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Abstract

The partial volume effect (PVE) arises in volumetric images when more than one tissue type occurs in a voxel. In such cases, the voxel
intensity depends not only on the imaging sequence and tissue properties, but also on the proportions of each tissue type present in th
voxel. We have demonstrated in previous work that ignoring this effect by establishing binary voxel-based segmentations introduces
significant errors in quantitative measurements, such as estimations of the volumes of brain structures. In this paper, we provide a
statistical estimation framework to quantify PVE and to propagate voxel-based estimates in order to compute global magnitudes, such as
volume, with associated estimates of uncertainty. Validation is performed on ground truth synthetic images and MRI phantoms, and a
clinical study is reported. Results show that the method allows for robust morphometric studies and provides resolution unattainable to
date.
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1. Introduction ments of structures, with associated error bounds, is
particularly important in magnetic resonance image (MRI)
Medical image analysis has developed rapidly in recent analysis, because the voxel size of most MRI image
years. Initially, most work aimed at generatiggalitative acquisitions is significant at the scale of the object to be
information in the form of images that could engage the measured. The MRI intensity in a particular voxel depends
clinician’'s perceptual abilities. Increasingly, however, on the entire contents of the corresponding anatomical
there is a need for medical image analysis to deliver volume and the sequence that is used. If only a single
guantitative information, for example about the size of a tissue type is present in the voxel, the signal intensity will
tumour, or the extent to which an anatomical structure has be characteristic of that tissue type. However, if more than
responded to a drug therapy. Since images are intrinsically one tissue type is present, the signal will be a combination
noisy and sample continuous anatomical structures, results of the contributions of the different tissues. This is known
can never be given with complete precision. Error bounds as the Partial Volume Effect (PVE), and this paper presents
on measurements are inevitably necessary, as they are in a method for estimating it, and correcting segmentations
all engineering applications. However, most published on the basis of that estimate.
medical image analysis methods develop segmentations In previous research (Gonzalez Ballester et al., 2000),
and then derive measurements of certain structures or we described a methodology for morphometric studies of
lesions, but confidence bounds on such measurements are brain structures from MRI data sets, and this paper is
rarely provided. The need for precise quantitative measure- continuation of that research. The method in (Gonzalez

Ballester et al., 2000) was based on a combination of

. , _ statistical and geometrical information to perform seg-
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the image, then building surface bounds that isolate such2. Literature review

voxels and which enforce geometric continuity via an
active shape model. In that way, PVE voxels are consid-
ered uncertain, and upper and lower estimates on the shape
measurements (e.g. volume) are derived from the inner and
outer surface bounds. The particular choice of the shape
model that we use (a mesh of triangular Gregory—Bezier
patches) enforces geometric continuity and reduces the
width of the confidence interval with respect to voxel-
based measurements.

The results reported for the method demonstrate clearly
that the effect of discrete sampling in boundary locations is
crucial, and that it can lead to volume measurements with
errors in the range 20-60% of the volume of the object
being measured, particularly for complex brain structures
for which the ratio of surface area to volume is relatively
large' .

In this paper, we propose decoding the information
contained in PVE voxels in order to segment objects to
sub-voxel accuracy and thereby to provide narrower
confidence bounds on the measurements. More precisely,
we develop a statistical framework within which to model
the partial volume effect and then build a statistical
distribution for it. Once that is in place, the uncertainties
inherent in each PVE voxel are propagated in order to
construct a distribution on the measurements derived from
the data (e.g. volume, area, etc.). Since the approach is
statistical, the end product is not a single value for the
shape descriptor of choice—volume will be used for the
examples reported in this paper, though the approach is
more generally applicable—rather, it is a statistical dis-
tribution from which we can obtain its probability density
function, mode, mean, etc. In addition, confidence bounds
may be computed to a certain probability value.

Section 2 provides a review of the existing literature
regarding PVE estimation. Section 3 introduces the pro-
posed PVE model, and then Section 4 provides a more
detailed description for the special case of Gaussian tissue
models. Section 5 shows how confidence bounds on the
estimated proportion of each tissue in a PVE voxel can be
established, while Section 6 presents a methodology to
propagate such local confidence bounds in order to develop
bounds for global shape descriptors (e.g. volume). Valida-
tion on synthetic images is described in Section 7. Section
8 discusses possible complications when applying the
method to real MRI data sets, and Sections 9, 10 and 11
address these issues. Section 12 shows the results of
experiments performed on MRI phantoms, and Section 13
describes a clinical study performed following our method.
Finally, Section 14 provides discussion and conclusions.

The quantitative limitations imposed by the partial
volume effect have received growing attention in the las
decade. Some methods consider PVE as a corrupting factc
and toprtect for it. On the other hand, the work

described in this and other recent works is based on using
PVE as an important image feature, and the focus is on

estimating it in order to obtain sub-voxel accuracy.

Roll et al. (1994) use an intensity thresholding seg-
mentation approach to assign a tissue type tag to eact
voxel and establish an optimal segmentation threshold and
a correction factor to take into account PVE. The particular
application is MS lesion quantification. Although compli-
cated by the fact that they take into account all voxels in
the image, instead of only PVE voxels, their approach is

rather simple, and concludes that the optimal threshold is

halfway between lesion and background intensities.
Several authors have proposed approaches for estimating
PVE by solving a linear system using the information
provided by several imaging MR sequences. Soltaniar
Zadeh et al. (1993) develop a method for creating images
with intensities proportional to the quantity of a certain
tissue in each voxel, while maximising signal-to-noise
ratio. However, it requires having at least the same number
of (perfectly registered) image sequences as the number of
tissues that we are interested in segmenting. Similarly,
Thacker et al. (1998) set up a linear system with the
intensities from two image sequences in order to segment
grey matter, white matter, and CSF from neurological data
sets, and provide a method for estimating the expected
accuracy of the results. Choi et al. (1991) argue that
methods that combine different sequences linearly are very
sensitive to noise, and they propose a Markov random field
(MRF) prior as a way to smooth out the results. This
introduces the typical problems of MRFs, i.e. determining
the correct parameters and the weighting between the prior
and the data, as well as huge computational cost. It mus
be noted that several imaging sequences are not alway
readily available, and in such cases a single-channel PVE
estimation method is necessary.

Another approach is to model the statistical distribution
of pure tissue and mixture voxels and to fit these dis-
tributions to the image. Santago and Gage (1993) use a
Gaussian model for the tissue classes based on a mea
intensity and a common noise variance for all the tissues,

and employ a uniform distribution to describe the be-
haviour of the proportion of each tissue in PVE voxels.
Laidlaw et al. (1998) use the same tissue model assuming
a single common variance for all tissues, and provide a

sophisticated means for fitting the distributions to the
histograms of the whole image and of single voxels, while
constraining neighbour continuity. No quantitative com-
'See also (Niessen, 1997) for a study of the effect of PVE using parison with other methods is prowded, and visual com-

synthetic brain phantoms. Percentages of volume encompassed by PveEParison is performed with methods that do not give

voxels are consistent with the estimates provided by our method.

appropriate results for the example object. Therefore, it is
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difficult to draw conclusions about the performance of the
method. Unfortunately, this technique is extremely time-
consuming, even though it was implemented on parallel
hardware. Our method is highly related to these tech-
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proportion of each tissue in the’ voxel (Rinck, 1993).
Based on the assumption of just two tissue types present in
PVE voxels, the intensity of a voxel is determined by the

following linearly-weighted sum:

niques, especially (Santago and Gage, 1993). The main

differences are generality in tissue distributions (not lim-
ited to Gaussian distributions with common variance),
prior segmentation of PVE voxels (we argue that a uniform
distribution for the proportion of each tissue is only correct
if non-PVE voxels are not included), and an in-depth
consideration of the issue of error propagation in global
measurements (volume, in this paper).

Marais (1999) proposes a different PVE estimation
strategy by using a model of the width of each tissue in

I'=a'l, + (1—a')l), (1)
wherei indexes all PVE voxels, and is drawn fromp,,
the distribution for tissug, j ={1, 2. In this context,a'
denotes the proportion of tissue 1 in the vokek' €0,
1].

The distributions for individual tissue types can be
combined in order to build a mixture moded(l'|a'). This
distribution expresses the likelihood of a particular intensi-

profiles traversing the brain surface. His work was moti- ty value in a PVE voxel, given the proportion of each
vated by the need to deal with sparse, low resolution datatissue in it (Fig. 1). The expression for this mixture model
sets, and the assumptions taken to model anatomicalcan be obtained either analytically (cf. next section) or by
structure are too simplistic for its use on high resolution means of Monte Carlo simulation. See (Everitt and Hand,
MRI. 1981) for further detail on mixture modelling.
In order to estimate PVE, we are interested in obtaining
p(a'[l"), i.e. the statistical distribution of the proportien
of each tissue given the intensity of the PVE voxel
Having this distribution, it is possible to compute its mode,
which corresponds to the most likely value @f, as well
To simplify the presentation, the model will be pre- as confidence intervals (cf. Section 5). Using Bayes’
sented only for PVE voxels containing two different types theorem, the expression fe(a'|l') is
of tissue. The extension to multiple tissues is relatively o _
straightforward though mathematically tedious. Note that _ p(l'e)pla’)
in any case, this restriction only applies locally and does - p(') '
not limit the number of tissue types modelled for the whole
image. This is because the two tissues present in PVEThe termp(l') is a normalising constant, and is computed
voxels in separate locations of the image may be entirely as
different. A second reason for imposing this restriction is
that, in practllce, cases in which more than twq tissue typesp(I ) =f n(l']a')p(a') da.
are present in a voxel are rare in brain studies. In short,
although our model for PVE voxels can be extended to
include such cases quite straightforwardly, the practical
improvement expected from such an extension is ques-
tionable, and it could introduce inaccuracy (if a mixture
model of three or more distributions is fitted to a PVE
voxel which actually contains only two tissues) and
computational overhead. This restriction to two tissue
classes was also adopted in (Laidlaw et al., 1998), amongst
others. o
The dlsmb.Ut_lon of intensities generated f".om ?amp'?s of Fig. 1. A distribution for the intensities of PVE voxels, given the
a tissue typg is assumed to follow a certain distribution  proportion of the two tissues present in it, is built based on the two tissue
p,(1). No assumptions are made regarding this distribution; distributionsp, and p,.
it can be modelled either in terms of a known analytical
statistical model or it can be constructed empirically from
histograms derived from a suitable training set. In the next
section, the model is elaborated for the special case of a >This holds for most common imaging modalities. It should be noted,
Gaussian distribution, since it arises so frequently in the however, that inversion recovery sequences may present problems in
literature. cases where one of the tissues present in the PVE voxel has negative
PVE arises from the presence of more than one tissue inmagnetisation, while the other tissug has ;_)(_)sitive magnet_isation. In such a
; . . . case, PVE voxels can have lower intensities than the tissues present in
a voxel, which, in accordance with the physics of MRI,

: . - them. This is an uncommon case, and although theoretically possible, we
generates an intensity value that depends linearly on thedid not find it in any of the images in our data base.

3. Mixture model
(2)

pa'|l")

(3)

Pl(Ii) ——\_’

p(I') ——

_ /T

mixture

model — p('ld)
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p(e') is the prior ona, and expresses the probability of a distribution is a direct function op(l'|a') and p(e') as
voxel i having a proportionx of tissue 1 (and therefore a stated in (3). In addition, the effect of(l') in the
proportion 1— « of tissue 2). In this work we propose that, computation ofp(a'|l') is irrelevant, since it acts as a
if we consider only PVE voxels, this prior can be modelled normalising constant for the distribution.

as a uniform distribution in the randg®. .. 1]. The assumption of independence fp(a') is more
» problematical. If pure voxels are taken into account, a
pla')=1, Vi (4) neighbourhood relation should be incorporated, since

voxels whose neighbours are pure tissue have a higher

The prior is thus reduced to a constant, transforming the likelihood of being pure, due to the piecewise constant
‘maximum a posteriori’ expression in (2) into a ‘maximum nature of the tissues. Markov random fields could be
likelihood’ estimator. Other works assuming uniform employed to this end, and we are currently investigating
priors include (Santago and Gage, 1993; Laidlaw et al., that possibility (Zhang et al., 2000). In our case, however,
1998). only PVE voxels are considered, which opens the possi-

Note that this assumption only holds for the set of PVE bility for assuming independence. The variability of shapes
voxels. If all voxels in the image were to be considered, a passing through voxels is infinite (unless some assumptions
prior giving more probability to the values 0 and 1 would are introduced to limit their local geometry). Hence, no
be more appropriate, singaure (non-PVE, i.e.a=0 or reliable prediction can be made to infel from the values
a=1) voxels are in general far more common than PVE of « at neighbouring voxels. Independence is thus a
voxels (see Fig. 2). Examples of such distributions and reasonable choice. Further consideration to this argument
further discussion about this issue can be found in (Roll et is given in (Gonzalez Ballester, 1999).
al., 1994). The problem of using a uniform distribution in
the presence of many pure voxels is that small variations
from 0 or 1 in thea’s of such voxels produce considerable 4. Example: Gaussian distributions
errors, due to the high number of pure voxels in an image.
It should be noted, however, that choosing the correct e elaborate the framework described in the previous
‘U'-shaped prior is not trivial, and a bad choice can section for the case of a Gaussian probability distribution,
influence the results for the estimateds. A prior with which is the model most commonly used in MRI studies .
wide tails, which tends to ‘round off' too many values The intensity distribution for tissugis
close to 0 and 1 will underestimate PVE, while a prior with
narrow tails will not cancel the error due to small 1 (- /—bj)2
variations from 0 or 1 in pure voxels. P =Gy, o) = Vo TR T T o2 ) (5)

We now consider the independence assumptions that can . :
be made within the above framework. First, we suppose The expression for the mixture model can be computed
that p(I'|a') is independent across voxels. A reminder of analytically. Given a value ofe', and assuming the
the intuitive meaning of the distribution should convince mixture model in (1), the distribution for the combined
that this is a reasonable assumptipfi.|a') represents the  intensities follows a linear combination of two Gaussians,
probability of an intensity value in a voxel, given the which is itself a Gaussian (Fig. 3):
proportion of each tissue. This only depends on the
distributions of the tissuesp, and p,. The value ofa is
given, ajnd there IS, no _re‘?sor_] why neighbouring quels *Note that Wells et al. (1996) and Guillemaud and Brady (1997) use a
should influence this distribution. Let us now consider Gaussian distribution on the logarithm of the intensities. However, this
p(1"), the probability of a given intensity in a voxel. This choice is not well suited for dark intensities (Gonzalez Ballester, 1999).

pe’) p@)

4] 1 0 ) 1
o a'

Fig. 2. Distributions forp(a'). Left: Uniform distribution, corresponding to a set of PVE voxels; Right: ‘U’-shaped distribution, corresponding to an image
containing pure tissue voxels.
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Fig. 3. p(l i|o/) plotted for all values ofx' €[0.. . 1]. Each cross-section for a given valuewfs a Gaussian following (6). In this example, = 100,
o, = 10, u, =200 ando, = 40.

p(la’y = Gla'u, + (1 — a')uy Vea'o? + (1— a')od). but of the proportiona (Fig. 4). A few cross-sections at
6) chosen values of' are shown in Fig. 5. Note that the
function is not symmetric.

Bayes’ theorem can now be used to comppte'|l'),
applying (2). As noted above, we assume thet') is 5. Confidence bounds
uniform in the interval 0...1], sop(a')=1. The re-
sulting formula has the same form as (6), except for the  The information contained in the individual distributions
normalising constanp(l'). However, this time it is not a  p(a'|l') can be summarised by computing the most likely
Gaussian, since it is no longer a function of the intenkity ~ value of «', as well as upper and lower bounds at

""-r' .2 a
0
Fig. 4. p(a'|l") plotted for all values of' €[0. .. 255].
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Fig. 5. Cross-sections qi(«'|l') at valuesl =100 (), 120, 140, 160, 180 and 20Q.f).

particular confidence levels. It was shown above that
p(a'[l") is not necessarily symmetric, so the mean value
Qnean IS NOL, iN general, the value of highest probability.
Assuming that the distribution is unimodal, i.e. has only
one maximum (the modeg,..), @ Simple search, for
example starting from the mean value, suffices to compute
this value. a4 represents the most likely value of
given the intensity of the voxel and the distributions for the
tissues present in it. _

Similarly, confidence intervals om' can be set by
constraining the area below the probability density func-
tion (pdf) of p(a'[l'). Upper and lower bounds are found

by locating the valuesa,,,., and a,.,., respectively,

which encompass a certain area surrounding the mode

a0d- THiS area is the lateral confidence intervil,§ for
.

f pla'[l")(a) da = f pla'll")(a) da = Gy (7)

For example, an area af,,=0.45 to each side of the

p|r

Ay Az

a o

alawer mode upper

Fig. 6. Confidence bounds gu{e'|l"). «,

woper AN @, Are set so as to
make the areas A and,A equal ¢g,.

mode enforces a 90% confidence interval, i.e. there is a

90% chance that the vadtlegofen 1’ is between the

bounds computed in such a way. This point is illustrated in

Fig. 6.

6. Propagation of uncertainty

The framework developed up to this point applies to
individual PVE voxels. In order to compute quantitative
estimates of the volume of a region bounded by PVE
voxels, a method must be devised to combine the statistical
information contained in the individual distributions in
order to create a distribution for the volume

p(a'[l'), Vi pv). (8)

6.1. Conservative bounds

The first approach towards propagating local informa-
tion makes use of the confidence intervals developed in
Section 5. In particular, upper and lower bounds on the
volumeV can be set by employing the upper and lower
estimates ofa for every PVE voxel. This obviously
produces an overestimation of the confidence intervals
(Pennec, 1996). The bounds computed in such a way will
be referred to asonservative bounds.

In the case of volume, the framework is straightforward,
sincev can be expressed as

wherev, ., is the volume of a voxeln,,. is the number
of pure voxels; and indexes all PVE voxels containing
tissue of the object being measured.

Upper and lower estimates of the volume can then be

computed as

i
npure+ 2 a
iEPVE

V=vwm( (9)
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V,pper= vvoxe(n pureT > a upp(;: (10) PVE voxels previously segmented, not to the whole 3D
iEPVE image.

\/Iower = vvoxel(n pure+_ 2 allowe>' (11)
iEPVE

7. Validation with synthetic images
However, this method has two drawbacks. First, it
produces a considerable overestimation of the confidence In order to provide ground truth for our measurements,
bounds. This means that using local bounds for each voxelwe first employ a recursive subdivision procedure to
at a confidence levet,,, will, in general, produce bounds simulate MR acquisitions of objects of known geometry,
for the global magnitud® with much greater confidence. for which an analytic formula is available (e.g. an ellip-
This implies an unnecessary loss of resolution in the soid). At each voxel location, it is determined whether the
results reported by this method. Second, establishing8 diagonal neighbours of the voxel are inside the simulated
confidence bounds is a step back in the process ofobject by evaluating its formula. If this is the case, the
establishing a solid statistical model for the PVE. In fact, voxel is assigned intensity valug,, whereas valug,, is
what we are after is a statistical distribution fgrnot just given to voxels whose 8 corners are all outside the object.
two confidence bounds. The remaining voxels correspond to boundaries and their
intensity values should simulate the partial volume effect.
In order to determine the proportian of the voxel that is

6.2. Monte Carlo inside the object, a recursive subdivision procedure is
initiated by dividing the voxel by its centre into 8 smaller
One way to construct the statistical distribution Ybiis cubes. Testing for inclusion continues in the manner

to use Monte Carlo methods (Leon-Garcia, 1994). The described above until all sub-voxels are assigned a value or
idea is to sample values from the individual distributions a recursion limit is reached. Then, the intensity value

for each PVE voxel. Taking a sample from each PVE L= al +(1—al 12
voxel, it is possible to compute a samplevoBy repeating alip + (1= )loy (12)

this process a large number of times, the distributiorMor is assigned to the voxel. The recursion limit is chosen so
is simulated and can thus be reconstructed. The process ighat the contribution to the final value of in the limit is
spelled out in detail in Fig. 7. In order to generate samples smaller than a certain small value(typically 1x 10~ *°).

from the distributions, a rejection method was used (Leon- Tissue-dependent Gaussian noise can also be applied by
Garcia, 1994). modellingl;,, andl,,, as Gaussian distributions.

Monte Carlo methods have been extensively used in A synthetic data set was created using the program
Bayesian estimation frameworks (Chen et al., 2000), and described above. The phantom data set contains a sphere of
they are often computationally expensive, to the point they volume V.= 1145.7 in a voxel grid of 2820x20
quickly become ineffective in practical applications. In our voxels, each with dimensionsxi1 X1 (Fig. 8). Only two
case, however, experiments carried out for computing tissues (inside and outside the sphere) are represented.
volumes (cf. following section) were performed in reason- They are modelled as Gaussian distributions with the
able times (typically in the range of 2—5 min). This is following parameters:y,, =200, o, = 2.5, u,,= 100,
partly due to the fact that the process is applied only to o, = 2.

Algorithm MONTE-CARLO
For n=1 To number of Monte Carlo iterations Do
volume[n]=0
For 1=1 To number of PVE voxels Do

@' = sample from p(c'|l')

volume[n] = volume[n] + &'
End For
volume[n] = volume[n] * voxel volume
End For
pdf = normalised histogram of volume[]
End Algorithm

Fig. 7. Algorithm for Monte Carlo propagation of uncertainty.
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Fig. 8. Slices number 4, 5, 10 and 16 of simulated data set.

PVE voxels are isolated by building a mask of values Table 2 o
different from x, and ., in an image generated simulat-  ReSults of the Monte Carlo simulation
ing the same shape but without noise. The volume Confidence Lower bound (%) Upper bound (%) Width %
encompassed by these PVE voxels is 656, which estab-24, 1144.6 0.10%) 1146.6 {0.08%) 0.18%
lishes an area of uncertainty based on voxels of 57.3% of 3a;,c 1144.1 (0.14%) 1146.9 ¢0.10%) 0.24%
Vyroune We then proceed to fit an inner and outer surface in = confidence intervals were computed as a function of the standard
order to establish bounds as described in (Gonzalezdeviation computed from 10 000 samples.
Ballester et al., 2000). The width of these confidence
bounds is computed as value of 80% cqnfidengeclgt = (_).4) is reasonable, anq a
more conservative estimate is obtained when using a
(Vouter — Vinnes) X 100 15 threshold of 90% confidence. Increasing this threshold to
Vyround ' (15) 99% is exaggerated, and the width of the confidence
bounds in this case is unreasonably high. The values in
The additional smoothness of surface representations isTable 1 should be compared to the width of the confidence
bound to reduce the uncertainty area, when compared tohounds using the simplex mesh (36.70%) and tGB patches
the one based on voxels. In particular, the width of the (23.30%). There is a reduction by an order in magnitude.
confidence interval on volume using 3D graph representa- Finally, a Monte Carlo process is used to generate
tions (simplex meshes) as surface model is 36.70% of 10 000 samples of volume estimates computed from
Vyroune @nd this width reduces to 23.30% when using random samples of the distributions pfa'|l') for every
G'-continuous triangular Gregory—Bezier patches (Gon- PVE voxeli, as described in Section 6.2. The sample mean
zalez Ballester et al., 2000). was e = 1145.5 (0.02% error with respect t4,,,,,4),
We applied the PVE estimation framework to the noisy and the standard deviation wasg,. = 0.4559. Confidence
image, as described in the previous sections. The mixturebounds based on these values are reported in Table 2. A
model is constructed based on the ground truth parameterdurther reduction by an order of magnitude in the width of

for the tissue distributions. Using the mode valugs,,, of the confidence intervals was obtained, the ground truth
p(a'|l') for every PVE voxel, the estimated volume is volume still being contained between the bounds.
Vinoae = 1146.3. The error with respect 1§,,,,,4 iS 0.05%. It should be emphasised that the result of this Monte

Conservative bounds are established as described inCarlo simulation is not a set of bounds, but a statistical
Section 6.1. Several confidence thresholds were used, andlistribution for the volume, from which bounds and other
the results are shown in Table 1. Note that these confi- useful information can be derived.
dence thresholds do not reflect the confidence in the value
of the volume, but on local voxel-based estimates. This
means that these confidence bounds are very conservative8. Discussion and practical considerations
In fact, the real volume is comfortably included between
the bounds even in cases when a low threshold is used. The results reported in the previous section show an
Experiments performed on real MRI data suggest that aimpressive improvement by two orders of magnitude in the

Table 1

Conservative confidence bounds on volume for the synthetic phdntom

Confidence threshold Lower bound (%) Upper bound (%) Width %
80% 1131.6 £1.23%) 1159.3 £ 1.19%) 2.42%

90% 1127.6 £1.58%) 1162.3 ¢ 1.45%) 3.03%
95% 1121.3 £2.13%) 1164.3 ¢ 1.62%) 3.75%

99% 1012.4 ¢ 11.63%) 1166.8 £ 1.84%) 13.47%

®Upper and lower bounds are computed using the valueg gf and @ .., respectively, as described in Section 6.1. Percentages are computed with
respect tov, =1145.7.

round
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resolution of the measurements obtained from MRI data. It
should be noted, however, that in this synthetic example
we made use of three pieces of information that are not
likely to be available for real data:

* The exact parameters for the distribution of the tissues,

p.().

. TJhe composition of PVE voxels (trivial in the synthetic
example, which contains only two tissues).
» The location of PVE voxels of interest.

These issues are discussed in more detail in the follow-
ing three sections, and solutions are offered for each of
them. In the following section, the sensitivity of the
method to slight deviations from the correct tissue parame-
ters is analysed, and a solution based on explicitly model-
ling the uncertainty in the estimation of such parameters is
proposed. Next, a method to enhance the PVE maps
obtained in (Gonzalez Ballester et al., 2000) and which
includes information about the composition of PVE voxels,
is described in Section 10. That section also describes how
contextual knowledge may be used to obtain good voxel-
based segmentations including PVE information. Finally, a
method for generating PVE masks from the inner and outer
surfaces developed in (Gonzalez Ballester et al., 2000) is
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create more accurate tissue models based on the physics o
MRI. We contend that a careful analysis of acquisition
parameters and chemical properties of particular tissue

types could yield a satisfactory model. More details are

given in (Gonzalez Ballester, 1999).

Another solution is to sacrifice some of the resolution of

the method, i.e. to ‘widen’ the pdf of the vopfuhein
favour of accuracy. One possible approach is to model

tissue parameters as statistical variables, in order to reflect

the uncertainty in the estimation of the parameters. Thus,
means and variances can have a most likely value and
some standard deviation around it. This is the approach we
adopt. Tissue parameters are estimated from the data set a
described above, i.e. obtaining samples of the intensities of
tissues by manual selection. However, this process is
repeated several times, each yielding an estimate of the
tissue parameters (e.g. the mean and standard deviation, fol
Gaussian models) of the distribution on intensities of the
tissue. Next, the mean and standard deviation of suct
parameters are computed. Therefore, this model assume:
that the distribution of the noise in the estimation of the
parameters is Gaussian.
Monte Carlo simulation is performed in order to gener-

ate the final tissue model. At each iteration of the Monte
Carlo process, samples from the distributions of the tissue
parameters are drawn. This produces an instance of the
intensity distribution for the tissue. A sample from such a
distribution is obtained and stored, and the process is
repeated. After a number of iterations, the histogram of the

described in Section 11.

9. Sensitivity to tissue parameters: modelling
uncertainty in parameter estimation

The method, as it has been described so far, is quite
sensitive to the tissue parameters. In fact, the method
assumes that the tissue distributiopgl) are a perfect
model. Thus, in the synthetic case presented in the
previous section we obtained very narrow bounds around
the ground truth volume. However, such extremely narrow
bounds also mean that small errors in the means of the
tissue distributions tend to shift the distribution for the
volume, yielding bounds that do not contain the ground
truth*. For example, if in the synthetic phantom we change
M, from 200 to 201 and run the Monte Carlo simulation,
the 3, bounds becomé 1141.3, 1144.1 , which do not
containV,,,,,q= 1145.7. Conservative bounds are not so
sensitive to the values of the parameters, and although they
slightly shift when incorrect parameters are uség, ., is
consistently between the bounds.

For our experiments with MRI data, tissue distributions
are built from samples obtained using manual selection of
voxels. Tissue parameters estimated in this way may vary
in their accuracy and precision. One possible solution is to

samples is analysed to build the final intensity model for
the tissue (Fig. 9). Effectively, the process sketched above

is a non-parametric generation of distributions.

Since the framework described in this paper allows for
any type of tissue distribution to be used, a mixture model
is then constructed from the tissue distributions computed
above and the remaining steps in the PVE estimation

framework are as described in the previous sections.

Alternatively, a scheme fitting a pre-determined number
of tissue distributions to the histogram of the image could

be employed to compute the tissue distributions auto-

matically. See for example (Santago and Gage, 1993) for

an application using Gaussian tissue models. However, this
technique assumes that all intensities in the image can b

explained using the modelled distributions. In other words,

either distributions are created for all tissues present in the
image or the fitting will be incorrect, as it will try to
explain alien intensities using the available distributions.

10. Use of contextual information to determine the
contents of PVE voxels

“Note that the values of the variances of the distributions in the
simulated data set of Section 7 are very narrow. This was forced as an

Generally, MRI scans are of anatomy that contains more

illustrative example to show the sensitivity of the method to incorrect than two tissue types that are of interest. It is therefore

parameters here. Thus, the simulated data set should be regarded as alr)]

illustrative example of the workings of the methodology, not a data set

ecessary to determine which two tissues are contained in

representative of clinical settings (refer to the following sections for such Particular PVE voxels. This is a vital requirement for the

examples).

construction of the PVE mixture model. As one possible
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Fig. 9. Uncertainty on the estimation of tissue parameters is explicitly modelled by representing tissue parameters as statistical digtridotioas.

Carlo simulation is then used to build the final tissue model.

approach, we can make use of the voxel classification used

as part of the morphometric framework described in

(Gonzalez Ballester et al., 2000). In particular, a method

based on the EM algorithm (Guillemaud and Brady, 1997)

was used to interleave the classification of voxels into

tissue classes and also correct for intensity inhomogen-

eities (bias fields). PVE voxels were detected by setting a

threshold on the minimum value of the tissue likelihood

for each voxel. Therefore, if a particular voxel has a

probability value greater than the threshold for a particular

tissue, the voxel is identified as containing only that tissue
type, and otherwise it is marked as PVE. An example is

shown in Fig. 10.

In the following, it will be shown that the use of
contextual information significantly improves the results of
such voxel-based classifications. Two intuitively plausible
ideas can be used to identify the contents of voxels marked
as PVE, by looking at their 26 neighbours:

(1) If a voxel is marked as PVE but all non-PVE
neighbours have been given the same tissud,ttte
voxel has a large probability of having been mis-
classified as PVE. Tissue tags then assigned to it. In

order to increase the robustness of this criterion, a
minimum number of non-PVE neighbours is estab-
lished.

(2) Otherwise, the two tissues present in the PVE voxel
are determined as the two most frequent tissue tags in
its neighbourhood.
A further consideration may be taken into account in
order to improve further the results. Let us focus on the
, T -weighted MRI slice shown in Fig. 10. Cerebrospinal
fluid (CSF) appears as dark intensities, white matter (WM)
as bright intensities, while grey matter (GM) occupies the
range of intensities in between. It is obvious that the
intensities of PVE voxels containing CSF and WM over-
lap, and so could be wrongly assigned to the distribution of
GM. This is illustrated in Fig. 11.
The following criterion is used to avoid such misclassifi-
cations:
(3) If a voxel is classified as GM but some of its
neighbours are CSF, then it must be a PVE voxel. If
the most prevalent tissue occuring in its neighbours is
WM, it is classified as PVE(CSF, WM); if it is GM, it
is identified as PVE(CSF, GM). This rule works for

Fig. 10. Voxel-based segmentation obtained as described in (Gonzalez Ballester et al., 2000). (A) Original image; (B) segmentation (cefleitospinal

black, white matter: light grey; grey matter: dark grey; PVE: white).
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Fig. 11. The distribution of GM is in the range of intensities of PVE voxels containing CSF and WM. Thus, such PVE voxels may be wrongly classified as
GM.

three tissue types, which proves sufficient for most simple region growing techniques are used to include
practical applications. If more tissues need to be voxels contained between the bounds (combining the
modelled, additional criteria can be established. inside of the inner bound and the outside of the outer
Fig. 12 shows the improvement on the voxel-based bound). We now describe how to construct the masks. The
classification achieved using these three criteria. Note thattechnique described here is closely related to the algorithm
noise in central areas of white matter has been con-used in Section 7 to create synthetic images for phantom
siderably reduced, and the contents of PVE voxels de- validation. In that case, an analytical formula for the object
termined. Additionally, voxels around the ventricles, which Was available, and an oct-tree recursive subdivision pro-
are PVE(CSF, WM) and were wrongly classified as GM in Cess was used by testing the corners of the (sub-)voxels for
Fig. 10 are now correctly identified. inclusion in the object. The main difference with respect to
the present case rests on the fact that the definition of the
object was a volumetric one, whereas the bounds to be
11. Construction of PVE masks from inner and outer used here are surfaces.
surface bounds The two-dimensional nature of the surface bounds,
defined as a set of triangular Gregory—Bezier (tGB)
In order to isolate the PVE area around the structure of Paiches (Gonzalez Ballester et al., 2000), makes it quite
interest, we can make use of the surface bounds created adifficult to test for inclusion of a 3D point inside the object
described in (Gonzalez Ballester et al., 2000). These €Nclosed by the surface. Fortunately, for the application
surfaces are constructed to encompass the region ofthat lies behind the work presented in this section, we only

uncertainty in the segmentation due to PVE. Once the need to locate and mark the voxels the surface passes
through. To this effect, we can take advantage of the

inner and outer surfaces are constructed, the problem is . _—
reduced to creating a mask with the same voxel Structureparametrlc definition of the surface. In general, any surface
can be defined by a parametric mapping of the form

as the original image, highlighting the region encompassed
by the two bounds. The two masks are then combined andS(u, v) = (x(u, v), y(u, v), zZ(u,v)) u€D, v ED,, (16)

whereD, andD, are the domains for the parameterand
v, respectively. Without loss of generality, in the following
we will assume thaD, =D, =[O0, 1].

For the particular case of tGB patches, a prior step must
be taken in order to establish a mdp from surface
coordinates in the domaif 0,]X[0, 1] to barycentric
coordinates, used in the definition of tGB patches (see

Fig. 13),
[0,1]X[0,2] ~ {[0,1]X[0, 11X [0, 1]ju'+v'+w'=1} - K>
(up) - b, v)=U",v",w) - tGB(', v, W')=(x, ¥,2
(17)

Fig. 12. Improvement on the voxel-based classification by using con-  ° Note that a simpler approach, consisting of tessellating the triangle

textual information. Compare with Fig. 10. CSF: black, WM: light grey, formed by the barycentric domain, could be employed, avoiding the need
GM: dark grey, PVE(WM, GM): white, PVE(CSF, GM): red, PVE(CSF, for the nbaprhe description above is of a more general nature, valid
WM): green. not only for barycentric definitions of the surface.
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Fig. 13. Mapping from surface coordinatas ¢) to three-dimensional points in a tGB patch. First, surface coordinates must be mapped to barycentric

coordinates, in order to index the formula for the patch.

This prior mapping is given by the formula

corner points. This minimum distance must, of course, be

related to the voxel size. Typically, conservative values

b(u,v)=U,v-(1-u),l—u-—uv). (18)

around 108 times the smallest side of a voxel are used, in

order to not miss any voxel. The algorithm is illustrated in

We now consider the more general problem of creating a
mask for a surface defined parametrically in the form of
(16), for any voxel grid. A possible solution would be to

densely sample the surface after guaranteeing that there is

sufficient resolution to prevent missing any voxels. How-
ever, it is difficult to establish a sampling step in the
parametric space of the surface with these characteristics,
unless an extremely conservative—and computationally
inefficient—approach is taken.

A recursive subdivision technique is used. Instead of
acting on the three-dimensional space of the surface and
the voxel grid, this time the subdivision is performed on
the two-dimensional parameter space. Therefore, the algo-
rithm used is aquad-tree recursive subdivision. The
approach consists of dividing the parametric space into
squares and computing the location of the 3D points
corresponding to the corners of each parametric square.
The stopping criterion for the recursive subdivision of
these squares is a minimum distance between the four 3D

I3
I3

pr

A 4

—

Fig. 14.
This method is exhaustive in the coverage of intersected
PVE voxels. Alternative faster methods based on trans-
forming the surface model into a triangulation and then
computing the intersection of the triangles with the planes
defining the imaging matrix could also be employed.
However, the size of such triangles should be kept minimal
in order not to miss intersected voxels.
It should be noted that by exploiting information about
the approximate (or candidate) locations of the boundary
pixels in order to isolate PVE voxels we also reduce the
effect of voxels incorrectly classified as PVE. For example,
voxels which are pure but whose intensities fall in the tails
of the tissue distribution may be classified as PVE, thus
biasing the results. The number of such voxels is very
small, and their incidence is spread over the whole image.
Therefore, the number of such voxels occurring at the
boundary (i.e. the area isolated by the mask) will be
extremely small.

Fig. 14. lllustration of the quad-tree subdivision process. The rectamgie parametric space maps, througBB b, to the surface sub-patahin 3D
space. A voxel is shown, together with its intersection with the tGB patch. $idoes not fall completely inside the voxel, it is subdivided into 4 smaller
rectangles, by subdividingr. The rectangle, falls completely inside the voxel, so the voxel will be marked. The remaining patches will continue the
subdivision process to guarantee that no voxels are missed. A threshold area for the sub-patch is used as a recursion limit.
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Fig. 15. One slice through and a rendering of the MRI phantom. Object ‘cube’, for which results are reported below, is indicated.

12. Experiments on MRI phantoms

A phantom consisting of a group of shapes made from
paraffin wax and embedded in an agarose gel was used in a
second experiment. By measuring the density of the wax,
the true volume can be derived from their weight to within
a confidence interval of 2% (Roll et al.,, 1994). The
phantoms were developed to simulate the size and shape of A
MS lesions, which are usually very small relative to the
resolution of the MR acquisition. Fig. 15 shows a slice Fig. 16. (A) A slice of the phantom data set; (B) corresponding slice
through the MRI phantom (1 min voxels, no inter-slice from the PVE mask generated from the outer and inner surfaces
gap) and a rendering of the shapes embedded in it. computed as described in (Gonzalez Ballester et al., 2000).

Following the morphometric framework of (Gonzalez
Ballester et al., 2000), we first applied a bias field

correction, and then inner and outer surface bounds were a 90% confidencec|gvel0(d5) were established, a

fited to the paraffin wax shapes. Volume confidence Monte Carlo simulation was used to generate 10 000
bounds were computed using voxel-based measurements, samples of the volume, and statistics were derived fron
simplex mesh, and tGB patches. The results are summa- such samples. The mean volume was 1029.36, and thi
rised in Table 3. The ground truth interval is provided for standard deviation was t3r.confidence bounds are
reference in the last row. shown in Table 3.

PVE voxels are identified by rendering the inner and All the estimated bounds are correct, in the sense that
outer surfaces into the voxel grid, as described in the they contain the range provided as ground truth. Neverthe-
previous section. Voxels contained between the bounds are less, the confidence interval computed by means of the
included into the PVE mask (Fig. 16). The PVE mixture Monte Carlo simulation is actually smaller than the ground
model is constructed based on tissue parameters computed truth. This interval is contained inside the ground truth
from sampling a slice of the data set several times. As we bounds, and the mean is almost identical to the ground
noted in Section 9, this enables us to model explicitly the truth mean, which suggests that the result is sensible.
uncertainty in the estimates of the tissue parameters AdditionaBy; bounds comfortably contain the ground
inherent in the sampling technique. Conservative bounds to truth mean. However, it is not possible to determine
Table 3
Summary of the results obtained for the MRI phantom ‘c@ibe’

Method Confidence interval Width %
Simplex mesh [899.6, 1264.7] 35.5%
Voxel [821.0, 1152.0] 32.2%
tGB mesh [954.8, 1166.9] 20.6%
PVE conservative (90% bounds) [980.9, 1112.0] 12.7%
PVE Monte Carlo 1029.#30'=[1024.6, 1033.4] 0.9%
Ground truth 1028 2%=[1007, 1049] 2.0%

Percentages are computed with respect to the mean value of the ground truth confidence interval, 1028.
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whether or not the Monte Carlo bounds are correct, since
the resolution of the ground truth interval provided by the
manufacturer of the phantom is insufficient.

13. Clinical study

We applied our method to a neurological study con-
cerning early onset schizophrenia. In particular, the aim of
this study was to determine the possible relevance (or
otherwise) of the asymmetry of the temporal horns to the Fig. 18. Smoothed rendering of a voxel-based segmentation of the
aetiology of schizophrenia. The temporal, or lateral, horns ventricles. Note that the temporal horns are unconnected. It is very
of the ventricles are extremely thin structures traversing difficult to perform ablna_ry classification, due to thg extremely small size
the brain in the anterior—posterior direction. Their minute of the temporal homs with respect to the voxel size.
diameter means that these structures are barely visible in
MRI scans, and most of the voxels intersected by them

exhibit PVE (Figs. 17 and 18). As a consequence, no applying our methodology, confidence bounds reduce to
accurate quantitative imaging study relating these organs 35%, for the conservative case, and 6% for the Monte
has been possible to date. Carlo method (Figs. 19 and 20). These results show an
High resolution coronal T -weighted MRI data sets of 8 improvement in quantitative resolution of two orders of
schizophrenic patients (SC) and 8 normal controls (NC) magnitude, sufficient to convert a problem that has been
were analysed. The data sets each comprise 124 slices considered intractable to date into one that may feasibly b
(slice thickness 1.5 mm), each slice consisting of 2266 tackled.
voxels of dimensions 0.93%50.9375 mni . Therefore, the The clinical implications of the results are analysed
field of view (FOV) is 240<240x186 mnt. Typical next. Symmetry (rather a loss of normal asymmetry) is the
slices through one of the data sets are shown in Fig. 17. main clinical focus of the present study, so it is first
These scans were acquired at the State University of New necessary to define a suitable measure. To this end, we

York (SUNY) in Stonybrook, NY, USA, and formed a part define the following normalised symmetry coefficient:
of the data pool gathered for the European Project

BIOMORPH (Colchester et al., 1996), of which the S= L R,
L+R
present study forms a part.

Example images of intermediate processing steps were vithdemotes the volume of the left temporal horn, and
shown above (Figs. 10 and 12). It should be noted that, in R is the volume of the right temporal horn. Perfect
some regions where the thickness of the temporal horns is symmetry gives &valljevhereas the more asymmet-
minimal, the automated classification of voxels into PVE ric the horns, the larger the val@e Sthndard error
classes failed. Manual editing was used in such cases, propagation (Chatfield, 1983) is used to compute the
which were infrequent. standard deviation of the symmetry coefficient as a func-

Voxel-based ‘expert’ segmentations setting upper and tion of the standard deviatidnaridrR. Values for all
lower thresholds on an advanced region-growing technique data sets are provided in Table 4.

(Colchester et al., 1996) report a volume of uncertainty t-tAst (Chatfield, 1983) on this data may be applied to
due to PVE of 228% with respect to ‘pure’ voxels. After test for significant differences between schizophrenics and

Fig. 17. Three MRI slices (numbers 25, 29 and 47, from back to front) showing the temporal horns. Notice that they traverse very few voxels. The middle
slice, in particular, presents a very unclear delineation of them, highlighting the need for sub-voxel resolution.
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Fig. 19. Volume bounds, in min , for the left temporal horn of patient 006 SC. The top graph shows results for voxel-bounds, conservative bounds to 90%
and 80% local confidence levels, and3o bounds computed from the results of the Monte Carlo simulation. For clarity, the bottom graph shows a
close-up of the results obtained using the last three methods. The mean value of the Monte Carlo volume distribution is marked as a dark dot.
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Fig. 20. Average width of confidence intervals on temporal horn volumes. From left to right, voxel bounds, 80% and 90% conservative batiids, and
bounds on Monte Carlo results. Values are expressed as percentages of the mean value of the Monte Carlo simulation.
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Table 4 o N PVE voxels, iteratively convolving all their pdfs would
Mean and standard (‘jewatlon‘ of the symmetry coefficients computed on result in a pdf for the volume. This would also allow to
all data sets (S€ schizophrenic, N&normal control) S .

compute the mode of the volume distribution, instead of

Data set Mean sym. Std- sym. the mean, which would further improve the accuracy of the
006 SC -0.20 0.005 method. This technique will be investigated, and particular
007 SC —0.03 0.009 limitations induced by the independence assumption will
828—22 g'iz 8'882 be revised. In particular, a technique based on the use of
024 SC 0410 0,006 Markov _random fields is qnder study (Zhang et al., ZOQO).
025 SC —0.12 0.008 Alternative approaches include the use of anatomical
033 SC -0.48 0.006 models (Kapur et al., 1998; Shattuck and Leahy, 2000).
039 SC 0.39 0.009

104 NC 0.14 0.008

105 NC —-0.51 0.008 15. Conclusions

106 NC -0.15 0.009

ﬂgsg _%_4179 %%%2 We have preseqted a framework for m_odelling and
114 NC —0.08 0.006 estimating the partial volume effect. The mixture model
117 NC 0.15 0.005 allows for sub-voxel resolution in measurements obtained
118 NC 0.00 0.009 from MRI data. Such a mixture model is propagated to

build a distribution on global shape descriptors (e.g.
volume), or estimate confidence bounds. Three key issues
for the correct use of the mixture model in real MRI data
sets were tackled, namely: sensitivity to the tissue prior
distributions on the estimated distribution for the global
shape descriptor, and the need to isolate PVE voxels and
determine their contents. Results show an improvement in
quantitative resolution of two orders of magnitude with
respect to previous methods. This opens the possibility to
perform clinical studies on small structures where PVE
voxels contain a high percentage of the volume of the
structure, as illustrated by the application of the technique
to the study of the temporal horns.

normal controls. The-test determines the probability of
two samples being drawn from distributions with the same
mean, and is especially suited to a small number of sample
values. Using a two-tailed-test, the probability of both
sets of symmetry coefficients (SC and NC) being drawn
from a distribution with the same mean is 0.6. This means
thatthere are no significant group differences in left—right
symmetry of the temporal horns between the schizo-
phrenics and normal controls analysed in this study.

14. Future work

Future work will concentrate on the explicit modelling
and propagation of uncertainty in the early stages of the Acknowledgements
framework. In particular, the technique as it stands makes
use of a set of tools to isolate PVE voxels prior to the  This work was supported by the EC-funded
estimation of their contents. This allows to use a simple BIOMORPH project 95-0845, a collaboration between the
uniform prior for the proportion of each tissue, removes Universities of Kent and Oxford (UK), ETH Zurich
noise coming from pure voxels, and speeds up computa-(Switzerland), INRIA Sophia Antipolis (France) and KU
tion to the point that Monte Carlo methods run in efficient Leuven (Belgium). The authors would like to thank Prof.
times. Validation studies for these tools were presented in Tim Crow from the Department of Psychiatry of the
previous work (Gonzalez Ballester et al., 2000). However, University of Oxford, for driving our research towards
quantification of the uncertainty resulting from this prior clinically useful areas. The MRI phantom used in Section
segmentation is still an interesting problem to be ad- 12 was generously provided by Dr. Fernando Bello and
dressed. To this end, error propagation techniques (PennecProf. Alan Colchester of the NeuroMedIA group of the
1996) could be applied. University of Kent at Canterbury. We would also like to

Validation with more realistic MR phantoms will also be thank the anonymous reviewers for very useful sugges-
performed. To this end, phantoms such as MNI's Brain- tions.

Web (Collins et al., 1998) or Yale’'s MRI phantom (Zubal
et al., 1994) could be employed.

Analytical computation of the pdf on global measure-
ments will also be investigated. As suggested by one of the
anonymous reviewers, computation of the pdf for the oo c. 1083, statistics for Technology. Chapman & Hall,
volume from the individual voxel PVE pdfs may be chen, M.-H., Shao, Q.-M., Ibrahim, J.G., 2000. Monte Carlo Methods in
performed in closed form. Assuming independence across Bayesian Computation. Springer-Verlag.
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