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Abstract. We investigate in this article the rigid registration of large
sets of points, generally sampled from surfaces. We formulate this prob-
lem as a general Maximum-Likelihood (ML) estimation of the transfor-
mation and the matches. We show that, in the specific case of a Gaussian
noise, it corresponds to the Iterative Closest Point algorithm (ICP) with
the Mahalanobis distance.
Then, considering matches as a hidden variable, we obtain a slightly
more complex criterion that can be efficiently solved using Expectation-
Maximization (EM) principles. In the case of a Gaussian noise, this new
methods corresponds to an ICP with multiple matches weighted by nor-
malized Gaussian weights, giving birth to the EM-ICP acronym of the
method.
The variance of the Gaussian noise is a new parameter that can be viewed
as a “scale or blurring factor” on our point clouds. We show that EM-
ICP robustly aligns the barycenters and inertia moments with a high
variance, while it tends toward the accurate ICP for a small variance.
Thus, the idea is to use a multi-scale approach using an annealing scheme
on this parameter to combine robustness and accuracy. Moreover, we
show that at each “scale”, the criterion can be efficiently approximated
using a simple decimation of one point set, which drastically speeds up
the algorithm.
Experiments on real data demonstrate a spectacular improvement of the
performances of EM-ICP w.r.t. the standard ICP algorithm in terms
of robustness (a factor of 3 to 4) and speed (a factor 10 to 20), with
similar performances in precision. Though the multiscale scheme is only
justified with EM, it can also be used to improve ICP, in which case the
performances reaches then the one of EM when the data are not too noisy.

Keywords: Surface registration, ICP algorithm, EM algorithm, Multi-
scale.

1 Introduction

This paper describes a new method for the registration of surfaces. This kind of
registration is usually performed using one of the multiple variations around the
Iterative Closest Point (ICP) algorithm [1,19]. This algorithm is quite fast and
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accurate in many cases, but, as any method minimising a non-convex cost func-
tion, it lacks robustness w.r.t. the initial transformation because of local minima.
For surface registration, we experienced that these local minima are quite nu-
merous, probably due to the discrete sampling of the surface. The computation
time is also proportional to the number of points, which can be prohibitive when
registering two large sets of points.

As our registration method is developed as a component of a per-operative
system for surgery guidance namely the DentalNavigator system (patent pend-
ing) developed by AREALL [5], and based on finely sampled surfaces (containing
30000 to 200000 points), we need to drastically improve both the robustness and
the computation times without loosing the accuracy.

We found in the literature three main classes of methods to improve the
robustness of ICP. The first class uses robust estimators [19,11] to deal with
outliers (i.e. erroneous or occulted points). However, these techniques are not
designed to be robust w.r.t. the initial transformation, which is our main point
of interest in this paper. The second class is based on stochastic approaches [14].
This kind of variants are quite efficient, but usually require more computation
time. The last class is based on the smoothing of the criterion. The most inter-
esting work has been presented by Rangarajan et al., who introduced multiple
weighted matches justified by a probabilistic vision of the matching problem.
They developed matching models based on Gaussian weight (SoftAssign [16])
and Mutual Information [15], leading to a smaller number of local minima and
thus presenting the most convincing improvements.

The last two classes are usually based on a variance parameter. For high
values, the algorithm is more robust but less accurate, while it behaves almost
like the ICP for low values. The combination of robustness and accuracy is then
obtained through an annealing scheme on this variance parameter. Other works
suggest that improvements in terms of speed could be obtained with algorithmic
tricks or by decimating the sets of points [12]. Up to our knowledge, none of
these works provide guarantees on the convergence of the algorithm nor on the
conservation of the robustness and accuracy properties.

Our work was inspired by Rangarajan’s probabilistic approach. We first de-
velop in Section 2 a general Maximum-Likelihood (ML) estimation of the trans-
formation and the matches. We show that, in the specific case of a Gaussian
noise hypothesis, it corresponds to the Iterative Closest Point algorithm (ICP)
with the Mahalanobis distance. Then, considering matches as a hidden variable,
we obtain a slightly more complex criterion that can be efficiently solved using
Expectation-Maximization (EM) principles. Still with Gaussian noise, this new
methods roughly corresponds to an ICP with multiple matches weighted by nor-
malized Gaussian weights, giving birth to the EM-ICP acronym of the method.
A similar approach has been independently developed in [2].

Section 3 investigates the influence of a new parameter: the variance of the
Gaussian. We show that EM-ICP robustly aligns the barycenters and inertia mo-
ments with a high variance, while it tends toward the accurate ICP for a small
variance. Thus, we propose to view this variance as a “scale or blurring factor”
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on our point clouds. This leads to a multiscale scheme designed to improve ro-
bustness without penalizing the accuracy. Due to the high computational cost
at large scales, we efficiently approximate the criterion using an original deci-
mation of one point set, which drastically speeds up the algorithm. Finally, we
analyze the relation between our method and the multi-scale framework used in
standard image (i.e. intensity) analysis registration.

Last but not least, Section 4 presents experimental results showing drastic
gains in terms of computation time and robustness.

2 Statistical Derivation of the EM-ICP Algorithm

In this section, we model the scene as a set of noised measurements of the
model points. The priors are the a-priori probability that a given scene point
is a measure of a given model point. The two unknowns are the transformation
and the matches (i.e., for each scene point, the variable that indicates which
model point is measured). A Maximum Likelihood (ML) estimation of these two
unknown leads, in the case of a Gaussian noise with uniform priors, to the ICP
criterion using the Mahalanobis distance. Since the matches are usually not a
variable of interest, we focus then on a ML estimation of the transformation
alone. This leads to a new criterion that lacks an efficient optimisation method.

Going back to the first criterion, another idea is to compute its expecta-
tion with respect to every possible matches weighted by the corresponding a-
posteriori probability. This efficient optimisation scheme gives an algorithm close
to the ICP, but with multiple weighted matches. We show that these two ap-
proaches are in fact a particular case of the general EM algorithm, and thus
combine an efficient optimization scheme with a well posed criterion with a con-
vergence proof.

2.1 ML Estimation of the Transformation and the Matches

Let si be the nS points of the scene S, mj the nM points of the model M and
T a rigid transformation from the scene to the model. Assuming that T � si is
homologous to mj (i.e. a measure of mj) with a known noise model, its density
probability function can be defined by: p(si|mj , T ) = p(T � si|mj).

In the case of an additive and centered Gaussian noise of covariance Σ,
this probability can be defined using the Mahalanobis distance µ2(x, y) = (x −
y)t.Σ(−1).(x − y): p(si|mj , T ) = k−1. exp(−µ2(T � si,mj)/2).

To represent the matches estimation, we use a binary matrix A: Aij = 1 if
si matches mj and 0 otherwise. Since each scene point si is assumed to corre-
spond exactly to one model point with index say j�, we have Aij = δjj� and∑

j Aij = 1 for all scene indices i. In order to represent random matches, we use
a random matching matrix A. Each possible matching matrix A has a proba-
bility p(A) = P (A = A) and verifies the previous constraints: Aij = E(Aij) =
P (Aij = 1) ∈ [0, 1] and

∑
j Aij = 1. Finally, since scene points will assumed

to be independent (see below), and using α1 = α and α0 = 1, we can write:
p(A) =

∏
ij/Aij=1 p(Aij = 1) =

∏
ij(Aij)Aij .
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The first example of such a random matrix is the a-priori probability of
the matches: this is the law giving the probability that a given scene point is
a measure of a given model point knowing nothing else: p(Aij = 1) = πij . A
relevant choice is usually the uniform law πij = 1

nM
.

Now, the joint probability of si and Aij is simply: p(si, Aij = 1|M, T ) =
πij .p(si|mj , T ). We can write this last equality for a whole row of A:
p(si, Ai|M, T ) =

∏
j(πij .p(si|mj , T ))Aij , and assuming that all scene points are

conditionally independent, the joint probability of the scene and the matches is
the product of each of them:

p(S, A|M, T ) =
∏

i p(si, Ai|M, T ) =
∏

ij(πij .p(si|mj , T ))Aij (1)

Finally, we are looking for the transformation that maximises the likelihood of
the observed scene, or equivalently minimises its negative log:

CICP (T,A) = − log p(S, A|M, T ) =
∑

ij Aij .(− log p(si|mj , T ) − log πij) (2)

For an homogeneous Gaussian noise and uniform priors, this simplifies into:

CICP (T,A) = 1
2

∑
ij Aij .µ

2(T � si,mj) + Cte (3)

One recognises here the standard ICP criterion using the Mahalanobis distance.
This proves that ICP is no more than a maximum likelihood approach of the
registration problem. Moreover, [9] showed that this is the best (minimal vari-
ance) estimator. Note that the criterion is invariant w.r.t a global scaling of the
noise covariance. This property will not hold any more for the following EM
formulation.

2.2 ML Estimation of the Transformation Ignoring the Matches

In the previous section, the transformation and the matches were both estimated
by the maximisation of the likelihood of the scene. But for registration purposes,
the matches are not parameters of interest. Two different ideas arise: on the one
hand, we could maximise the scene likelihood knowing only the transformation.
We present this method in this section. On the other hand, there is no reason
to consider only the most likely matches, especially when there are ambiguities.
We could consider all the possible matches, compute their respective probability,
and use the expectation of the previous criterion (Eq. 2) w.r.t. these probabilities
(a kind of Bayesian estimation). This is presented in Section 2.3.

Let us go back to the probability of each scene point. As we don’t want to
deal with the matches estimation, we have to consider the likelihood of a scene
point knowing only the transformation:

p(si|M, T ) =
∑

{Ai} p(si, Ai|mj , T ) =
∑

j πij .p(si|mj , T )

This amounts to seeing the scene points as measurements of a mixture of prob-
abilities around the model points: there is no more homology between a scene
point and one of the model points. This interpretation is specially adapted for
our case since the model is a surface and not a collection of landmarks. Assuming
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once again the independence of the scene points measurements, the likelihood of
the scene and its negative log are :

p(S|M, T ) =
∏

i

∑
j πij .p(si|mj , T ) (4)

CEM (T ) =
∑

i(− log
∑

j πij .p(si|mj , T )) (5)
Unfortunately, this criterion has no closed form solution and we do not know

any robust and efficient method to minimise it directly.

2.3 “Bayesian” Estimation of the Transformation
We now turn to the second method, which implies the computation of the a-
posteriori probability of each possible matches matrix A knowing the scene, the
model and the transformation. This can be achieved using Bayes rule, and Eq. 4
and 1. To simplify the notations, we denote by AT the random matching matrix
defined by:

p(AT = A) = p(A|S,M, T ) = p(S,A|M,T )
p(S|M,T ) =

∏
ij

(
πij .p(si|mj ,T )∑
k

πik.p(si|mk,T )

)Aij

(6)

Since we have p(AT = A) =
∏

ij((AT )ij)Aij , we obtain by identification:

(AT )ij = πij .p(si|mj ,T )∑
k

πik.p(si|mk,T )
(7)

Thus, the idea is to optimise the expectation of our first criterion (Eq. 2)
w.r.t. this law:

CAT
(T ) = EAT

[CICP (T,A)] =
∑

ij (AT )ij .(− log p(si|mj , T ) − log πij) (8)

At this point, the algorithm is obvious: starting from a first estimation of
the transformation, we alternatively compute the probability of matches (AT )ij

and optimise this new criterion. Unfortunately, this new algorithm does not
correspond to the minimisation of a well posed criterion, as (AT )ij depends on
T and vice versa. Thus, the convergence is not ensured.

2.4 Equivalence of the Two Approaches: The EM Algorithm
In fact, it turns out that the algorithm justified in Sec. 2.3 is no more than
the optimisation of the criterion presented in Sec. 2.2, through an Expectation-
Maximisation (EM) approach [3,13]. Thus, the algorithm is ensured to converge.

To relate the criterion CEM (T ) = −log(p(S|M, T )) with the optimisation
method, let us introduce the matching matrix in the criterion using Bayes
rule and take its expectation for any law on A: CEM (T ) = EA(CEM (T )) =
−EA(log p(S, A|M, T ))+EA(log p(A|S,M, T )) Since this criterion is still inde-
pendent of A, we create a secondary criterion that depends explicitly on them
by adding the Kullback-Leibler distance between A and the a-posteriori law on
the matches: KL(A||AT ) = EA(log p(A) − log p(A|S,M, T )). This distance is
positive and null only for A = AT :

CEM (T,A) = CEM (T ) +KL(A||AT ) (9)
= EA(log p(S, A|M, T )) + EA(log p(A)) (10)

The EM algorithm is the alternative minimisation of this criterion.
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E-Step: estimation of the matches. Here, T is fixed and we minimise the
criterion w.r.t. A. Using Eq. (9), we are left with A = AT . Since the distribution
of the (AT )ij is binary and normalized, it can be uniquely characterized by
its mean value (AT )ij . As scene points are independant, they can be treated
seperatly. In practice, for each scene point, we search all close model points, and
compute their weights using Eq. (7).

M-Step: estimation of the transformation. Now, the matches probability
are fixed and equal to AT , and we minimise the criterion w.r.t. T . Using Eq. (10)
and dropping the constant term EA(log p(A)), we are left with the minimisation
of the expectation of log(p(S, A|M, T ))), which is exactly the criterion (8).

Optimality and convergence: After the E-Step, we have exactly
KL(A||AT ) = 0 and then CEM (T,A) = CEM (T ). This proves that our
“Bayesian” estimation is a computational trick for minimising CEM (T ) and thus
the algorithm is ensured to converge toward a local minimum of CEM (T ).

3 Multiscale Gaussian EM-ICP with Decimation

We focus in this section on the simple case where the noise is homogeneous,
Gaussian and isotropic with uniform priors on the matches. In this case, we are
left with only one free parameter: the variance of the Gaussian noise. We first
analyze the influence of the variance on the criterion shape and show that it
behaves as a smoothing factor. This leads to a multiscale scheme designed to
improve robustness without penalizing the accuracy: due to the high computa-
tional cost at coarse scales, we combine an annealing scheme with a simple but
very efficient decimation technique as an approximation of the criterion. This
technique is very similar to the multi-scale approaches used in standard image
(i.e. intensity) analysis domains, and lead to substantial improvements in terms
of robustness and computation times.

3.1 EM-ICP for a Homogeneous Gaussian Noise and Uniform
Priors

For an isotropic and homogeneous Gaussian noise, the Mahalanobis distance
reduces to a rescaled distance: µ2(T �si,mj) = 1

σ2 ‖T �si,mj‖2, and the two EM
steps turn out to be particularly simple:

(AT )ij =
exp(−‖T � si − mj‖2/2σ2)∑
k exp(−‖T � si − mk‖2/2σ2)

(11)

CAT
(T ) = nS .dim. log(σ) +

1
2σ2

∑
ij

(AT )ij .‖T � si − mj‖2 (12)

Practically, the only difference with the ICP for optimizing the transformation
is the presence of non-binary weights. In the rigid case, this can be solved by a
straightforward adaptation of the SVD or the unit quaternion methods [4].

One can even simplify Eq. (12) by considering that each scene point si con-
tribute to the criterion through

∑
j (AT )ij‖T � si − mj‖2. As the weights are
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normalized, this is equal to ‖T � si −mi‖2 +
∑

j (AT )ij‖mi −mj‖2, where mi is
the barycenter of the mj weighted by the (AT )ij . As the second term is constant
during the M-Step, we are left with the optimization of

∑
i ‖T � si,mi‖2, which

is a standard least-square.
One important practical problem is the rejection of outliers. The theoretical

developments of the previous section could easily be adapted to add a probability
to match a scene point to the background, as done in [18, pp.78]. In our case,
this turns out to be almost equivalent to thresholding the Mahalanobis distance.
Thus, we only need to look for matches up to a maximum distance (e.g. 3.σ).
Model points farther away are considered as outliers and are given a null weight.

To determine the variance, we may use a ML approach, which amounts to
minimizing the EM criterion with respect to σ given a transformation and a set
of (probabilistic) matches. This gives a simple RMS estimation:

σ2 =
1

nS .dim

∑
ij

(AT )ij .‖T � si,mj‖2. (13)

One could think to estimate the variance this way at each EM iteration as a
third step of the optimization process, but we experimentally observed that the
decrease was too sharp and was sticking the algorithm in local minima.

3.2 Criterion Shape and Annealing Scheme
To understand the influence of the variance, we analyzed in [7] the asymptotic
values of the criterion and showed that, for high values of the variance, it simply
aligns inertia centers and moments of the two point sets, while it reaches the
standard ICP criterion for small values of σ. Intermediate values of the variance
are presented in Fig. 1: one clearly see that the brittle shape of the ICP criterion
(with numerous local minima) is smoothed into an almost quadratic shape for a
higher variance with a decreasing number of local minima for intermediate val-
ues. One can also see that the correct (i.e. the global) minimum is unfortunately
shifted when the variance is increased. This suggests that we should start from
a large variance, which should guaranty the robustness, and track this minimum
as the variance decrease to end up with the real noise variance that will ensure
the most accurate results.

Since using the ML estimation of the variance imposes too fast a decay, we
chose to impose a slight but regular decrease by dividing the variance parameter
after each iteration with a fixed value called annealing coefficient (typically 1.1).
Notice that doing so can sometimes lead to an increase of the criterion value
between two step. An alternative approach would be to wait for the convergence
before decreasing the variance parameter, but we experimented that it was slower
and less efficient. The annealing process is stopped either when the variance
reaches a predefined value, computed on a good registration of typical data-sets,
or when it reaches the value estimated using Eq. 13 at the current iteration. The
initial value of the variance obviously depends on the quality of the initialization
(i.e. the initial estimation of the transformation). We have no theoretical way of
evaluating this value yet. In our experiments, we used a value varying from 16
to 100 times the typical real noise variance.
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Fig. 1. Criterion vs Z-translation for ICP (on the left) and for EM (on the right).
There are two relevant minima for ICP (0, where the algorithm stopped, and 0.25,
where criterion is minimum) and irrelevant ones (e.g. 0.1 and 0.3). The EM criterion
has a much smoother shape. For an under-estimated variance (0.1 mm) the irrelevant
minima have disappeared. For the approximative noise variance (0.2 mm), even the first
minima has disappeared. For a larger (overestimated) variance (1 mm), the criterion
is almost quadratic, but the global minimum has been shifted.

3.3 Decimation
In preliminary experiments [7], we dealt with the case of a small number of
points (below a hundred) measured on a surface. EM-ICP appeared to be more
accurate than ICP, and the annealing scheme was affordable enough to provide a
high robustness. In this paper, we are interested in large number of scene points
(typically 20000 to 50000). With the ICP algorithm, most of the computation
time is spent in the closest point search. This is usually implemented using
a kD-tree or some similar method and the search is limited to the threshold
distance defined for outliers rejection. The same technique is of course applied
when using the EM-ICP algorithm, except that all points closer than a maximal
Mahalanobis distance are taken into account.

With the annealing scheme, the problem is that the maximum Euclidean
search distance is then proportional to the standard deviation: with a large
variance, virtually all model points have to be retrieved and the kD-tree becomes
completely inefficient. This has an “exponential” influence on the computation
time that practically forbid the use of the annealing scheme. The main idea was
then to see the variance as a scale parameter: at a coarse scale, we do not need
to be accurate and we can approximate roughly our data-set. When the variance
goes down, we have to refine our approximation to increase the accuracy.

To speed-up the algorithm at a given scale, the basic idea is to observe that
if n scene points are close enough (w.r.t. the variance), they will share almost
the same closest points within the model with almost the same weights. Thus,
approximating these n points by considering n time one of them will optimize
a good approximation of our criterion (n is called the decimation weight). In
fact, it turns out that we have to use their barycenter to obtain a second order
approximation of the criterion (detailed proof in [6]). This leads to a simple
decimation technique that merges scene points that are close to each other.
More precisely, we consider that the distance of a point to its approximation has
to be inferior to α.σ.

In fact, any decimation technique that replace a subset of close points by
their barycenter will be compatible with EM-ICP. One could imagine lots of
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Fig. 2. The greedy sphere decimation algorithm. At the beginning, we define a
remaining list containing all the points of the original cloud and we create an empty
decimated cloud. We iteratively add points in the decimated cloud as follows. Starting
from a remaining point, we initialize a sphere of radius α.σ centered on this point (a).
Then, we iteratively find all remaining points in this sphere, compute their barycenter s,
and move the center of the sphere to this barycenter (b,c). After convergence, we create
a new point in the “decimated cloud” at the center of the sphere with a weight equal
to the number of remaining points within the sphere, and we remove these remaining
points (d). The whole process ends up when there are no more remaining points.

different ways of finding these subsets of points. We present in Fig. 2 a simple
and very fast technique: the sphere decimation. It consists in adjusting a sphere of
radius α.σ centered on the barycenter of the points it contains. The modifications
of the EM-ICP algorithm including the decimation and annealing schemes are
presented in Table 1.

Table 1. Pseudo-code of the Multiscale EM-ICP registration algorithm.

Initialization : Compute a first estimation of T , and set σ2 to its initial value.
Repeat

Decimation : Decimate the scene with a sphere radius α.σ.
E-Step : For each si in the decimated scene with decimation weight nsi :

Search all mj such that ‖T � si − mj‖2 < σ2.µ2
max using a kD-tree

Compute the weights (AT )ij using Eq. 11
M-Step : Re-estimate T by minimising

∑
ij

nsi(AT )ij .‖T � si − mj‖2.
Annealing : Divide σ2 by the annealing coefficient. If σ2 is below the final noise

variance, set it to the final noise variance.
Until convergence

3.4 Analogy with Multi-scale Intensity-Based Techniques

As the variance can be considered as a scale parameter, it is interesting to deter-
mine how our annealing and decimation scheme relates to multiscale techniques
already developed for intensity-based registration. We analyze in this section
the coarse-to-fine aspects, realized by the coupling of the EM algorithm and
the annealing scheme, and the down-sampling aspects, realized by the decima-
tion, and linked to the multi-grid approach with intensity images. Our discussion
will be quite pragmatic, though we think it could be integrated into a rigorous
multi-scale framework (see for instance [10]).
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Coarse-to-fine approaches. The main idea underlying multiscale intensity-
(i.e. image-) based registration approaches is to get rid of small details that
create local minima and trap the algorithm when the initialization is too far
away from the solution. This is especially the case for non-rigid registration
[17]. This is usually implemented using a pyramid of blurred images with an
increasing Gaussian kernel [8].

Using a Gaussian mixture model for representing the probability of mea-
suring points follows essentially the same idea: we are representing the pdf of
measuring one point of the model as a blurred version of the original (Dirac)
model measurements. As the variance grows to larger values, we will loose the
precise local shape of the surface to focus on a more global shape.

The main difference with images is that our measurements are not on a
regular grid: precomputing the pdf on a regular grid would forbid the use of
an efficient ICP-like algorithm. This is why the blurring is introduces directly
within the algorithm via the EM weights. Moreover, the normalization has to be
done for each scene point independently (as distances are different) and cannot
be incorporated into the blurring kernel. This could be a difficult point in the
rigorous modeling of our algorithm as a multiscale approach.

In the multiscale theory, one could show that the causality hypothesis implies
that the local minima at a fine scale are gradually merging with the scale, and
that there is no bifurcation (creation of new minima). Although we experimented
a similar behavior with EM-ICP (see Fig. 1), we lack a rigorous multiscale setting
to prove it. Such a result would be especially interesting since we know that there
is a unique minimum at the largest scale (if the inertia moments of the point
clouds are sufficiently anisotropic): could we find a path along scales leading
from this unique minimum to the global minimum at the finest scale ? If there
exists moreover a technique to choose the right path, we could obtain a perfectly
robust algorithm.

Decimation. Multi-scale techniques are often coupled with a down-sampling
of the image at each-scale, designed to improve the computational efficiency.
This down-sampling is usually integrated into a multi-grid approach where the
resolution of images is for instance divided by two at each coarser scale. This is
implemented through a resampling algorithm that takes into account the Gaus-
sian blurring, and is designed to minimize the impact on the registration criterion
while reducing drastically the volume of data.

Our decimation technique was designed with the same concern, but there
are some major differences that could have a theoretical impact. Firstly, the
scale does not need to be divided by two at each scale to obtain an efficient
algorithm: we can have a smoother scale evolution that gives better results (see
Section 3.2). The counterpart is that we cannot construct a pyramid using a
recursive technique and we have to down-sample the set of points at each scale
from the original set of points. In our case, this is not a problem as this step is
computationally cheap. Secondly, our decimation is applied before the implicit
Gaussian blurring, and not concurrently as for images. This means that we
compute an ad-hoc approximation of the point location pdf, and not the best
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possible one. However, the possible gain of such an optimisation would probably
be discarded by the extra computation time.

4 Experiments

We evaluate in this section the comparative robustness, computation time and
repeatability of the ICP and EM algorithms with respect to the decimation and
annealing parameters. We present the computation time of the overall registra-
tion process (on a PC Pentium III 1Ghz using linux), thus taking into account
each iteration time (including decimation) and the number of iterations.

To evaluate the robustness w.r.t. the initial transformation, we performed
between about 1000 and 5000 registrations with the same parameters and vari-
ous initial transformations obtained by composing different translations with a
“ground truth” transformation (a visually checked result considered as the ref-
erence). These translations are defined on a regular grid going from -8 to +8 mm
in each directions. Here, we did not applied rotations since we previously exper-
imented that the algorithm was more robust w.r.t. rotations than translations.
The robustness is then evaluated by the percentage of correct convergence.

In fact, correct convergences does not always exactly correspond to the global
minimum, because there can be other local minima in its immediate vicinity.
This introduces an intrinsic variability of the results that we call internal error
or repeatability. This error can be interpreted as the consequence of small errors
in the matches estimation. It is directly measured by the variability of the correct
transformations obtained in the robustness experiments, and we present it as a
“Target Registration Error” (the RMS of points induced by the transformation
error) in the target area, in our case the whole jaw.

This internal error, due to the variability of the initial transformation, is
only a part of the registration error. Extra errors are introduced by the noise
on the data and the fact that the scene points are not really independent nor
homologous to the model points, as supposed in section 2.1. To measure the
global error, we are currently preparing controlled experiments on real data.

4.1 Heterogeneous But Precise Data

In this experimental setup, we have two sets of
points measured on the surface of a dry (ex-
vivo) jaw. The model (in white) is the sur-
face of the jaw segmented from a CT-Scan of
resolution 0.25*0.25*0.5 mm. This is a regu-
larly sampled surface formed by 133027 trian-
gulated points. The scene (purple points) is
obtained via a sensor mounted on a passive
robotic arm with an accuracy of about 0.05
mm. This set of 25000 points is very hetero-
geneous, and presents many packets of highly
correlated points.
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We used the following default parameters: a standard-deviation of the real
noise of σfinal = 0.3 mm, a maximum Mahalanobis distance of µ2

max = 9, an
initial variance coefficient of ainit = 16 (and thus the initial standard-deviation is
0.3∗√

16 = 1.2 mm), an annealing coefficient of c = 1.1. By default, the weights of
the decimated scene points were not used (see Decimation weights below). In the
following table, we summarized the robustness, computation time (in seconds)
and repeatability (in mm) results with respect to the modified parameters.

ICP EM
% correct Time Int. error % correct Time Int. error

No decim., no annealing 25 320 < 0.01 27 530 < 0.01
No decim. 33 360 < 0.01 30 613 < 0.01
Decim. at σ 58 90 < 0.01 55 155 < 0.01
” with decim. weights 36 75 < 0.01 34 145 < 0.01
Decim. at 2σ 59 27 0.03 53 48 < 0.01
Decim. at 2σ, ainit = 36 80 25 0.03 71 43 < 0.01
Decim. at 2σ, ainit = 100 92 25 0.03 88 58 < 0.01
Decim. at 4σ 49 7 0.03 53 13 < 0.01
Decim. at 8σ 27 2 0.24 37 4 < 0.01
Computation time: The EM algorithm is only two times slower than the ICP
algorithm, and the decimation speeds up both algorithm by the same factor
(from 5 to 50!). Interestingly, the computation time is quite constant when the
initial scale grows up. Without decimation, one would have observed at least a
quadratic increase.
Decimation weights: as we are dealing with non-homogeneous and correlated
measurements, we believe that forgetting the decimation weights (though it is
theoretically incorrect) tends to produce a more uniform repartition of uncorre-
lated scene points. The robustness results provides an experimental evidence of
this effect.
Size of the decimation spheres: surprisingly, the decimation induces an in-
crease of the robustness up to 2σ. This shows that the changes introduced by
the decimation are only smoothing the criterion up to this value (and probably
de-correlating the measurements). For higher values, the robustness drops off,
as expected.
Initial scale value: the robustness is spectacularly increased by starting at a
high scale, at a much lower computational cost, thanks to the decimation. Thus,
it seems that the annealing scheme is the most important improvement from a
robustness point of view. However, the question remains of how to find, from
theoretical considerations, a more optimal way of decreasing the variance.
Internal accuracy: the global minimum seems to be very well defined on these
data thanks to their very high quality. However, the internal error increases with
the size of the decimation sphere for ICP, whereas it is always negligible with
the EM algorithm.

The most surprising result on these data is that, except for large decimation,
the performances of ICP and EM are equivalent, though the decimation and
annealing schemes are not justified with ICP. This is also inconsistent with pre-
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vious experiments on small sets of independent points where the EM algorithm
was better [7]. We believe that the high precision of the current data points and
their important correlation (both criterion assume the independence of scene
points) combined with the important decimation and annealing improvements
hide here the possible advantages of EM over ICP.

We justified in Sec. 3.3 the decimation of the scene points as realizing an
approximation of the criterion. One could easily extend this justification to the
decimation of the model point set. We run a few experiments with a comparable
decimation radius (between σ and 2σ) which showed that it could lead to an
extra gain in terms of computation time, while preserving other performances.
However, the main problem is that the kD-tree (used to locate the nearby model
points) has to be rebuilt every time the model points are decimated, so that we
only gained a factor two on the computation times.

4.2 Homogeneous But Noised Data

Here, the sets of points are measured on the
surface of a patient teeth. The model (in
white) is the surface of the teeth and the bone
segmented from a CT-Scan (same resolution).
This is a regularly sampled surface formed by
40897 triangulated points. The Molar and the
upper face of incisors are corrupted with ar-
tifacts due to fillings. The scene (in purple)
is a range image at a resolution of 0.2 mm of
a plaster cast of the patient teeth and gum.
Notice that only the teeth are visible in both
surfaces as the gum of the range image hides
the bone surface extracted from the CT.

For this experiment, we used exactly the same default parameters as in the
previous section, except that the real noise standard deviation is a bit higher:
we determined here that σfinal = 0.4 mm.

ICP EM
% correct Time % correct Time

No decim., no annealing 47 564 51 800
No decim. 62 579 73 821
Decimation at σ 80 182 91 280
Decimation at 2σ 75 76 88 103
” with decim. weights 45 60 72 98
” with ainit = 36 94 54 98 65
” with ainit = 100 100 43 100 64
Decimation at 4σ 47 20 70 35

These results basically confirm the conclusions of the previous experiment,
except that EM clearly appears to be more robust than ICP. These better per-
formances are in accordance with our preliminary experiments [7], and tends to
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show that EM performs better than ICP in the presence of noise. This effect will
have to be confirmed on future experiments. The scene (a range image scanned
from above) is less inhomogeneous than in the previous experiments, and the
influence of the decimation weights is smaller. This tends to confirm that the
gain in robustness previously obtained by the decimation and the suppression
of its theoretical weights is specifically due to the non-homogeneity of the these
data.

5 Conclusion

We show in this article that the ICP algorithm is a particular case of a more
general maximum likelihood approach to the surface registration problem. Then,
applying the EM principle, we derive a new variant named EM-ICP. In the case
specific case of a Gaussian noise, it amounts to considering a mixture of Gaus-
sians. This introduces a new variable (the variance of the Gaussian) that we
interpret as a scale parameter. At a high scale, EM-ICP is very robust as it is
almost quadratic, while it behaves like an ICP at a fine scale. We propose to
exploit this property in a coarse-to-fine approach based on an annealing scheme
to avoid local minima while reaching an optimal accuracy. To bypass the compu-
tation time explosion at coarse scales, we design an original approximation of the
criterion that may be implemented with a very simple and efficient decimation
of the point clouds. The analogy between our method and the multi-scale and
multi-grid approaches used in intensity-based image analysis would be interest-
ing to develop as it may lead to a more formal multiscale theory on point sets
and surfaces.

Experiments on real data acquired on the jaw and the teeth show a spec-
tacular improvement of the performances of EM-ICP w.r.t. the standard ICP
algorithm in terms of robustness (a factor of 3 to 4) and speed (a factor 10 to
20), with similar performances in precision. A closer look at the results show
that the main improvements were due to the combination of the annealing and
decimation schemes. Though these schemes were only justified with EM, they
could also be used to improve ICP, which performances reaches then the one of
EM when the data are not too noisy. We also designed a pragmatic variant of the
decimation that appears to be very well suited to the case of non-homogeneous
and correlated measurements.

We are currently designing controlled experiments on real data to evaluate
the global accuracy of the method. As EM presents a better repeatability than
ICP, we expect that it will also exhibit a better accuracy. Future work will also
focus on the on-line prediction of this accuracy, and the study of the influence of
the surface sampling. Another important research axis will be to predict where
we should take new measurements in order to improve the registration. This
is especially important in view of a real-time per-operative system, in order
to guide and speed-up the acquisition of points by the surgeon in an optimal
way. From a more theoretical point of view, there is a need for a rigorous scale-
space theory on point sets, which could help us to choose the optimal variance
decrease in EM-ICP. Last but not least, we believe that this new algorithm could
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be adapted to many other applications in the domain of surface and range image
registration.
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