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Abstract

The skeleton and its associated medial axis give a very
compact representation of objects, even in the case of com-
plex shapes and topologies. They are powerful shape de-
scriptors, bridging the gap between low-level and high-
level object representations. Surprisingly, skeletons have
been used in a relatively small number of applications.

This work deals with the question of using the potential
strength of the skeleton and the medial axis. From the me-
dial axis, we build adequate attributed relational graphs
to organize in a structured way informations about object
shape and topology contained in the medial axis. This rep-
resentation then permits to compare in a meaningful way
various objects using a graph matching algorithm. Syn-
thetic results are presented.
Keywords: euclidean skeleton; medial axis transform;
topological characterisation; shape analysis; object repre-
sentation; object comparison; ARG; graph matching.

1. Introduction

Definitions for skeleton and medial axis of digitized ob-
jects have been proposed in the early sixties. The skeleton
and its associated medial axis can be used as shape descrip-
tors and are very well-suited for a large number of computer
vision applications dealing with object representation. After
their introduction, an impressive amount of work has been
conducted to improve their computation. Therefore, devel-
oppement of applications has been put in abeyance. Nev-
ertheless, it appears that after more than three decades, the
skeleton and the medial axis have been used in a relatively
small number of applications.

This work deals with the question of using the potential
strength of the skeleton and the medial axis. Actually, all the
authors agree in claiming that the skeleton and the medial
axis are powerful tools, bridging the gap between low-level
and high-level object representations, because they resume,
synthetize and help the understanding of the object shape
and topology.

In section 2, we first recall some definitions and then

show how to extract object properties from its medial axis
and then organize this knowledge into an Attributed Rela-
tional Graph (ARG) to provide a structural description of
the object. In section 3, we see how to compare objects from
their skeleton-based ARGs using an inexact consistent-
labeling graph matching algorithm, and finally in section 4,
we present experimental results about object comparison.

2. From the medial axis to a structured repre-
sentation of the object

Let us first remind some basics. Intuitively, the skele-
ton of an object is the set of points which are equidistant
from at least two points of the object boundary (we only
consider the skeleton part which is inside the object). The
skeleton of a 2D object is made of pieces of curves, called
skeleton parts, linked together by junctions, and ended by
frontier points. The medial axis is defined as a set contain-
ing the skeleton points and the distance vectors joining each
skeletal point to its closest boundary point. Therefore, re-
trieving the object shape from its medial axis is straightfor-
ward. The medial axis is a more complete representation of
the object than the skeleton. Indeed, objects with different
shapes can yield the same skeleton, and only the medial axis
will differ and allow to distinguish between these objects.

Some notations: letX be a digital object. Its medial axis
is denoted:fSK(X); �SKg, whereSK(X) is the skele-
ton ofX and� is the distance map ofX (insideX) defined
by: M 7� !�(M) = d(M;X) = infP2X d(M;P ),
beingd a distance function, classicaly the euclidean dis-
tance.X denotes the complement ofX, and finally�SK
is the restriction of� to SK(X). As the skeleton of an
objectX is a thin set, it allows us to get a topological clas-
sification ofSK(X), denotedSKc(X): each point of
the skeleton will be labelled as a Frontier point (type F), a
Junction point (type J) or Skeleton part point (type C). In
the following, we will use the n-D euclidean skeletonization
twofold process presented in [4].

The medial axis of an object is a very compact and in-
formative representation of the object, but the knowlege
about the object shape and topology is not organized in a
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structured way. Thus, before to use this powerful shape de-
scriptor for object representation, comparison, recognition
or registration tasks, a further step is needed: organize this
knowledge into some kind of structure.

Attributed Relational Graphs (ARGs) are relational
structures which allow to describe objects using paramet-
ric and relational informations. An ARG consists of two
sets: aset of nodes with various types ofattributes even-
tually assigned to them and aset of links which represent
various types of relations between the nodes and may take
real values, their assigned weights (see [1] and [3] for a use
of ARGs in image understanding and invariant matching).

Obviously, an ARG is a well-suited structure to rep-
resent the knowledge extracted from an object medial
axis. Indeed, the topologically classified euclidean skele-
ton is already split up into labelled parts, which will de-
fine different classes of primitives (namelyskeleton parts,
junction components and frontier components). These
primitives will form the set of nodes of the ARG. To each
class of primitives, we will attach attributes. To set up the
set of links, we will define in a straightforward way differ-
ent kinds of relations (topological or geometrical) between
these primitives.

2.1. ARG nodes and associated attributes

Skeleton parts The skeleton parts are detected and la-
belled by a connected components extraction oftype C pix-
els. From the skeleton parts labeling, we also infer a mean-
ingful partition of the object into regions, each of these re-
gions being associated to one of the skeleton parts. To each
skeleton partP i

SK(X) and associated object regionRi
X we

can attach the following attributes:
1. P i

SK(X) size compared to the skeleton size;

2.Ri
X size compared to the object size.

3. variation of the curvature sign alongP i
SK(X);

4. variation of the distance map alongP i
SK(X).

Junctions They can be detected and labelled by a con-
nected components extraction oftype J pixels ofSKc(X).
To each skeleton junctionJi

SK(X) we can attach the fol-
lowing attributes:
1. its order as defined by the number ofskeleton parts which
meet at the junctionJi

SK(X);

2. the value of� at the junctionJi
SK(X) compared to the

maximal value of� in SK(X).

Frontiers They can be detected and labelled by a
connected components extraction oftype F pixels of
SKc(X). To each skeleton frontier component we can at-
tach the following attribute:
1. the relative value of� at the frontier. The larger the value
of � is at the frontier, the smoother the curvature change at
the boundary will be.

2.2. ARG links

Links or relations between the graph nodes are repre-
sented by adjacency matrices. For ARGs, there will be one
adjacency matrix for each relation type.

Topological relations will express properties of the skele-
ton structure and will be expressed as logical flags, whereas
geometrical relations will be related to distance informa-
tions available through the medial axis, and to informations
about the shape of the skeleton parts, and they will be ex-
pressed as real variables, or weights.

Topological relations
1. Logical flag“to be in contact with” or “to be neigh-
bours” (for all primitives);
2. Logical flag“meet at the same jonction” (for skeleton
parts);
3. Logical flagsurrounding the same hole (skeleton parts
and junctions);
4. Logical flag“to be in contact with the same skeleton
part” (for frontiers and junctions).

Geometrical relations
1. Real weight which measures the size difference between
two skeleton parts;
2. Real weight which measures the relative distance be-
tween two junctions or frontiers;
3. Real weight which measures the difference in orientation
between two skeleton parts.

3. Comparing objects from their ARGs

Consider the following problem: we have a series of ob-
jects and we would like to compare them and also get a
ranking which would be relevant with respect to their shape
and topology. For each object, we first compute its skeleton,
its medial axis, characterize it topologically, get its labelled
partition and build an ARG.

Then, to compare two objects of the series using their
skeleton-based ARGs, we need to solve a graph matching
problem. We use an error-correcting consistent-labeling
graph matching algorithm which can handle ARGs and uses
a nonlinear optimization method called graduated assign-
ment (all details in [2]).

Given two ARGsG andg, with A andI nodes respec-
tively, R link types andS attribute types, it finds the asso-
ciation matrixM such that the following objective function
is minimized:
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fGabg
r andfgijgr are the adjacency matrices for ther-

link; clr(:; :) is a measure of compatibility between ar-

link in G and ar-link in g; fG(s)
a g andfg(s)i g are vectors

corresponding to thes-attribute of the nodes ofG andg;
cns(:; :) is a measure of similarity between a node inG
and a node ing, with respect to the same attributes.
M is an(A�I) association matrix which at the end of the

minimization process gives the correspondences between
one set of primitives and the other:Mai = 1 if node a
in G corresponds to nodei in g, 0 otherwise. Note that the
algorithm does not always converge to an exact permutation
matrix, thus a clean-up heuristic has to be defined. For the
experiments presented in this paper, we use a very simple
heuristic: we set in each column of the association matrix
M the maximum element to 1 and others to 0.

Note that the value of the objective functionE at the end
of the process directly gives a qualitative measure of the
matching. It can therefore be used to set up a ranking of a
series of objects.

4. Experimental results

To evaluate the capabilities of the skeleton-based ARG
matching algorithm, we conduct 2 experiments on object
comparison: from an original object, we get 3 distorded
copies; we then look for correspondences between object
parts in the series; finally we set up a ranking of the objects
in the series based on the ARG matching result.

The preprocessing consists in the following steps: 1)
compute skeleton and medial axis of each object of the se-
ries; 2) topologically characterize the skeleton; 3) infer la-
belled partition of all skeleton parts and object parts of each
object; 4) build the ARG of each object. We also select
some of the possible nodes, attributes and links to build the
ARG: nodes - skeleton parts;attributes - skeleton part size
compared to skeleton size, object part size compared to ob-
ject size, variation of the distance map along skeleton part;
links - logical flag“meet at the same jonction”, logical flag
“surrounding the same hole”, real weight which measures
the size difference between two skeleton parts, where the
size is computed as the number of pixels which compose
the parts. The compatibility measureclr(Gr

ab; g
r
ij) and the

similarity measurecns(Gs
a; g

s
i ) are taken as the absolute

differences of their arguments.
In the first experiment (Figure 1), the 3 distorded copies

are obtained through the following successive deforma-
tions: 1. similitude; 2. similitude + global shape change;
3. similitude + flip + local shape change. In the second ex-
periment (Figure 2), the deformations are: 1. similitude; 2.
similitude + local shape change; 3. similitude + topology
change applied to 2. The four objects with their skeletons
superimposed as well as their labelled partition can be seen
in the first lines of each figure. We then infer the corre-
sponding ARGs.

Then we perform the skeleton-based ARG matching
from 1 to 2, 1 to 3 and 1 to 4, resulting in a set 4 associ-
ation matricesM17!2, M17!3 andM17!4 which give the
correspondences between skeleton parts in each object of
the series. Using these correspondences, we can propagate
the labels of the original object regions to the distorded ob-
jects (bottom lines of each figure; each region is numbered
with its label).

For the first experiment, each similar region in each of
the objects has been assigned the same label, in other words
the correspondences between all parts of the 4 objects have
been perfectly retrieved. For the second experiment, the
correspondences have been almost perfectly retrieved. In
particular, it is important to note that for the last object, the
labeling is kept consistent in the object even if it has been
modified around the missing hole (labels7; 10; 14 have
disappeared because of the topology change).

Concerning ranking, values of the objective function of
the ARG matching (corresponding toM17!2, M17!3 and
M17!4) are for the first experiment(1:02; 1:70;4:70)
and for the second experiment(12:19;15:10;26:69).
This ranking is what is visually expected, as the dissimi-
larity between objects in the 2 series increases from left to
right.

5. Conclusion
We have presented a method which allows to exploit the

informations about object shape and topology contained in
an object medial axis. First we have seen how to organize
this information into an Attributed Relational Graph, and
then how to compare series of objects using their skeleton-
based ARGs through a graph matching algorithm.

The preliminary results that we have presented are fairly
promising as they indicate that using a skeleton-based ARG
matching allows to get consistent correspondences between
object parts and to classify objects based on shape and
topology similarities. We will now look at applications
of this method for object recognition and object matching
tasks.
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Figure 1. Top line: Original object (left one) + 3 distorded copies with superimposed skeletons and
independantly computed labelled partitions. Bottom line: 4 objects labelled by propagating labels
of the original object (left one) through the skeleton-based ARG matching (see text for details).

Figure 2. Top line: Original object (left one) + 3 distorded copies with superimposed skeletons and
independantly computed labelled partitions. Bottom line: 4 objects labelled by propagating labels
of the original object (left one) through the skeleton-based ARG matching (see text for details).
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