
Design of robust vascular tree matching:

validation on liver

Arnaud Charnoz1,3, Vincent Agnus1, Grégoire Malandain2, Stéphane Nicolau1,
Mohamed Tajine3 and Luc Soler1

1 IRCAD R&D, Strasbourg, France
2 Epidaure Research group, INRIA, Sophia Antipolis, France

3 LSIIT, CNRS/ULP, Strasbourg, France

Abstract. In this paper, we propose an original and efficient tree match-
ing algorithm for intra-patient hepatic vascular system registration. Vas-
cular systems are segmented from CT-scan images acquired at different
times, and then modeled as trees. The goal of this algorithm is to find
common bifurcations (nodes) and vessels (edges) in both trees.
Starting from the tree root, edges and nodes are iteratively matched.
The algorithm works on a set of match solutions that are updated to
keep the best matches thanks to a quality criterion. It is robust against
topological modifications due to segmentation failures and against strong
deformations.
Finally, this algorithm is validated on a large synthetic database con-
taining cases with various deformation and segmentation problems.

1 Introduction

Motivations: liver tumors follow-up The main purpose of our work is to
make an intra-patient follow-up of tumors (see our previous work [3]). This
approach is motivated by the fact that the liver is a highly deformable organ
and that tumors evolution study needs the determination of this volumic de-
formation. Now it is well-known that the most reliable landmarks to estimate
deformations sustained by the liver are provided by its vascular network [2, 6,
12, 7, 10].

Previous works Related works propose algorithms to match and/or register
vascular systems (brain, liver and, in a similar manner, lung airways). Generally,
veins are modeled as graphs computed from segmented images and skeletons [11].
Some authors use some tree structure notions in their algorithms to register a
tree with an image [2] or two trees [6]. Other approaches really match structures
(nodes and vessels), but use general graph matching methods [12, 7, 8] or specific
methods like subtree isomorphism [10] which do not take segmentation problems
into account.

The oriented tree matching problem is more specific than graph matching
because the structure is oriented and the path that connects two nodes is unique.

Moreover, it cannot be considered as a oriented subtree isomorphism problem
because of segmentation problems. Indeed, the segmentation process can miss
some vessels (edges). This implies a (virtual) pruning on both trees (for example
an edge in a tree could be represented by several successive edges on the other
tree) and thus the tree topology differs between acquisitions.

In our previous work [3], vascular systems are modeled as a tree and then tree
vertices are matched together without taking possible segmentation errors into
account. The previous algorithm works well on most branches but suffers from
a lack of robustness in complex (but real) cases, especially on small branches
where segmentation problems are important.

Proposal The new algorithm proposed in this paper does not to focus on the
best solution (given two edge sets to match) like in our previous algorithm but
on the most likely solutions which are updated along the process. The remainder
of this paper is organized as follows. The first part presents our iterative oriented
tree matching. We describe how we generate solutions at each step of the tree
according to local criteria, and how we select the most likely ones with a global
quality criterion.

In the second part, an evaluation of our algorithm on large database shows
that in standard cases (20% of pruning or less), our algorithm matches 90% of
nodes and that even in worst, cases 75% of matches are correct.

2 A new iterative tree matching technique

Skeletons computed from segmented vascular systems can be represented as an
oriented tree. Thus, the proposed algorithm is a tree matching. The orientation
symbolizes blood circulation flow. Nodes represent bifurcations and edges corre-
spond to vessels between two bifurcations. And in our algorithm, some geometric
vessel attributes are used (3D positions, radius, vessel path).

Vascular trees segmented for a patient follow-up represent the same vascular
system; our goal is to find common bifurcations and registering them. However,
their topology and 3D positions may differ due to segmentation errors and defor-
mations applied on them. The main challenge consists in using tree topology to
detect deformations, and in parallel, geometric informations to detect topology
problems. In the following, we assume that we work on standard patient case,
thus that tree roots are known (detection of vascular system entrance) and that
tree deformations are small.

In next sections, we explain our tree matching. Firstly, we focus on a global
view of the algorithm framework. Then, we detail the solution creations and the
quality criteria that select at each step the most likely solutions.

2.1 Notations

In this paper, we use the notions of oriented tree [1]. We work on a tree noted
T = (V,E, r) where V represents the set of vertices, E ⊂ V ×V the set of edges

and r the root. We note ‖T ‖ the number of vertices of T . For a node u in a
tree T , T (u) denotes the subtree of T induced from u. For a vertex v, sons(v)
denotes the set of their child vertices, father(v) its father vertex, out(v) the set
of out-edges of v, and in(v) its in-edge. For an oriented edge e = (v, u), we define
src(e) = v and tgt(e) = u. For two vertices v, w ∈ V , P (v, w) is the unique path
in T linking v to w. Let e be an edge and v its target vertex, DVL(e) = {u/u ∈
vertices of T (v), ‖P (v, u)‖ ≤ L} denotes the descendant vertex set composed
of L-first depth level vertices in subtree induced from e. For a vertex v, T+(v)
denote the subtree T (v) to which father(v) is added to the vertex set and in(v)
to the edge set. More generally, A being a finite set, Ai is the ith element of
A, and |A| = card(A). So A = {Ai : 1 ≤ i ≤ |A|}. We introduce also some
notations on functions. Bk

A,B is the set of bijections from subset of k elements of

A to subset of k elements of B. For f ∈ Bk
A,B, Df (A) (resp. If (B)) is the domain

(resp. the image) of f . So f(Df(A)) = If (B) and |Df (A))| = |If (B)| = k

2.2 Framework of the algorithm

Our algorithm searches for the best tree matching between T1 = (V1, E1, r1) and
T2 = (V2, E2, r2) starting from roots (r1 match with r2). Since possibilities are
high, we propose to generate and select the most likely solutions. The algorithm
starts by studying the root match and updates selected solutions when it explores
and finds other possible matches in both trees. This means that some solutions
selected at a process step can be eliminated later if they become unlikely. The
likelihood of solutions is evaluated at each tree depth step with quality match
criteria.

Our algorithm studies simultaneously N likely solutions (S0
i . . . S

N
i), i being

the depth step. S0
i contains a set of matched vertices which descendant vertices

are not studied yet. To continue building the final solution (all nodes analysed
in both trees), the algorithm have to explore, one by one, these vertex matches.
The exploration of one of them generates new solutions more complete noted
Sj

i+1. Our algorithm progresses in solution exploration from Si to Sj
i+1 when a

vertex match is analysed. Solutions are studied and developed simultaneously to
be able to compare themselves.

In particular, the figure 1 shows the creation of the most likely solution Si
1

of the first tree depth step of process by exploring the root vertex match of the
initial solution S0. This figure details the constuction of match solutions from an
initial vertex in S0 (root match between r1 and r2). The first process step (1.a)
consists in generating all out-edge match set hypotheses, noted HEi (two hy-
potheses are shown among all:HEA andHEB). However, the number of solution
is too high to be explored and a local quality criterion (cost(HEi)) is computed
to keep only the n best hypotheses (1.b). Then, we study each hypothesis to
find next vertex match associated with an out-edge match. The figure shows the
vertex match research of one out-edge match set ((a1, a2), (b1, b2)) corresponding
to the hypothesis HEA.

The second process step (2.a) consists in generating path match hypotheses,
noted nHP i, from the nth out-edge match (for instance, two hypotheses are

Fig. 1. This figure details the constuction of solutions on a tree depth step.

shown, 1HP 1 and 1HP 2 corresponding to the first out-edge match (a1, a2)).
Once again, the number of solution is too high to be explored and a local quality
criterion (cost(1HP i)) is computed to keep only the m best hypotheses (2.b).
When the algorithm finishes to compute all best path match hypotheses for each
out-edge match, we test all possible permutations and reassemble them (3.a) in
local solutions noted SLi,j

k where k is the kth out-edge match set hypothesis, i
and j the path match chosen for the first out-edge matches. Once again, only
the best of them are selected (3.b). In (4.a) and (4.b), we build and select all
best solutions resulting of different out-edge matches set hypotheses and path
match hypotheses. A global solution example possible is shown on the right in
the figure and is noted S0

1 . The algorithm restart this process from one of vertex
matches included in different solutions Sl

1.
In next subsections, we detail how we generate out-edge match set hypotheses

and path match hypotheses and how we select the best most likely one using
either local or global quality criterion.

2.3 Hypothesis generation

Step I: Out-edge match set hypothesis This step consists in generating
out-edge match possibilities from a vertex match, noted (v1, v2), to continue
the match of T1(v1) and T2(v2). Two possiblilities are shown on figure 2. Let
O1 = out(v1) and O2 = out(v2). An out-edge match set hypothesis is noted
HE(v1, v2). An hypothesis HEi(v1, v2) is represented by an out-edge match set
Ef (v1, v2) which characterizes a match between k elements of O1 with k elements
of O2. Ef (v1, v2) = {(e, f(e))/e ∈ Df (O1), f ∈ Bk

O1,O2
}. This out-edge match set

assumes implicitly that some out-edges of O1 (respectively O2) noted Df (O1)
c

(respectively If (O2)
c) have no association. Thus, some subtrees have no match in

the other tree. A cost will be attributed to them to be able to compare hypotheses
with or without lost subtrees. Thus these lost subtrees must be retained in the
solution (this was deliberately omitted in the figure 1 explications for clarity
reason). Let φ(v,OE) = {T+(u)/∀(v, u) ∈ OE} be the subtree induced by a
vertex and a subset OE of its out-edges. We note Omin = min(|O1|, |O2|), then
possible hypotheses are given by:

HE(v1, v2) =
⋃

k=0...Omin

⋃

f∈Bk
O1,O2

{

(Ef (v1, v2), φ(v1, Df (O1)
c), φ(v2, If (O2)

c)
}

Fig. 2. Illlustration of a creation of out-edge match set hypotheses from a vertex match.
The left figure resumes the vertices match between v1 and v2. The others show two
possible solutions, in which an out-edge match set is chosen for each solution({E1

f1
} for

HE1 and {E1

f2
, E2

f2
} for HE2). Hypotheses suppose that some out-edges do not have

their equivalent in other trees and thus that the corresponding subtree is not matched
({φ1

1, φ
2

1, φ
1

2} for HE1 and {φ1

1} for HE2).

Step II: Path match hypothesis This step consists in generating path match
possiblilities from an out-edge match, noted (e1, e2). Tree possiblilities are shown
on figure 3. We assume that an edge e1 ∈ O1 and an edge e2 ∈ O2 match
(representing the same starting vessel). the algorithm must find the next common
bifurcation in subtrees T1(tgt(e1)) and T2(tgt(e2)) closest to v1 and v2. Due to
segmentation defects, tgt(e1) and tgt(e2) do not necessarily represent the same
bifurcation (this case happens frequently when branches are small). We search
a vertex match in subtrees and not only between tgt(e1) and tgt(e2) (Fig. 3).

The research of next vertex match is restricted on the L first level of subtrees
T1(tgt(e1)) and T2(tgt(e2)). Thus, we search the best vertex match between
DVL(e1) andDVL(e2). In our algorithm, L is empirically choosen and is generally
fixed 3.

Now, let (w1, w2) be a vertex match with w1 ∈ DVL(e1) and w2 ∈ DVL(e2).
w1 does not necessarily equal tgt(e1) and this vertex match defines a path match
P(v1, w1, v2, w2) = (P (v1, w1), P (v2, w2)). This match of pathes implies that
some subtrees starting from them are not matched. We note this forest of no
match subtrees ψ(v, w) = {T+(u), u ∈ sons(k), k ∈ VP , T+(u) ∩ P (v, w) = {k}}
where VP = {vertices of P (v, w)}\{v, w}. if we note v1 = src(e1) and v2 =
src(e2), the set of possible path matches is defined as:

HP (e1, e2) =
⋃

w1∈DVL(e1)

⋃

w2∈DVL(e2)

{

P(v1, w1, v2, w2), ψ(v1, w1), ψ(v2, w2)
}

Fig. 3. Figures show the creation of path match hypotheses from an out-edge match.
The different depths L are shown on the left figure and three solutions are illustrated.

2.4 Hypotheses selection

In the previous section, we have seen how to generate all out-edge match set
hypotheses and path match hypotheses. matches. However, all possible tree
matching solutions cannot be explored due to huge combinatorial possibilities :
Selections must be made.

Therefore some cost functions are computed to determine the quality of
matches. In our algorithm, two types of cost are computed : a global cost to
determine the solution quality Si(cost(Si)), and two local costs to determine
the quality of each out-edge match set hypothesis HEi and each path match
hypotheses HP i (Fig. 1).We give here general expression of the cost functions.
Each term of these cost functions are detailed in the next paragraph.

We define the two following local costs that select the most likely HEi and
the most likely HP i.

cost(HEi(v1, v2)) =
∑N1

j=1 cost(E
j
f (v1, v2)) +

∑N2

j=1 cost(φ
j(v1, Df (O1)

c))

+
∑N3

j=1 cost(φ
j(v2, If (O2)

c))

cost(HP i(e1, e2)) = cost(P(v1, w1, v2, , w2)) +
∑N4

j=1 cost(ψ
j(v1, w1))

+
∑N5

j=1 cost(ψ
j(v2, w2))

The global cost expression selects the most likely solutions Si. If algorithm
explores a vertex match (v1, v2) of a current solution Si, we obtain new solutions
Sl

i+1 (for example Sl
i+1 = Si

⋃

e∈Df (O1)

HPT (e, f(e)) where T is different for each

out-edge match). Sl
i+1 is caracterised by an out-edge match set from v1 and v2

and a path match for each out-edge match. The value of solution cost is given
by :

cost(Sl
i+1) =

∑

e∈Df (O1)

cost(HPT (e, f(e)) +
∑N2

j=1 cost(φ
j(v1, Df(O1)

c))

+
∑N3

j=1 cost(φ
j(v2, If (O2)

c)) + cost(Si)

In these equations, Ni represents the different set cardinals. Note that there
are three kinds of costs: a cost between two out-edges, a cost between two paths
and a cost for subtrees which have no correspondence in the other tree.

Physical cost used: We define here the basic functions that allow to com-
pare the geometric properties of match solutions (vertex or edge). The cost CE

represents the distance between extremity edges, CR represents the radius differ-
ence along edges (vessels), COE represents the difference between the out-edges
number from each extremity edge, CS represents the scale between edges and
CA represents the angle between edges. These costs are normalized thanks to a
truncated quadratic robust estimator ρ and its empirically chosen parameter α
[5]. The perfect match is symbolised by a zero cost.

We remind that an edge e represents a vessel between two bifurcations. In
the following cost formules, e(t) is the 3D parametric curve representation of
the vessel, r(t) represents the vessel’s radius along the curve and l is the curve’s
length. Thus by default, e(t) (respectively r(t)) is defined between t ∈ [0, l] where
e(0) and e(l) represent the vessel extremities. We note e the vector between two
points e(0) and e(l). For each cost comparison between e1 and e2, we supposed
that e1(0) = e2(0).

CE(e1, e2) = ρ
(

‖e1(l1) − e2(l2)‖, αE

)

CR(e1, e2) = ρ
(

∫ 1

0

‖r1(s× l1) − r2(s× l2)‖ds, αR

)

CS(e1, e2) = ρ
(

1 −
l1
l2
, αS

)

, if l1 < l2

CA(e1, e2) = ρ
(

1 − ‖e1.e2‖
‖e1‖‖e2‖

, αA

)

ρ(v, α) =

{

(v

α

)2
if |v| < |α|

1

Out Edge Match Cost: cost(E i
f (v1, v2)) compare edge orientation and radius.

cost(E i
f (v1, v2)) =

1

γ1 + γ2
(γ1CA(e′1, e

′
2) + γ2CR(e′1, e

′
2))

with e′1(t) (respectively e′2(t)) is e1(t) (e2(t)) defined on [0,min(l1, l2)] and where
γ1 and γ2 are weights used to favor robust characteristics in the algorithm.

Path Match Cost: In cost(P(v1, w1, v2, w2)), weights are added to favor path
matches with same small length, same orientation and same vessel radius and
vessel extremities.

cost(P(v1, v2, w1, w2)) =
1

β1 + . . .+ β4

(

β1CA(e1, e2) + β2CR(e1, e2)+

β3CS(e1, e2) + β4CE(e1, e2)
)

+ min
i

cost(HEi(w1, w2))

with e1 = P (v1, w1) and e2 = P (v2, w2). This cost is composed of a local cost
representing the current edge comparison and the cost of the next best out-edge
matches from current extremity edges. This last term allows the algorithm to be
more efficient and robust because an information is added on the vessel extremity
similarity.

No Match Tree Cost: We have previously considered a cost for no inclu-
sion subtrees in the match solution represented by φi(u,E) and ψj(u,w). Each
subtree T+(v) is defined by a vertex v. Cost computation is the same in both
cases and is noted costLost(v). We highlight that choosing the weight of this
cost is difficult and depends on other match costs. If this cost is too high, then
all nodes are matched (we forbid a subtree lost and then the algorithm is not
robust against segmentation problem). Conversely, if it is too low, the algorithm
does not select matches (the algorithm looses all branches). Hence a minimum
cost costmin is introduced.

costLost(v) = R′(v) +
∑

wk∈sons(v)

costLost(wk)

with: R(v) =
1

µ1 + µ2

(

µ1
‖T (v)‖

‖T ‖
+ µ2

∫ 1

0

‖r(s) −Rmin‖ds
)

R′(v) = max(R(v), costmin)

the constant Rmin corresponds to minimum radius to detect vessels in images.
This cost is composed of two terms, the first one give us an information on the
subtree surface to avoid loosing big subtree, the second one is an information
on vesssel radius to avoid loosing large vessel (vessels with large radius are not
concerned by segmentation problem and thus can be found in the other tree)

3 Experiments and validation

3.1 Virtual patient creations

To test and validate our algorithm, we have worked on a liver and its hepatic
vascular system. To work on a complex vascular system (380 nodes), the Visible
Man (cf. The Visible Human Project of NLM) has been segmented. The matching
is harder (more bifurcations) than for a real patient case. This leads to better
tests to evaluate the algorithm robustness.

Fig. 4. The surgery simulator prototype is used to simulate liver and vascular system
deformations thanks to a volumic model. [Left] Surfacic model [Center] Volumic
model [Right] Volumic model and portal vascular system.

To simulate deformations, we have used the minimally invasive hepatic surgery
simulator prototype developed at INRIA [9]. The goal of this simulator is to pro-
vide a realistic training framework to learn laparoscopic gestures. For this paper,

we used it only to simulate deformations of the liver and its vascular system (Fig.
4). This simulator uses complex biomechanical models, based on linear elasticity
and finite element theory, which include anisotropic deformations.

To simulate segmentation errors on our phantom, we have pruned random
tree branches. The probability to loose small vessels is greater than to loose large
ones (Fig. 5).

To test the algorithm, a database of 600 patient follow-up cases has been
generated from 2 types of deformations : a small (mean distance between com-
mun points = 9 mm) and a strong (30mm) and 5 pruning steps (0,10,20,30,40
%) with on each step, 20 randomly generated prunings (Tab. 1 and 2).

Fig. 5. The visible Man’s portal vascular system is randomly pruned to loose approx-
imately 20%, 30% and 40% of length in both trees. Lost branches appear in green.

3.2 Results on a virtual patient

Algorithm parameters have been chosen and fixed empirically to work more
efficiently on all these cases. These paramater choices and their different con-
sequences on the algorithm process (error, robustness, procesus time) are not
detailed here but in a future journal paper.

The process is fast (about 10 minutes to register 380 nodes on 1GHz PC).
Two process results are shown (Fig. 6) for a small and a strong deformation and
pruned to loose approximately 20% of surface branches in both trees. Tab. 1
and 2 show that on small deformations the algorithm is very robust (practically
all possible matches with a small standard deviation were found in the different
cases) even with large pruning. With strong deformations and large pruning, the
process is less robust (around 80%).

Results are reported in terms only of node identification. In fact, the conse-
quences of performing an incorrect connection may be much larger in a proximal
branch than peripherally. However, we noticed that most of the match errors (in-
correct node correspondences and lost branches) are localized on terminal edges.
On these nodes, the algorithm suffers from a lack of information (no subtree,
dense node concentrations, small vessels). This makes the matching task harder.

To conclude, deformations and prunings (20% or less) used for these tests
correspond with standard observed real cases. For this values, experts consider
our algorithm efficient (sensitivity and similarity greater than 90%) to find a
good approximation of the 3D liver deformation.

% T1 pruning % T2 pruning common nodes % sensitivity % efficiency

0 0 380 ± 0 100 ± 0 100 ± 0

0 10 314 ± 7 98,7 ± 0,8 98,9 ± 0,7

0 20 242 ± 8 96,2 ± 3,1 97,5 ± 0,7

0 30 189 ± 7 92,1 ± 5,2 94,9 ± 1,5

0 40 144 ± 3 84,0 ± 5,8 90,9 ± 2,5

10 10 260 ± 9 98,5 ± 0,7 97,8 ± 1,1

10 20 203 ± 7 97,4 ± 1,0 94,7 ± 1,3

10 30 164 ± 6 94,9 ± 2,5 93,0 ± 1,5

10 40 128 ± 6 90,5 ± 6,4 89,7 ± 4,9

20 20 169 ± 8 96,2 ± 1,8 92,8 ± 1,0

20 30 135 ± 10 96,2 ± 1,7 89,9 ± 1,6

20 40 108 ± 6 90,3 ± 6,9 85,4 ± 3,3

30 30 115 ± 7 94,3 ± 3,6 87,0 ± 2,6

30 40 90 ± 6 90,8 ± 6,5 82,6 ± 3,5

40 40 71 ± 6 93,5 ± 3,2 79,5 ± 3,8

Table 1. Matching results with a small deformation: Each line represents a
pruning configuration with 20 randomly computed cases. Each column shows the mean
result of these 20 cases with their magnitude. Three results are shown : the number of
common nodes (match number in the reference solution) between both pruned trees,
the sensitivity which is the number of correct found matches among the number of
solutions matches and the efficiency which is the number of correct found matches
among the number of found matches (correct and uncorrect).

4 Conclusion

The purpose of this paper was to present the design of our original new robust
method to match liver vascular systems between two CT/NRI acquisitions. This
method is well adapted, fast and robust on a complex vascular system. Thanks to
the virtual database generated by the INRIA simulator, we have tested numerous
configurations.

Currently, we are working on the second step of tumor follow-up: the esti-
mation of liver deformation computed from the vascular system matching. In
parallel, we have started first tests on a real patient database with very encour-
aging results (Fig. 7). These results will be detailed in a future paper.

Then, we will validate our works with surgeons on a real patient database
with the collaboration of the Strasbourg hospital and also propose a new tool
for automatic diagnosis of tumor evolution in the liver.

Acknowledgments We thank the Strasbourg hospital and their surgeons for
providing images as well as their advice on “standard” deformations applied on
the liver. This work has benefited from the segmentation program of the vascular
system developed by the IRCAD R&D team. The realistic liver deformations are
provided by the INRIA simulator from the Epidaure project. Many thanks to
Clément Forest [4] for his assistance during the use of the simulator.

% T1 pruning % T2 pruning common nodes % sensitivity % efficiency

0 0 380 ± 0 100 ± 0 100 ± 0

0 10 311 ± 9 97,7 ± 1,0 98,7 ± 0,6

0 20 246 ± 6 94,4 ± 0,8 95,8 ± 0,8

0 30 195 ± 10 75,1 ± 37,3 76,9 ± 35,1

0 40 147 ± 6 69,6 ± 34,5 72,3 ± 32,7

10 10 257 ± 6 95,7 ± 1,8 96,0 ± 1,3

10 20 206 ± 5 93,0 ± 2,7 92,5 ± 1,3

10 30 162 ± 7 92,9 ± 2,2 91,4 ± 1,7

10 40 128 ± 7 88,2 ± 4,5 86,5 ± 3,0

20 20 169 ± 7 92,9 ± 4,2 91,3 ± 1,1

20 30 138 ± 7 90,3 ± 4,8 87,6 ± 2,6

20 40 109 ± 6 88,9 ± 5,4 85,6 ± 2,6

30 30 114 ± 7 90,0 ± 7,3 85,6 ± 2,0

30 40 93 ± 6 91,6 ± 2,5 82,9 ± 3,6

40 40 73 ± 4 87,7 ± 5,8 78,0 ± 4,4

Table 2. Matching results with a strong deformation: see description Tab.
1. The standart deviation of cases (0-30%) and (0-40%) is very high. Our algorithm
attains its limits when we have a great difference between pruning (topology of trees
become very different) associated with a strong deformation. These configuration cases
occurre infrequently.

References

1. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.
2. S.R. Aylward, J. Jomier, S. Weeks, and E. Bullitt. Registration and analysis of

vascular images. IJCV, 55(2-3):123–138, 2003.
3. A. Charnoz, V. Agnus, and L. Soler. Portal vein registration for the follow-up of

hepatic tumours. In MICCAI, volume 3217 of LNCS, pages 878–886, Saint-Malo,
France, September 2004. Springer Verlag.

4. C. Forest, H. Delingette, and N. Ayache. Surface contact and reaction force models
for laparoscopic simulation. In International Symposium on Medical Simulation,
June 2004.

5. F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust
statistics. In John Wiley and Sons, New York, 1986.

6. T. Lange, S. Eulenstein, M. Hunerbein, H. Lamecker, and P.-M Schlag. Augment-
ing intraoperative 3d ultrasound with preoperative models for navigation in liver
surgery. In MICCAI, volume 3217 of LNCS, pages 534–541, Saint-Malo, France,
September 2004. Springer Verlag.

7. Y. Park. Registration of linear structures in 3-D medical images. PhD thesis, Osaka
University, Japan. Departement of informatics and Mathematical Science, 2002.

8. M. Pelillo, K. Siddiqi, and S.W. Zucker. Matching hierarchical structures using
association graphs. PAMI, 21:1105–1120, November 1999.

9. G. Picinbono, J-C. Lombardo, H. Delingette, and N. Ayache. Improving realism
of a surgery simulator: linear anisotropic elasticity, complex interactions and force
extrapolation. JVCA, 13(3):147–167, jully 2002.

10. C. Pisupati, L. Wolff, W. Mitzner, and E. Zerhouni. Tracking 3-d pulmonary tree
structures. In MMBIA, page 160. IEEE Computer Society, 1996.

Fig. 6. [Top] On the left, small deformation case is pruned at 20%. The center figure
shows the result of our oriented tree matching, good matches are represented by green
arrows and represent 95% of all nodes and wrong matches by red arrows. The right
figure shows the tree registration after the process. [Bottom] A strong deformation
with an equivalent pruning where the algorithm find 91% of all nodes.

Fig. 7. [a]Real patient where the vascular system has been matched where vertex
matches are shown in red. [b]Deformation field computed from matches. [c,d]Tumors
before and after registration.

11. L. Soler, H. Delingette, G. Malandain, J. Montagnat, N. Ayache, J.-M. Clément,
C. Koehl, O. Dourthe, D. Mutter, and J. Marescaux. A fully automatic anatomical,
pathological and fonctionnal segmentation from CT-scans for hepatic surgery. In
Medical Imaging, SPIE proceedings, pages 246–255, San Diego, February 2000.

12. J. Tschirren, K. Palágyi, J.M. Reinhardt, E.A. Hoffman, and M. Sonka. Segmen-
tation, Skeletonization, and Branchpoint Matching - A Fully Automated Quanti-
tative Evaluation of Human Intrathoracic Airway Trees. In MICCAI, volume 2489
of LNCS, pages 12–19. Springer-Verlag, 25 September 2002.

