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Abstract

The advent of new and improved imaging devices has allowed an impressive increase in the accuracy and precision of MRI
acquisitions. However, the volumetric nature of the image formation process implies an inherent uncertainty, known as the partial volume
effect, which can be further affected by artifacts such as magnetic inhomogeneities and noise. These degradations seriously challenge the
application to MRI of any segmentation method, especially on data sets where the size of the object or effect to be studied is small
relative to the voxel size, as is the case in multiple sclerosis and schizophrenia. We develop an approach to this problem by estimating a
set of bounds on the spatial location of each organ to be segmented. First, we describe a method for 3D segmentation from voxel data
which combines statistical classification and geometry-driven segmentation; then we discuss how the partial volume effect is estimated
and object measurements are obtained. A comprehensive validation study and a set of results on clinical applications are also described.
 2000 Elsevier Science B.V. All rights reserved.

Keywords: Morphometry; Segmentation; Confidence intervals; Partial volume effect; Bias field correction

1. Introduction first step is to segment the object of interest. The seg-
mentation of three-dimensional structures is a broad sub-

Magnetic resonance imaging (MRI) has become one of ject in itself, and a fundamental problem in medical vision
the most important medical imaging modalities. Its excel- research. Many methods have been proposed and these can

¨lent soft tissue contrast and the fact that it is virtually be broadly classified as: voxel-based (Roll et al., 1994),
non-invasive mean that it is particularly good for studies slice-based (Kass et al., 1987; Blake et al., 1993; Marais et
involving organs such as the brain (Rinck, 1993). MRI al., 1996), and 3D surface methods (Delingette, 1994;

´machines have significantly increased in resolution, and McInerney and Terzopoulos, 1996; Szekely et al., 1996). It
3acquisition protocols with voxel sizes of 1 mm are widely is, however, noticeable that few methods provide a mea-

in use. This not only means that more accurate measure- sure of confidence with which the result of the segmenta-
ments can be made; but it also opens up the possibility of tion is obtained. This is a serious issue, not least because
applying MRI to new research areas where extremely high MRI acquisitions suffer from what is known as the partial
resolution is needed. volume effect (PVE). This derives from the fact that the

In most cases, in order to analyse MR images, a crucial intensity value assigned to a voxel is the average of the
contributions of all the tissues present in the corresponding
volume. Therefore, there exists an inherent uncertainty in

qA preliminary version of the article was presented at the Workshop on any segmentation derived from an MR image that is
Biomedical Image Analysis held in Santa Barbara (USA) in June 1998. obviously related to the image resolution. We argue that it
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In fact, some clinical applications rely fundamentally 2. Statistical classification and bias field correction
both on the accuracy of the imaging technique and the
subsequent segmentation method. This is particularly the The first of the elements of our framework is based on
case when the size of the effect to be studied is small the work of Wells et al. (1996) and Guillemaud and Brady
relative to the voxel size. Such is the case, for example, in (1997). Following their method, the range of image
multiple sclerosis (MS) and schizophrenia studies. MS intensities corresponding to a certain tissue type is mod-
lesions must be quantified with high precision in order to elled as a Gaussian distribution with small variance around
analyse accurately the temporal evolution of the disease or a mean intensity value. A straightforward classification
the effect of a certain treatment (Colchester et al., 1997). procedure based on thresholding could be directly applied
In the case of schizophrenia, there is a somewhat contro- to the image; but real MR acquisitions are subject to a
versial literature surrounding the contention that the brains number of degrading factors, not least bias fields and
of schizophrenic patients are significantly more symmetric partial volume effects (PVE). This method estimates and
(loss of normal asymmetry) than those of normal in- corrects for the bias field and produces a set of probability
dividuals, and that the difference stems from a disruption maps which will prove useful for the segmentation pro-
to the normal process of lateral dominance during puberty cess. PVE will be discussed and treated in detail in Section
(Crow, 1990; Delisi et al., 1995). The differences studied 5.
can be very subtle, which is why, to date, no technique has The expectation-maximisation (E-M) algorithm inter-
been able to verify or refute the hypothesis. It is clear that leaves the estimation of two coupled distributions. This is
an estimate of the uncertainty arising from the imaging used in (Wells et al., 1996) to estimate simultaneously the
method and subsequent segmentation is critical for clinical (multiplicative) bias field and the probabilities of each
studies of MS and schizophrenia. voxel belonging to each tissue class. As a first step, the

Statistical and geometrical methods are the two main image is log-transformed, so the multiplicative field be-
paradigms for segmentation. They have traditionally been comes an addition. Let Y 5 hY j, i 5 1, . . . ,n, be the (log-i

regarded as opposites, since statistical classification is a transformed) set of voxels in the MR volume. Each voxel
local process, whereas geometrical segmentation deals has an additive contribution b from the bias field:i

with global shape. Some attempts have been made to I 5 I 3 B ⇒ ln I 5 ln I 1 ln B 5 Y 1 b.real restored real restoredreconcile the two kinds of technique, for example using
Markov Random Fields (MRF) to incorporate global

The distribution on log-intensities of voxels containing
constraints to local classification methods (Kapur et al.,

(only) tissue j is assumed to be Gaussian around a mean
1998; Zhang et al., 1999), or region competition tech-

intensity value m , with small variance w . Therefore, thej jniques that gather statistics of the region being segmented
probability that a voxel i, which contains tissue j, and

to guide edge search in a region-growing process (Brady et
which is affected by a bias field contribution b , hasial., 1999; Zhu and Yuille, 1995).
log-intensity value Y isiIn this paper, we develop a method for segmenting 3D

data sets which combines characteristics both of statistical p(Y u G , b ) 5 G (Y 2 m 2 b ).i j i w i j ij
classification methods and geometry-driven segmentation.

The usual independence assumption is made, so that theThe approach taken bears some similarity with the work of
expression for the probability of an image, given the biasDavatzikos and Bryan (1995), who apply a soft tissue
field, is:segmentation followed by a ribbon surface deformation to

capture the cortex, and Zeng et al. (1998), who extract
grey matter based on tissue distribution and then apply a

p(Yu b ) 5P O p(Y uG ,b ) p(G ) .i j i j3 4coupled level set surface propagation for cortex segmenta- i Gj
tion and measurement.

Likewise, since the bias field varies slowly spatially, it isSections 2 and 3 describe the statistical and geometrical
assumed that it can be modelled as an n-dimensionalmethods that form the foundation of our technique. Next,
Gaussian prior probability density with zero mean:we summarise our principal contributions, in the following

order: a new shape model for modelling complex bio-
p(b ) 5 G (b ),wblogical surfaces is devised in Section 4, a new feature for

detecting boundaries between tissues in MRI is established where b 5 hb j, i 5 1, . . . ,n.i(Section 5), and the segmentation framework is completed Using Bayes’ rule, a expression for the posterior prob-
by incorporating a method for bounding the real surface of ability of the bias field given the observed intensity data is
the object to be segmented using an inner and an outer obtained:
surface, and this is described in Section 6. Finally, a set of

p(b )validation and clinical application results is presented in ]]p(b uY) 5 p(Yub ) ,
p(Y)Section 7, followed by discussion and future work.
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where p(Y) is considered an unimportant constant. A zero- 3. Geometry-driven segmentation
gradient condition on the logarithm of this posterior
probability is used to assess its maximum. Two coupled Active surfaces are the natural extension to 3D of active
formulae may then be obtained, one estimating the prob- contours (Kass et al., 1987), and have become one of the
ability of a voxel i belonging to tissue class j (W ); the most popular paradigms of 3D segmentation. These tech-i, j

other computing the estimated bias field b. Both expres- niques search for the outer bounding surface of the object
sions are inter-dependent, and the E-M algorithm is used to to be segmented using a dynamic process that updates the
interleave their estimation iteratively. Convergence is location and shape of a surface based on edge searches and
guaranteed, and, in practice, a good estimate is usually shape constraints. A review of such methods can be found
obtained after four or five iterations. See Fig. 1 for typical in (McInerney and Terzopoulos, 1996). Since they are
results. capable of modelling a wide range of complex shapes, we

The method developed by Wells et al. (1996) requires have chosen simplex meshes (Delingette, 1994) as the
that every voxel in the image be assigned to one of the basis for our active surface model.
Gaussian distributions corresponding to each tissue class. The fundamental property of a simplex mesh is that all
Guillemaud and Brady (1997) argue that, in most cases, its nodes have the same number of connections to other

3there are a number of voxels in the volume that cannot be nodes. Formally, a k-simplex mesh M of R is defined as
included into any of the tissue classes explicitly modelled, a pair hV(M), N(M)j, where V(M) is a set of vertices and
due to their high variance. An additional class other with N(M) is a connectivity function between these vertices. A
uniform probability distribution is introduced to model k-simplex mesh has (k 1 1)-connectivity, i.e. each vertex is
such voxels. connected to exactly (k 1 1) other vertices. A set of

The algorithm requires the user to provide the number of complementarity conditions ensures the mathematical cor-
tissues to be explicitly modelled, as well as their parame- rectness of the construction of the mesh, by not allowing
ters m and w . We estimate these values interactively, by loops and guaranteeing the existence of a path connectingj j

allowing the user to select a set of points in the tissue of any two nodes (Delingette, 1994). In this work we use
interest and determining the statistics of the sample. This 2-simplex meshes.
method has proven correct for our tests, but more refined The topology of a simplex mesh is defined by its
techniques, like the one described in (Zhang et al., 1999), connectivity function N(M). A set of operations is defined
which introduces an update of the tissue parameters into in order to provide tools to alter the mesh topology. These
the E-M framework, could be used. operations are based on the addition and removal of nodes

and on changes to the connectivity between nodes.
The mesh is initialised, and then exposed to a set of

forces which make it lock on to the target data. Both
internal (shape) and external (fit to data) forces are
introduced in the model, which is subjected to Newtonian
dynamics.

Internal forces determine the response of a physically-
based model to external constraints. Rather than mini-
mising a global elastic energy, the internal force is
expressed in terms of the local parameters of each vertex,
so shape control is conceived as a local process of a vertex
relative to its neighbours. Following this model, different
types of constraints can be implemented, such as continui-
ty of the normal, surface orientation, or mean curvature.

External forces are used to fit the mesh to three-dimen-
sional data (in our case, the brain surface or some organ of
interest contained in the MR volume). The method used in
the implementation of the simplex mesh is based on
distances from each mesh vertex to the closest data point,
and follows the iteratively closest point approach (Besl and
McKay, 1992). The term data point refers to some feature
derived from the image data. A detailed discussion of the

Fig. 1. Bias correction process: A) original image; B) image corrected for feature used in our framework is given in Section 5.
bias field; C) and D) segmentations corresponding to A) and B),

The original formulation of the simplex mesh providesrespectively, obtained by assigning the tissue with most probability.
additional topological control by introducing two exten-Notice the improved performance of the segmentation after bias correc-

tion. sions to the normal behaviour of the mesh. First, a
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Fig. 2. Simplex mesh fitting process: A) Original mesh (sphere) superimposed on a 2D slice of the MR volume; B) the mesh is locking on to the boundary;
C) refined mesh; D) one slice of the target MRI data, showing a cross-section of the object to be segmented at top (c.f. Section 7.2 for details), and E)
intersection of the resulting mesh with the slice.

procedure is implemented that adapts the mesh by moving much of this flexibility derives from the simplicity of the
vertices towards areas of high curvature, where more shape model, consisting of a set of connected 3D points.
information is needed to represent the data. As a comple- The representation of biological shape, and in particular
ment to this procedure, a method exists whereby the mesh the enormously complex shape of the brain surface,
is refined, i.e. the number of vertices is increased, in these requires a more sophisticated representation technique. In
areas, so increasing the flexibility of the shape model, thus addition, the applications of interest demand high accuracy
allowing a closer fit to the target data (Delingette, 1994). in the location of the boundary of an object, and this is at
See Fig. 2 for an example of the fitting process. odds with the simplicity of the simplex mesh.

1Our approach is to construct a G -continuous surface,
interpolating the positions and normals of the nodes of the

4. Modelling complex biological shape simplex mesh. A triangulation is first derived from the
mesh by adding a node at the centroid of each of its

The simplex mesh is a powerful tool for three-dimen- polygons. This node’s position is updated to the nearest
sional segmentation due to its topological flexibility; but data point, which is computed by means of a local search,
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in the same way that nodes are updated during the fitting
´process. Then, a set of triangular Gregory-Bezier (tGB)

patches (Schmitt et al., 1991) are interpolated to the
triangulation. TGB patches are expressed, in barycentric
coordinates, as follows (Fig. 3):

3 3 3GB(u, v, w) 5 u P 1 v P 1 w P0 1 2

2 2 2
1 12u vwP 1 12uv wP 1 12uvw P211 121 112

2 2
1 3u v(1 2 w)P 1 3uv (1 2 w)P01 02 1Fig. 4. Enforcing G continuity.

2 2
1 3v (1 2 u)wP 1 3(1 2 u)vw P11 12

2 2
1 3u(1 2 v)w P 1 3u (1 2 v)wP ,21 22 There are two degrees of freedom per edge, corre-

sponding to two of the neighbouring inner control points.where 0 < u, v, w < 1, u 1 v 1 w 5 1 and
One is used to ensure continuity, while the other one is

v wwP 1 vP free to move as desired. In our case, its position is chosen211 211
]]]]P 5 ,211 to minimise fluctuations in the surface, in a similar vein tow 1 v

w u (Schmitt et al., 1991). It is however conceivable to useuP 1 wP121 121
]]]]P 5 ,121 these extra degrees of freedom on the surface to improveu 1 w

u v the fit to the data. An investigation of this possibility isvP 1 uP112 112
]]]]P 5 . currently underway.112 v 1 u

An important property of tGB patches is that the
expressions for the first derivatives with respect to u, v and

5. Detection of PVE voxelsw do not share any inner control point. In practice, this
1means that G continuity can be guaranteed simply by

In the previous sections, we have described the fittingconstraining the connection along the boundary between
process of our shape model, but no explicit reference hastwo adjacent patches, avoiding the tedious process of

1 been made regarding the nature of the target data points. Aconsidering continuity at corners. G continuity across
careful consideration of the elements present in the imag-patches is ensured by enforcing a coplanarity constraint
ing process leads us to the conclusion that partial volumebetween the two radial first derivative vectors
effects (PVE) are the best choice for a feature for

≠GB (u , v , w ) ≠GB (u , v , w )R R R R L L L L segmentation and establishment of confidence bounds. In]]]]] ]]]]]u and uu 50 u 50R L≠u ≠uu u fact, we are interested in detecting boundaries betweenR L

tissues, but these are not accurately localised in MR
(where u and u take values in hu,v,wj, depending on theu uL R images, due to the discretisation of the images into voxels.
orientation of the patch), and the first order derivative PVE voxels contain more than one tissue, thus indicating(1)vector G (v) of the common boundary (see Fig. 4): that boundaries between tissues are present in them.

In our framework, PVE voxels are detected by analysing≠GB (u , v , w )R R R R
]]]]]a(v) u the output of the EM-based statistical method, whichu 50R≠uuR consists of: an estimation of the bias field corrupting the

≠GB (u , v , w )L L L L MR (3D) image, a corrected version of the image after
]]]]]1 b(v) uu 50L≠u removing the bias field, and a set of probability maps foruL

each tissue class. The usual approach is to obtain a(1)
1 g(v)G (v) 5 0, 0 < v < 1. segmentation of the image into tissue classes by assigning

to each voxel the tissue class with maximum probability
(see Fig. 1), i.e.,

t 5 argmax W ,i j i, j

where W is the probability of voxel i contains tissue j.i, j

We contend that a more careful treatment of the
probability maps can provide additional useful informa-
tion. In particular, for certain voxels the value of the
maximum-probability t is not very large, indicating thati´Fig. 3. Triangular Gregory-Bezier (tGB) patch, defined by 15 control

1 the voxel does not accord well with any of the tissuepoints. A G -continuous mesh of tGB patches is used to interpolate the
nodes of the simplex mesh and its corresponding normals. classes (including the uniform class other). This is par-
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description. Thus, the mesh is used to obtain two surfaces
representing the inner and outer estimates on the location
of the true surface of the object. The exact location of
these surfaces depends on the width of the PVE band
described above.

In particular, during each update step of the mesh, local
searches in the direction of the normal of each node of the
mesh are performed. When these searches hit PVE voxels,
they produce upper and lower estimates by computing the
intersection of the profile with the closest and farthest PVE
voxel boundary. By employing this process on all the
vertices of the mesh, the two bounding surfaces are built
(see Fig. 6).

7. Results

Since MR imaging takes place in vivo, it is difficult to
define ground truth with which to compare the results

Fig. 5. A) Original slice; B) corrected slice; C) estimated bias field; D) obtained from a segmentation method on clinical data. We
segmentation using a tissue model for white matter and grey matter, plus

follow several approaches to counter this problem. First,a class with a uniform probability distribution for CSF, air, and other
we simulate MR scans using a recursive subdivisiontissues. The voxels deemed to be places where the PVE is significant are

coloured white. procedure that we describe below. This allows us to apply
our segmentation and measurement method to objects of
known geometry. Next, our method is tested on an MR

ticularly the case for PVE voxels. That is, a low value in acquisition of a phantom, developed for MS, with known
the maximum of the probability maps is often a good volume. Finally, the measurement precision on clinical
indicator of boundariness. Thus, we detect PVE voxels by MRI is tested by scanning twice, in rapid succession, a
setting a threshold thrs on the minimum value allowed for patient whose head is oriented differently in the MRI
this maximum probability (typically, a value in the range machine (about 208 separation) and comparing the results
of 90–95% probability is used). This is demonstrated in (which we assume should be the same). A further example
Fig. 5. Thus, tissue classes are assigned to each voxel, in a demonstrates the flexibility of the shape model using
preliminary segmentation map, using the following criter- simplex mesh and tGB patches to segment the cortex from
ion: a clinical MR data set.

The measurements shown below are upper and lowert if t . thrs,i iT 5Hi bounds on the volume of the segmented object. SeveralPVE otherwise.
methods are compared: the basic simplex mesh; the
simplex mesh after applying the refinement process (c.f.

6. Estimation of confidence bounds Section 3) to lock closer to the data; the simplex mesh
with tGB patches; and voxel-counting measurements ob-

The overall scheme of our segmentation framework is as tained using an advanced thresholding tool (Colchester et
follows. First, the image is processed using the EM al., 1996; Bello, 1998).
algorithm, which corrects for the bias field and provides an Volume computations on the simplex mesh are obtained
indication of the location of voxels which are good by computing the centroid of each polygon and joining it
candidates to be PVE voxels. This classification may be to the neighbouring nodes, so creating a triangulation

i i isomehow noisy, but in general these voxels can typically T 5 h p , p , p j . Then, the volume is determined1 2 3 i51, . . . ,nbe seen as a band of variable width delineating the by the following expression, which is a simplification of
interface between the tissues (see Fig. 5). We interpret this Gauss’ divergence theorem (Boas, 1983) when applied to
width, corresponding to the transition from pure voxels of triangulated surfaces:
tissue A and pure voxels of tissue B, as the confidence

ninterval that we seek for our segmentation. 1 i i i]V5 O k p , p , p l,1 2 3The geometric constraints introduced by the simplex 6 i51
mesh take care of spurious noise in the classification and

i 3enforce continuity in the segmentation. Also, the fact of where p [ R and kl denotes the scalar triple productj

obtaining a parametric surface as output of the process is operator. It is worth noting that computing the volume of a
particularly appealing for further processing and shape simplex mesh, based on a triangulation of the surface,
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Fig. 6. Outer (black) and inner (white) meshes segmenting the lateral ventricle of a patient. Left: mesh superimposed on a coronal slice of the data set,
shown on the right; middle: closeup showing that the lower bound is contained inside the upper bound; right: intersection of both meshes with a slice. The
separation between upper and lower bounds is quite small, so it is only reflected by a slight thickening of the white line in the picture on the right.

poses a problem when it comes to establishing an upper using the divergence theorem in its full form and the
bound on the volume, since ondulations of the surface can expression for the first fundamental form of a surface,
‘overflow’ the triangulated surface. We circumvent this found in classical differential geometry (Boehm and
problem by displacing the position of the centre of each Prautzsch, 1994). Generally, the volume enclosed by a
triangle to the nearest voxel boundary and updating the parametric surface S(u, v) is
position of the nodes of the mesh accordingly. Fig. 7
shows a 2D representation of this process. Grey circles V5E S(u, v) ? n(u, v) ds,
represent nodes of the triangulation, and black circles are S

the data points found for the upper and lower bounds,
where S is the surface enclosing the object and n(u, v) iswhich correspond to boundaries between voxels of differ-
the surface normal at the point (u, v). The surface elementent tissue or furthest boundaries of PVE voxels. A one
ds is computed using the usual Jacobian expression frompixel wide PVE band is shown in the 2D scheme. The real
differential geometry:surface of the object is represented by the curve r, while

]]]the upper and lower meshes are represented by u and l, 2Œds 5 EG 2 F du dv,
respectively. The flat nature of the triangulation produces
an underestimation using the upper mesh. To solve this where
problem, the position of the mid-point m of u in Fig. 7 2 2≠S ≠S ≠S ≠S

] ] ] ]S D S D(centroid of the triangle in 3D) is updated to the nearest E 5 , G 5 and F 5 ? .
≠u ≠v ≠u ≠v

data point, m9, and the vertices of the upper mesh are
Therefore, the expression for the volume enclosed by therecomputed.
surface S(u,v) isIn the case of tGB patches, the volume is determined

]]]2ŒV5EE S(u, v) ? n(u, v) EG 2 F du dv.

For the results reported for the voxel-based thresholding
tool, upper and lower estimates for the segmentation are
obtained by setting two different thresholds. The results
shown below were visually validated by an expert in the
use of the tool as good segmentations of the object.Volume
measurements are obtained by simple voxel counting.

Fig. 7. 2D illustration of the construction of the upper estimate on surface
7.1. Validation with simulated imageslocation using the simplex mesh. In order to solve problems caused by

ondulations of the boundary, the mid-point m is updated to the nearest
data point, m9, and a parallel surface is then built (see text for details). We first simulate MR acquisitions of objects of known
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geometry, for which an analytic formula is available (e.g.
an ellipsoid), by means of a recursive subdivision pro-
cedure. At each voxel location, it is determined whether
the 8 corners of the voxel are inside the simulated object
by evaluating its formula. If this is the case, the voxel is
assigned intensity value I , whereas value I is given to Fig. 8. Slices 8, 11, 14 and 16 of simulation of the object for whichin out

results are reported, using protocol SUNY. Notice the considerablevoxels whose 8 corners are all outside the object. The
blurring due to PVE, especially at slices close to the top and bottom ofremaining voxels correspond to boundaries and their
the object.intensity values should simulate the partial volume effect.

In order to determine the proportion a of the voxel that is
Table 2

inside the object, a recursive subdivision procedure is Volume measurements obtained for the test object. The middle row shows
ainitiated by dividing the voxel by its centre into 8 smaller the real volume of the object

cubes. Testing for inclusion continues in the manner
SUNY Oxford Low res. Med. res. High res.

described above until all boxes are assigned a value or a
Sm upper 220999 221591 218653 214162 212171recursion limit is reached. Then, intensity value
Voxel upper 199410 200566 197520 190968 188200
tGB upper 191130 193318 191575 191220 190156I 5 aI 1 (1 2 a)Iin out
Real volume 178447 178447 178447 178447 178447

is assigned to the voxel. The recursion limit is chosen so tGB lower 153555 156952 160265 168950 172774
Voxel lower 151668 152473 155200 162312 166008that the contribution to the final value of a in the limit is
Sm lower 146130 149576 152505 160609 164326smaller than a certain small value e.

a 3The measurements are presented in mm , sm5simplex mesh.This process does not simulate noise or bias fields, but it
effectively generates PVE. The primary interest of this
validation technique is its flexibility, since different proto- The first conclusion that can be drawn from these results
cols can be simulated by acting on the intensity values to is that the confidence bounds are correct in the sense that
simulate image modalities (T , T , proton density, etc.), they bound the real volume. Also, the width of the bounds1 2

and different voxel sizes and inter-slice gaps can be used decreases as the resolution of the protocol increases. A
to simulate different spatial resolutions. Also, the fact that more careful analysis of this is underway, in order to build
virtually any shape can be used for the simulated object a model for the expected uncertainty as a function of the
provides sufficient flexibility to study the effect of size different parameters described above. The use of a smooth
(relative to voxel size), concavities, texture and global mesh of tGB patches improves significantly the perform-
shape on the tested segmentation technique. ance of the simplex mesh. The tGB results are also better

In our experiments, we simulated the several acquisition (except for the highest resolution protocol, in this example)
protocols in use at our laboratory. Volume dimensions, than those obtained by voxel count based on thresholding.
voxel sizes, and inter-slice gaps are detailed in Table 1. As we will see, these results hold consistently throughout
For each of these protocols, several objects are used, our experiments.
ranging from spheres and ellipsoids to smooth objects with
concavities or local textures simulating brain gyration. 7.2. Validation with MRI phantoms

Volume measurements are obtained by applying the
simplex mesh, simplex mesh with tGB patches, and voxel A phantom consisting of a group of shapes made from
counting after thresholding. The real volume of the object paraffin wax and embedded in an agarose gel is used for
is computed using its analytic formula. Results are re- the second experiment. By measuring the density of the
ported next for one of the simulated objects (Fig. 8). wax, the true volume can be derived from their weight to
Volume measurements for the different protocols using the
different tested methods are shown in Table 2 and Fig. 9.

Table 1
Simulated acquisition protocols. Protocols 1, 2 and 3 correspond to real
clinical practices applied on data sets available in our data pool, whereas
protocols 4 and 5 were included to estimate the effect of voxel size on
volume measurements

Protocol Dimensions Voxel size (mm) Gap (mm)

1. SUNY 2563256320 0.937530.937535 2
2. Oxford 2403240330 0.937530.937535 0
3. High res. 25632563140 13131 0

Fig. 9. Volume measurements for the test object. The horizontal axis
4. Med. res. 2563256370 13132 0

reflects the different simulated protocols, from lowest to highest res-
5. Low res. 2563256335 13134 0

olution. The vertical axis shows the volume.
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Fig. 10. One slice through and a rendering of the physical phantom.
3Object cube, for which results are reported below, is indicated. Fig. 11. Volume measurements, in mm , for cube (sm5simplex mesh,

U5upper, L5lower). The real volume is plotted as a straight line.

¨within a confidence interval of 2% (Roll et al., 1994). The
phantoms were developed to simulate the size and shape of
MS lesions, which usually are very small relative to the
resolution of the MR acquisition. Fig. 10 shows a slice

3through an MRI (1 mm voxels, no gap) and a rendering
of the shapes embedded in it.

We present the (typical) results for the phantom object
cube, shown in Fig. 10. Simplex mesh segmentation, tGB
fitting, and simplex mesh refinement volume measures are
obtained as described above. Voxel-based volumes are Fig. 12. Width of the confidence interval as a percentage of the real
derived from intensity thresholding and posterior voxel volume. From left to right, simplex mesh, refined simplex mesh, voxel

measurements by thresholding, and tGB patches fit over simplex mesh.count. Tables 3 and 4 and Figs. 11 and 12 show these
results.

The results show that the best volume bound estimates surement significantly, the use of a continuous surface
are obtained by using a mesh of tGB patches interpolating results in a much better estimate. Similar results were
the simplex mesh. This gives better volume estimates than obtained when applying the method to the other shapes in
those obtained using voxel-based methods, while also the MRI phantom.
providing a continuous surface segmenting the object,
which can be used for further shape description and 7.3. Validation with clinical data
processing. It is worth noting that, although the refinement
method of the simplex mesh improves the volume mea- Next, we test the method on in vivo clinical data. We

scanned a volunteer twice, in quick succession, the second
time with his head rotated through about 20 2 308 (Fig.

Table 3
13). The data sets are T -weighted and each consists of1Volume measurements for object cube of the physical phantom L5lower
124 slices of 256 3 256 voxels of size 0.7812513bound; U5upper bound

3
3 0.7812531.7 mm (TE59000 ms, TR524 000 ms). TheVolume (mm )

left lateral ventricle of the patient is segmented and results
L simplex mesh 776 are shown below. No preliminary registration step was
L refined sm 797

necessary.L voxel-based 821
The data set is first bias-corrected, assuming only oneL sm1tGB 823

Real volume 1028 tissue encompassing white matter and grey matter, plus a
U sm1tGB 1114
U voxel-based 1152
U refined sm 1228
U simplex mesh 1238

Table 4
Width of the confidence interval relative to the volume of the object

V 2 Vupper lower
]]] 3 100s dVreal

Width (%)

Simplex mesh 44.9
Refined sm 41.9
Voxel-based 32.2

Fig. 13. Slice 56 of the MRI acquisitions used for the study: normal (left)
Sm1tGB 28.3

and rotated (right). Note the significant rotation of the right image.
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Table 5
3Measured volume (in mm ) of the left ventricle (initial and rotated

positions). U5upper bound estimate; L5lower bound estimate. Simplex
mesh measurements were obtained after using the refinement process

Straight Rotated

U simplex mesh 12192 11100
U voxel-base 10090 9770
U sm1tGB 9454 9574
L sm1tGB 7835 7998
L simplex mesh 7373 7483
L voxel-based 7314 7162

Fig. 15. Width of the confidence interval in the original and rotated
condition. The best results are obtained by using a mesh of tGB patches
interpolating the simplex mesh. Note that the results for the tGB patchesTable 6

3 are almost invariant to patient head rotation.Width of confidence interval, in mm (U 2 L)

Straight Rotated

smaller for the tGB model, and second, the interval isSimplex mesh 4819 3617
almost invariant to the patient head rotation.Voxel-based 2776 2608

Sm1tGB 1619 1576

7.4. Modelling the cortical surface

uniform class modelling the rest of tissues plus CSF and Finally, we investigate the flexibility of our shape model
air. Probability maps for the different tissues are generated, by segmenting the cortical surface of a patient from a
and a pre-segmentation step labels voxels with a probabili- clinical MR data set (T -weighted, 124 slices, voxel size1

3ty smaller than 95% of belonging to one of the tissues as 0.937530.937531.2 mm ). The cortex is known for its
PVE voxels (see Fig. 5). Simplex meshes are fitted to the highly convoluted shape, which makes it a very demanding
data using the information derived from the maps to guide surface for shape modelling. The volume is first bias
it and the refinement process is used to obtain better fit to corrected and a prior segmentation with a tissue model
the target data. Two meshes are fitted to obtain an inner encompassing both grey matter and white matter, and
and an outer bound of the location of the surface. The another model with uniform probability density function to
numbers of vertices for the fitted refined meshes are 1538 cater for other tissues, is created (c.f. Fig. 5). An ellip-
(771 polygons), and 1558 for the rotated set (781 poly- soidal simplex mesh with low number of nodes is first
gons). A set of tGB patches for each mesh is then built. located roughly near the brain, and the fitting process is
For comparison, voxel-based segmentations are performed started, driven by the probability maps computed during
and validated by an expert. Volume measurements are the bias correction step. Also, the refinement process of the
shown in Tables 5 and 6. mesh is enabled so more nodes are added in areas where

Fig. 14 shows the upper and lower bounds on the more detail is required to fit closely to the target data. Fig.
volume of the ventricle, and Fig. 15 shows the width of the 16 illustrates the process and shows visual results.
confidence interval. There are two main points to note
about Fig. 15. First, the confidence interval is significantly

8. Discussion and future work

We have described a method for segmentation and
measurement of structures embedded in volumetric data.
The method itself is novel in the sense of combining
statistical classification and geometry-driven segmentation.
However, the most important point in the technique is the
establishment of confidence intervals in every measure-
ment, by bounding PVE. This is a crucial issue in
morphometry which has too often been ignored. We
described above several techniques for segmentation and
compared their relative performance both in synthetic and
clinical data, concluding that the smooth surface model
based on the combination of the simplex mesh and3Fig. 14. Volume estimates for the left ventricle (mm ), with the con-

´triangular Gregory-Bezier patches provides the best results,ditions indicated in the tables above, and for the original and rotated
i.e. gives narrower confidence bounds while still ensuringconfigurations. The vertical bars show the difference between the upper

and lower volume estimates. that the real surface is contained between them. This is of
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Fig. 16. Mesh fitting process, starting from a mesh with the shape of an ellipsoid and low number of nodes. Refinement is applied to the mesh in order to
add nodes in the areas where more detail is required. Different stages on the refinement-fitting process are shown in the first two rows, together with the
intersection of the model with one of the slices of the MRI. Enlarged front and top views of the final model are shown in the last row.

vital importance for our clinical partners studying schizo- far the most expensive part is the EM algorithm. When
phrenia and multiple sclerosis, and an in-depth study is applied to data sets of size 256 3 256 3 124, it may take
underway to test whether our method can provide the up to 1.5 h. However, this task can be a batch process and
sufficient resolution to validate hypothesis that remain requires no user intervention, other than the prior estima-
unproved due to the lack of resolution of current mor- tion of tissue parameters. The other components of the
phometric methods. method are acceptably fast even on a relatively slow

Regarding the computational cost of this technique, by machine (SGI INDY R4400, 200 MHz, 64 Mb RAM). In
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Blake, A., Curwen, R., Zisserman, A., 1993. A framework for spatiotem-particular, for the ventricle example reported in Section
poral control in the tracking of visual contours. Intenational Journal of7.3, mesh fitting takes approximately 4 min, including
Computer Vision 11 (2), 127–145.refinement of the mesh, and computation of tGB parame-

Boas, M.L., 1983. Mathematical Methods in the Physical Sciences, 2nd
ters is performed in less than 4 s. edition. John Wiley.

Our approach to bounding the real surface of the object Boehm, W., Prautzsch, H., 1994. Geometric Concepts for Geometric
Design. A.K. Peters.to be segmented has so far been based on establishing

Brady, M., Li, F., Xie, Z. 1999. Texture segmentation from non-paramet-conservative upper and lower bounds. The logical next
ric statistical analysis of wavelet local energy. IEEE PAMI, to appear.step in our work will be to study the PVE area between the

Colchester, A.C.F., Gerig, G., Crow, T., Ayache, N., Vandermeulen, D.,
bounds in order to establish a probability distribution 1997. Development and validation of techniques for brain mor-
function (pdf) on the location of the surface. This will not phometry (biomorph). In: Proceedings of CVRMED’97.
only allow for further narrowing of the width of the Colchester, A.C.F., Zhao, J., Holton-Tainter, K.S., Henri, C.J., Maitland,

N., Roberts, P.T.E., Harris, C.G., Evans, R.J., 1996. Development andconfidence intervals to a certain probability, but will also
preliminary evaluation of vislan, a surgical planning and guidanceincorporate the statistical apparatus required for robust
system using intra-operative video imaging. Medical Image Analysis 1

morphometry. (1), 73–90.1The shape model, which is a G -continuous parametric Crow, T.J., 1990. Temporal lobe asymmetries as the key etiology of
surface, provides good flexibility for further processing in schizophrenia. Schizophrenia Bulletin 16, 433–443.

Davatzikos, C., Bryan, R.N., 1995. Using a deformable surface model toorder to derive shape descriptors. In particular, little or few
obtain a shape representation of the cortex. In: Proceedings of thedescriptors have been established for studying brain
International Symposium on Computer Vision, pp. 212–217.

asymmetry, a key issue in schizophrenia studies. The Delingette, H., 1994. Simplex meshes: a general representation for 3d
direction of our further work encompasses this problem in shape reconstruction. Technical Report 2214, INRIA.
a more general framework, namely the global, anatomy- Delisi, L.E., Tew, W., Xie, S., Hoff, S.L., Sakuma, M., Kusher, M., Lee,

G., Shedlack, K., Smith, A.M., Grimson, R., 1995. A prospectivedriven, parameterisation of the brain. This will allow for
follow-up study of brain morphology and cognition in first-episodecomparison of homologous regions in both hemispheres, in
schizophrenic patients. Preliminary Findings in Biological Psychiatry

the sense of relative position to established cortical and 38, 349–360.
inner landmarks, emulating the process followed by clini- Guillemaud, R., Brady, M., 1997. Estimating the bias field of mr images.
cians when analysing a brain, but also providing the IEEE Transactions on Medical Imaging 16 (3), 238.
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