatial dispersion) of
the functional data since inter-subject registration methods
are also dedicated to the anatomo-functional mapping.

Acknowledgment

This work has been partly supported by the Brittany
Country Council under a contribution to the student grant.
Grant support for the acquisition of the data was provided
by the GIS Project “cognition science”. We would also
like to thank the Radiology department of Pontchaillou
hospital for the data acquisition.

The authors would like to thank Luke Hirschy for his
help in preparing the results for the consistent image reg-
istration method I.

References

[1] JH. Van Bemmel, MA. Musen. Handbook of medical informatics.
Springer, URL: http://www.mieur.nl/mihandbook, 1997.

[2] P. Cachier, J.-Fr. Mangin, X. Pennec, D. Rivière,
D. Papadopoulos-Orfanos, J. Régis and N. Ayache Multi-
subject non-rigid registration of brain MRI using intensity and
geometric features. In Proc. MICCAI, number 2208 in LNCS,
pages 734-742, 2001.

[3] A. Caunce, CJ. Taylor. Using local geometry to build 3D sul-
cal models. – Proc. Information Processing in Medical Imaging,
number 1613 in Lect. Not. in Comp. Sci., pp. 196–209. Springer,
1999.

[4] G.E. Christensen and S.C. Joshi and M.I. Miller. Volumetric
Transformation of Brain Anatomy. In IEEE Trans. on Medical
Imaging, 16(6):864-877, 1997.

[5] G.E. Christensen, H.J. Johnson. Consistent Image Registration.
In IEEE Trans. on Medical Imaging, 20(7):568-582, 2001.

[6] L. Collins, G. Le Goualher, R. Venugopal, A. Caramanos, A. E-
vans, C. Barillot. Cortical constraints for non-linear cortical reg-
istration. Proc. Visualization in Biomedical Computing, number
1131 in Lect. Not. in Comp. Sci., pp. 307–316. Springer, septem-
bre 1996.

[7] L. Collins, A. Evans. Animal: validation and applications of non-
linear registration-based segmentation. Int. J. Pattern Rec. Artif.
Intell., 8(11):1271–1294, 1997.

[8] T. Cootes, C. Taylor, D. Hooper, J. Graham. Active shape
models- their training and application. Computer Vision and
Image Understanding, 61(1):31–59, 1995.

[9] M. Desvignes, N. Royackkers, H. Fawal, M. Revenu. Detection
and identification of sulci on 3D MRI. Human Brain Mapping, p.
410, 1997.

[10] AC. Evans, W. Dai, DL. Collins, P. Neelin, T. Marrett. Warping
of computerized 3D atlas to match brain image volumes for quan-
titative neuroanatomical and functionnal analysis. Proc. of the
International Society of Optical Engineering: Medical Imaging
V, SPIE, 1991.

[11] A. Evans, L. Collins, B. Milner. A MRI-based stereotaxic at-
las from 250 young normal subjects. Soc. Neuroscience abstract,
18:408, 1992.

[12] JM. Fitzpatrick, DLG. Hill, CR. Maurer. Image registration.
Handbook of Medical Imaging, Volume 2: Medical Image Process-
ing and Analysis, M. Sonka, JM. Fitzpatrick (eds), Bellingham,
WA: SPIE Press, 447-513, 2000.

[13] L. Florack, B. Romeny, J. Koenderink, M. Viergever. Scale and
the differential structure of images. Image and Vision Computing,
10:376–388, 1992.

[14] B. Gibaud, S. Garlatti, C. Barillot, E. Faure. Computerised
brain atlases as decision support systems: a methodological ap-
proach. Artificial Intelligence in Medicine, 14:83-100, 1998.

[15] G. Le Goualher, C. Barillot, and Y. Bizais. Modeling cortical
sulci with active ribbons. Int. Jour. of Pattern Recognition and
Artificial Intelligence, 8(11):1295–1315, 1997.

[16] G. Le Goualher, E. Procyk, L. Collins, R. Venegopal, C. Baril-
lot, and A. Evans. Automated extraction and variability analysis
of sulcal neuroanatomy. In IEEE Trans. on Medical Imaging,
18(3):206-217, Mars 1999.

[17] D. Graf Von Keyserlingk, K. Niemann, J. Wasel. A quantita-
tive approach to spatial variation of human cerebral sulci. Acta
Anatomica, 131:127-131, 1988.

[18] A .Guimond, J .Meunier, JP .Thirion. Average brain models: a
convergence study. Computer Vision and Image Understanding,
77, 192-210, 2000.

[19] P. Hellier, C. Barillot, E. Mémin, and P. Pérez. Hierarchical
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