
IS
S

N
 0

24
9-

63
99

appor t  


de  r ech er ch e 
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Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
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Abstract: Chamfer disctances are widely used in image analysis, and many ways have
been investigated to compute optimal chamfer mask coefficients. Unfortunately, these meth-
ods are not systematized: they have to be conducted manually for every mask size or image
anisotropy. Since image acquisistion (e.g. medical imaging) can lead to anisotropic discrete
grids with unpredictable anisotropy value, automated calculation of chamfer mask coeffi-
cients becomes mandatory for efficient distance map computation. This report presentes a
systematized calculation of these coefficients based on the automatic construction of cham-
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relative error with respect to the Euclidean distance, in any 3-D anisotropic lattice and that
also allows to compute norm constraints.
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Calcul automatique
de coefficients de masques de chanfrein

pour les grands masques et les images anisotropes

Résumé : Les distances de chanfrein sont largement utilisées en analyse d’image, et il
exite plusieurs façons de calculer des coefficients optimaux pour les masques de chanfrein.
Cependant, cest méthodes ne sont pas systematiques : elles doivent être effectuées “à la
main” pour chaque taille de masque, ou chaque valeur d’anisotropie de l’image. Comme les
acquisistions d’images (par exemple les images médicales) conduisent à des grilles discrète
dont l’anisotropie n’est pas constante, l’on souhaite un calcul automatique des coefficients
des masques de chanfrein pour un calcul de carte de distances efficace. Ce rapport présente
une méthode de calcul systématique de ces coefficients basée sur une triangulation du masque
de chanfrein qui autorise le calcul analytique de l’erreur relative par rapport à la distance
Euclidienne, quelle que soit l’anisotropie ou la taille du masque. De plus, elle prend en
compte des contraintes de norme.

Mots-clés : analyse d’image, distance de chanfrein, contrainte de norme, image anisotrope
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1 Introduction

Distance transformations (DTs) are widely used in image analysis since they allow to re-
cover morphometric features of a binary shape. Among other applications, they can be
applied to skeleton computation [Pud98], Voronöi diagram construction, or shape-based in-
terpolation [HZB92]. Distance transformation transforms a binary image into a grey level
image where the value of each foreground pixel corresponds to its shortest distance to the
background. Brute-force computation of DT is not compatible with expected image anal-
ysis requirements, so DTs are usually computed by propagation. Exact Euclidean maps
can be computed using morphological operators [SM92, HM94] but with time and memory
consuming algorithms. Several Euclidean distance transformations (EDT) have also been
proposed (e.g. [Dan80, Rag93]) that propagate a vector instead of a scalar, leading to mem-
ory consuming approaches. A good trade-off between precision and computational cost for
DT is achieved by chamfer maps that are been made popular by Borgefors [Bor86]. These
maps are computed through two raster-scan on the image that propagate the distance values
by the way of chamfer masks. The coefficients of the mask are (proportional) estimation
of short-range distances: the larger the chamfer mask is, the closest to the Euclidean map
the chamfer map will be. The calculation of optimal coefficients can be done by minimiz-
ing either an absolute error [Bor84] or a relative one [Ver91]. It has first been done for 2-D
3×3 masks [Bor84] in isotropic lattices, then extended to larger masks [Bor86, Ver91] and to
higher dimensions [Bor96]. Anisotropic lattices have also been considered [MBLKF94, SB02].
However, those calculations remain tedious and are not systematized: thus they have to be
conducted manually for every mask size or anisotropy value.

Our motivation is the computation of DT in 3-D medical images: they are usually ac-
quired on anisotropic lattices (slice thickness is usually larger than the pixel size) and this
anisotropy may vary from one acquisition to the other. The efficient computation of cham-
fer maps requires then the calculation of the chamfer mask’s coefficient to be automated.
calculation of these coefficients for any mask size and any anisotropy value. In addition
to classical error criteria, we also consider norm constraints [Rem00] that guarantee pre-
dictable results. Our approach is based on the automatic construction of chamfer masks of

INRIA
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any size associated with a triangulation that allows to derive analytically the relative error
with respect to the Euclidean distance.

In the following, we first recall some basic definitions. Then we describe error estimation
and norm constraints. Some results (coefficients of isotropic 73 and anisotropic 33 masks)
are given before we conclude.

2 Discrete Geometry

Before determining chamfer mask coefficients, we must first exactly define what a chamfer
mask is, how it does work, and what its properties are. In this section, we will review some
basic definitions of discrete geometry, and define the tools used to compute chamfer maps.
Then, we will see some conditions on the mask, given by [Rem00], to ensure that the metric
induced by the chamfer map is a norm.

2.1 Basic Properties

In this section, we review some basics in discrete geometry.

We consider the discrete space E = Z2 or Z3.
An image I is an application from E to Z :

I :
{

E −→ Z
(x, y, (z)) 7−→ I(x, y, (z))

As in the continuous space, we define a discrete distance and discrete norm as follows:

definition 2.1 (discrete distance)
A function d : E −→ N is a discrete distance on E if and only if it verifies the following
properties for each ~x, ~y ∈ E:
• d(~x) = 0 ⇐⇒ ~x = ~0 (definition)
• d(~x) ≥ 0 (positivity)
• d(~x) = d(−~x) (symmetry)
• d(~x + ~y) ≤ d(~x) + d(~y) (triangular inequality)

definition 2.2 (discrete norm)
A function n : E −→ N is a discrete norm on (E, Z) if and only if it verifies the following
properties for each ~x, ~y ∈ E and each λ ∈ Z, λ.~x, λ.~y ∈ E :
• n(~x) = 0 ⇐⇒ ~x = ~0 (definition)
• n(~x) ≥ 0 (positivity)
• n(~x) = n(−~x) (symmetry)
• n(~x + ~y) ≤ n(~x) + n(~y) (triangular inequality)
• n(λ.~x) = |λ|.n(~x) (homogeneity)

RR n◦ 0123456789
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Two of the three usual continuous norms of Rn :
• N1(u) =

∑n
i=1 |ui|

• N2(u) =
√∑n

i=1 |ui|2
• N∞ = maxi=1..n|ui|

can be transposed into the discrete norms of Zn :
• N4/6(u) =

∑n
i=1 |ui| (= N4 if n = 2, N6 if n = 3)

• N8/26(u) = maxi=1..n|ui| (= N8 if n = 2, N26 if n = 3)

||−−→PQ1||2 = 25 ||−−→PQ2||2 = 25
N4(

−−→
PQ1) = 25 N4(

−−→
PQ2) = 24

N8(
−−→
PQ1) = 25 N8(

−−→
PQ2) = 31

−−→
PQ1 is transformed into −−→PQ2 by rotation.

Figure 1: N4 and N8 are not invariant by rotation

These two metrics are discrete, simple.But they are not invariant by rotation (see figure 1).
This means that the distance between two points of an object can vary according to the
orientation of this object. This is an important drawback for many application, particularly
for skeletonization, where the final result is expected not to vary under rotation. The
Euclidean metric is invariant by rotation, but can not easily be transposed into a discrete
distance. Indeed, neither the square nor the truncature of the Euclidean metric verify the
conditions of a distance (they do not respect the triangular inequality). This will lead us to
approximate the Euclidean metric, in order to keep the invariance by rotation.

To better understand how to obtain a chamfer map with good properties, we first detail
what a chamfer map is, how a chamfer mask is constructed, and then which conditions on
the mask yield a chamfer map which respects norm properties.

2.2 Chamfer Map

A distance map is a grey level image, where the value of each point of the foreground
corresponds to its shortest distance to the background (and/or respectively, the value of
each point of the background corresponds to its shortest distance to the foreground). Figure
2 gives an example of such a 2D distance map.

Formally, a distance map is defined as follows:

definition 2.3 (Distance Map)
Let X ⊂ E be the foreground of an image I(i.e.p ∈ E, I(p) > 0) and X the background of
the image (i.e.p ∈ E, I(p) ≤ 0). The distance map of I is:

DMX :
{

E −→ N
p 7−→ d(p, X) = inf{d(p, q), q ∈ X}

INRIA
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(a) Original image (b) Distance map

Figure 2: Example of 2D distance map

An efficient way to compute a distance map, in terms of precision and cost calculation, is to
compute chamfer distances. Chamfer distances, first proposed by Montanari and Hilditch
and popularized by Borgefors ([Bor84] et [Bor86]), are based on the idea of propagating local
integer distances. A chamfer map is computed on a binary image. It uses chamfer mask
to propagate local distances: chamfer masks (see figure 3) run over the image. As soon as
they find a background pixel in the neighborhood of an object pixel, the minimal distance
is given to the object pixel. Then the chamfer masks propagate this distance by adding the
pixel size to the object neighbors of the former object pixel. Figure 4 shows the propagation
of the N8 norm inside the object.

There are two ways to compute chamfer maps : sequential and parallel.

The parallel algorithm is the most intuitive one. The parallel chamfer mask (figure 3
(a)), corresponds to a local neighborhood of the considered pixel, weighted by the different
costs ci. During the parallel process, a chamfer mask is centered on each pixel of the image.
The new value of the centered pixel is obtained as follows : for each point of the mask,
we compute the sum of the corresponding mask weight and the corresponding image value.

RR n◦ 0123456789



8 Fouard & Malandain

(a) Parallel chamfer masks of width 3 and 5

(b) Sequential chamfer masks of width 3 and 5

Figure 3: 3× 3 and 5× 5 2D chamfer masks

The final value is the minimum between this sum and the former center pixel value. This
calculation is done simultaneously on every pixel of the original image, which yields to a
new image. The process is applied on this new image, and so on, until no pixel is changed in
the image (see figure 4). Although this algorithm can be easily parallelized, its calculation
cost can not be predefined. Indeed, this cost depends on the size of the object.

Rosenfeld and Pfaltz have shown in [RP66] that the parallel algorithm could be replaced
by two sequential operations on the image. To do this, we split up the parallel mask into
two sequential masks symmetrically in relation to the origin, as shown in figure 3 (b).
The image is first initialized to 0 for the background and to infinity (in practice a high value)
for the foreground. Then we proceed to :

INRIA
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(a) initial object (b) initialization (0 & in-
finity)

(c) border pixels

(d) first propagation (e) second propagation

Figure 4: Parallel propagation of the norm N8

• a first forward pass, which goes all over the image, from the up left hand corner to the
bottom right hand corner, with the forward mask

• a second backward pass, which goes all over the image, from the bottom right hand
corner to the up left hand corner, with the backward mask.

Figures 5 and 6 show the first and last iterations of the forward and the backward pass of
a 3 × 3 chamfer mask propagating the norm N8, i.e the 3 × 3 masks of the figure 3 with
c1 = c2 = 1.

At each iteration, i.e. for each pixel of the image, the mask is centered on the pixel, and for

RR n◦ 0123456789
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Figure 5: Forward pass of the sequential 3x3 forward mask on the initialized image 4 (b)

Figure 6: Backward pass of the sequential 3x3 backward mask on the last image of figure 5

each point of the mask, we calculate the sum of the cost of this point of the mask and the
image value that it covers. The value of the center pixel becomes the minimum between this
sum and its previous value. Let us call (xi, yi) the coordinates of the different points of the
mask (forward or backward), each weighted with the cost ωi, and I the image application,
we obtain :

• for the forward pass:

up to down
left to right

for each pixel (x, y) of the image, do:
I(x, y) = min(xi,yi,ωi)∈forwardMask(I(x + xi, y + yi) + ωi)

• for the backward pass:

down to up
right to left

INRIA
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for each pixel (x, y) of the image, do:
I(x, y) = min(xi,yi,ωi)∈backwardMask(I(x− xi, y − yi) + ωi)

This algorithm can be easily extended to three dimension. Let us call (xi, yi, zi) the co-
ordinates of the different points of the mask, and ωi their weights, we obtain in the same
way:

• for the forward pass:

front to back
up to down

left to right
for each pixel (x, y, z) of the image, do:
I(x, y, z) = min(xi,yi,zi,ωi)∈forwardMask(I(x + xi, y + yi, z + zi) + ωi)

• for the backward pass:

back to front
down to up

right to left
for each pixel (x, y, z) of the image, do:
I(x, y, z) = min(xi,yi,zi,ωi)∈backwardMask(I(x− xi, y − yi, zi) + ωi)

Even if we have only considered 3D images, the algorithm could be easily extended to any
dimension.

2.3 Chamfer Mask

Here, we define more formally the notions that we covered more intuitively before. We define
a chamfer mask as follows:

definition 2.4 (Chamfer mask)
A chamfer mask is a set MC = {(~vi, ωi), 1 ≤ i ≤ m} of weighted vectors representing
authorized displacements. It is centered in O, symmetrical with respect to its center and
contains at least a base of E.
Figure 7 shows examples of 3×3(×3) chamfer masks used to compute (a): N4, (b): N8, (c):
N6, and (d) N26.

By construction, a chamfer mask is symmetrical in relation to the axis (O,~x), (O, ~y),
(O,~z). It can thus be built from its restriction to:

• the first quarter of the plan for 2D masks, i.e. 1
4Z2 = {(x, y) ∈ Z2 : 0 ≤ x, 0 ≤ y}

(see figure 8 a)

RR n◦ 0123456789



12 Fouard & Malandain

Figure 7: chamfer masks used to compute (a) N4, (b) N8, (c) N6, and (d) N26

(a) 1
4

Z2 (b) 1
8

Z2 (c) 1
8

Z3 (d) 1
48

Z3

Figure 8:

• the first eighth of the space for 3D masks, i.e. 1
8Z3 = {(x, y, z) ∈ Z3 : 0 ≤ x, 0 ≤

y, 0 ≤ z} (see figure 8 c).

Moreover, for isotropic images, the voxel size is the same in the x, y and z directions.
Therefore the mask is also symmetrical in relation with the bisectors of (O, ~x), (O, ~y) and
(O,~z). Isotropic chamfer masks can thus be built from their restriction to:

• the first eighth of the plan for 2D masks, i.e. 1
8Z2 = {(x, y) ∈ Z2 : 0 ≤ y ≤ x} (see

figure 8 b)

• the first forty eighth of the space for 3D masks, i.e. 1
48Z3 = {(x, y, z) ∈ Z3 : 0 ≤ z ≤

y ≤ x} (see figure 8 d).

Afterward, we will only consider the generator of a chamfer mask Mg
C , that is to say, the

part of the chamfer map included into :

• 1
4Z2 for the 2D anisotropic masks

INRIA
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• 1
8Z2 for the 2D isotropic masks

• 1
8Z3 for the 3D anisotropic masks

• 1
48Z3 for the 3D isotropic masks

Figure 9 shows some examples of such generators.

(a) 5x5 isotropic (b)
3x3

anisotropic

(c) 3x3x3 anisotropic

Figure 9: Examples of chamfer mask generators

2.3.1 Chamfer Distance

definition 2.5 (path from A to B)
Given a chamfer mask MC and two points A, B, a path from A to B is a sequence of
vectors ~vi ∈Mg

C going from A to B. We obtain :

−−→
AB =

∑
~vi∈MC

ni.~vi

The cost (W ) of the pass PAB writes:

W (PAB) =
m∑

i=1

ni.ωi

A mask generator Mg
C contains at least a base of E. Therefore we can decompose any vector

−−−−→
B −A with vectors of Mg

C . Associating a null weight to the null vector, we get: for all A,
B in E, it exists at least a cost W (PAB).

RR n◦ 0123456789



14 Fouard & Malandain

definition 2.6 (Chamfer distance)
A chamfer distance dC between two points A and B in E is the minimum of the costs
associated to every paths PAB linking A to B :

dC = minPAB
W (PAB)

2.3.2 Visible Points

Let us look at the 5 × 5 isotropic mask generator shown in figure 9 (a). Imagine that we
add a vector ~̃v(2, 0) so that ~̃v = 2.~a in the mask generator (see figure 10). Then, there are

Figure 10: overloaded mask generator

two cases :

• if ω~̃v
= 2ω~a then, the mask is redundant. Rosenfeld’s algorithm already associates the

right weight to the point reached by ~̃v. So this weight slows the algorithm unnecessarily.

• if ω~̃v
6= 2ω~a , then the distance map is not homogeneous along the ~̃v direction, which

is undesirable.

In the following we will not take any vector ~̃v in a generator such that there exists a vector ~vi

in the generator verifying : ~̃v = λ~vi, λ ∈ Z. That is to say, we will consider mask generators
containing only visible points.

definition 2.7 (Visible point)
A point P (x, y(, z)) ∈ E is said to be visible from the origin, if there is no point on the
fundamental network of E located on (OP ) between O and P . A necessary and sufficient
condition for P to be visible is gcd(x, y(, z)) = 1. (see [HW78] for a demonstration).

Visible points can be automatically determined with Farey series (see Appendix A).
Figure 11 shows 2D and 3D first visible points in the lexicographic order.

INRIA
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(a) first 2D visible points (b) first 3D visible points

Figure 11: First visible points in lexicographic order

2.3.3 Influence Cone

Determining the property of the map induced by a chamfer mask, as for example its error
to the Euclidean metric, is quite awkward when dealing with large masks. This difficulty
can be reduced if we are able to triangulate the mask generator Mg

C into regular cones.
In this section, we will see what a regular cone is, and how to decompose a chamfer mask
generator into regular cones. Then, we will see that it is possible to know the property
of a chamfer mask, only by knowing the properties of each of its cones. In dimension 2,
the most intuitive cone organization consists in ordering Farey series points in increasing
lexicographic order. Figure 12 shows an example of the organization of the cones for a 3D
7× 7 mask. In dimension 3, however, a set of weighted vectors can be organized in cones in
many ways: figure 13 shows two ways of ordering the vectors of the mask Mg

C :
Mg

C = {( ~(1, 0, 0), ω1), ( ~(1, 1, 0), ω2), ( ~(1, 1, 1), ω3), ( ~(2, 1, 0), ω4), ( ~(2, 1, 1), ω5), ( ~(2, 2, 1), ω6)}.
The Farey organization (13 (a)(b)) induces the 4 following cones :
〈 ~(2, 1, 1), ~(1, 0, 0), ~(2, 1, 0)〉, 〈 ~(2, 1, 1), ~(2, 1, 0), ~(1, 1, 0)〉, 〈 ~(2, 1, 1), ~(1, 1, 0), ~(2, 2, 1)〉, 〈 ~(2, 1, 1), ~(2, 2, 1), ~(1, 1, 1)〉.
The other organization (13 (c)(d)) induces the 4 following cones :
〈 ~(2, 1, 1), ~(1, 0, 0), ~(2, 1, 0)〉, 〈 ~(2, 1, 1), ~(2, 1, 0), ~(2, 2, 1)〉, 〈 ~(2, 1, 0), ~(1, 1, 0), ~(2, 2, 1)〉, 〈 ~(2, 1, 1), ~(2, 2, 1), ~(1, 1, 1)〉.

Once the cone organization of a chamfer mask is decided, we can determine chamfer
properties by looking at each of its cone. Let us look first at the cones properties. We can
then deduce the properties of the mask.

definition 2.8 (Continuous cone)
A continuous cone 〈~vi, ~vj(, ~vk)〉 represents the region of R2, 3 delimited by the vectors ~vi, ~vj

RR n◦ 0123456789



16 Fouard & Malandain

Figure 12: 2D triangulation of an isotropic 7× 7 mask generator

(and ~vk). That is:
〈~vi, ~vj(, ~vk)〉 = {M ∈ E : −−→OM = λi.~vi + λj . ~vj(+λk. ~vk), λi, λj(, λk) ∈ R+}

definition 2.9 (Discrete cone)
A discrete cone 〈〈~vi, ~vj(, ~vk)〉〉 is the set of points in Z2, 3 included in the continuous cone
〈~vi, ~vj(, ~vk)〉 .

definition 2.10 (Regular cone)
A regular cone is a discrete cone 〈〈~vi, ~vj(, ~vk)〉〉 which verifies ∆i,j(,k) = ±1 where

∆i,j,k =
x~vi

x ~vj
(x ~vk

)
y~vi

y ~vj
(y ~vk

)
(z~vi

) (z ~vj
) (z ~vk

)

Our aim is to compute chamfer mask coefficients to induce a chamfer map as close as possible
to the Euclidean map. To do so, we must know the behavior of the chamfer map according
to the chamfer mask coefficients, that is to say, we need to extend the local properties of
the chamfer mask coefficients to the whole chamfer map. Particularly, we would like to
deduce the properties of a chamfer mask from the properties of its cones which are easy to
manipulate.

A regular cone presents the interesting property that each point which belongs to it can
be reached by an integer linear combination of the vectors delimiting the cone (see [HW78]
for the demonstration). Thus, if we choose a mask generator Mg

C = {(~vi, ωi), 1 ≤ i ≤ m}
whose triangulation is regular, for each P in a regular cone 〈〈~vi, ~vi+1, ( ~vi+2)〉〉 of Mg

C , there
exists a couple/triplet (ni, ni+1, (ni+2)) ∈ N2, 3 such that −−→OP = ni~vi +ni+1 ~vi+1(+ni+2 ~vi+2)
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(a) Farey triangulation (b) Projection of (a) on the Plan
x = 1

(c) Another triangulation (d) Projection of (c) on the Plan
x = 1

Figure 13: Two possible organizations of a 3D isotropic 5× 5× 5 chamfer mask generator

and which induces a minimal distance. This means that the chamfer distance of any point
in the regular cone 〈〈~vi, ~vi+1, ( ~vi+2)〉〉 depends only on the vectors ~vi, ~vi+1 (and ~vi+2).
On the other hand, if the cone is not regular, there exists at least one point in the dis-
crete cone which can not be reached by a integer linear combination of the delimiting vec-
tors. [Ver91] gives an example (see figure 14) of this kind of cone : the vector ~v(3, 2, 1) ⊂
〈〈~v1(2, 1, 0), ~v2(2, 1, 1), ~v3(2, 2, 1)〉〉 can not be reached by an integer linear combination of
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18 Fouard & Malandain

Figure 14: Example of non regular cone

the 3 vectors ~v1, ~v2 and ~v3. We can notice that this cone is not regular since:

∆v1v2v3 =
2 2 2
1 1 2
0 1 1

= −2 6= ±1

In the following we will only use regular triangulations since we want to predict the
behavior of our masks. In dimension 2, if we take the points given by Farey series, ordered
in their angle with the horizontal direction (for example the 7× 7 mask shown in figure 12
which generator is Mg

C = {(~a, ωa), (~d, ωd), (~c, ωc), (~e, ωe), (~b, ωb)}), we are sure to obtain a
regular triangulation (see Appendix A for the demonstration). In dimension 3, we can also
build regular triangulations based on Farey series, as shown in Appendix A.

3 How to induce a norm ?

3.1 Conditions on the chamfer mask to induce a distance

In [Rem01], E. Remy resumes Verwer’s demonstration to show that

Theoreme 3.1 (distance condition)
The chamfer distance dC induced by any chamfer mask MC is a discrete distance .

However he also gives an example to illustrate that when the chamfer distance induces a
discrete distance, but not a discrete norm, it can lead to unpredictable results. This example
(see figure 15) is a section of a chamfer map calculated with a 2D 3×3 isotropic mask which
generator is : {(~a(1, 0), ωa = 3), (~b(1, 1), ωb = 1)}. The conditions of definition, positivity,
symmetry and triangular inequality of a discrete distance are respected. Yet we do not have
the homogeneity property (this is why it is not a norm). We can notice that the straight line
is not the shortest path between two points. Moreover, in a distance map which does not
verifies the conditions of a norm is not invariant by scaling. This means that considering
two paths, if the first one is twice larger as the second one, it may not have a distance value
twice larger as the first one. Moreover, a distance that is not a norm is not scale invariant.
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Figure 15: Example of discrete distance where the straight line is not the shortest path
between to points

Joint with skeletonization for example, it could lead to skeletons depending on the scale
of an object. These drawbacks will lead us to consider chamfer map inducing not only a
distance, but also a norm.

3.2 Conditions on the chamfer mask to induce a norm

In this section, we present conditions for the chamfer mask to produce chamfer maps inducing
a norm on (E, Z). In fact, a function is a norm if and only if its ball is convex, symmetric
and homogeneous. In [Rem01] E. Remy characterized the ball of the chamfer distance in
the following way:

definition 3.2 (Equivalent rational mask)
The equivalent rational mask M′

C of a chamfer mask MC = {(~vi, ωi), 1 ≤ i ≤ m}, is
defined by:

M′
C =

{(
xi

ωi
,
yi

ωi
,
zi

ωi

)
∈ Q3 : (xi, yi, zi, ωi) ∈MC

}
Normalizing each weighted vector (~vi, ωi) ∈MC by its local distance value ωi, we obtain the
following weighting: ( ~vi

ωi
, ωi

ωi
) = ( ~vi

ωi
, 1). According to the chamfer map metric, the points

of the rational equivalent mask are also located at a unit distance from the origin, are they
are weighted by 1. This is why we call equivalent rational ball the polyhedron formed by
a regular triangulation of the rational equivalent mask. Figure 16 shows two examples of
rational balls.

Theoreme 3.3 (Norm condition)
A chamfer mask built up with visible points and regular triangulation induces a norm if and
only if its rational equivalent ball is convex.
To check whether an equivalent rational ball is convex or not, we can use a local convexity

criterion. Indeed, the ball is convex if and only if the following local convexity criterion is
verified for each edge of its polyhedron.
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(a) 5× 5 mask (c) 3×3×3 mask

(d) its equivalent rational ball (f) its equivalent rational ball

Figure 16: Examples of equivalent rational balls

Figure 17: (P,Q, S) and (Q,R, S) are 2 faces of a triangulation
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definition 3.4 (local convexity criterion)
Two faces (P,Q, S) and (Q, R, S) of a triangulation (see figure 17) verify the local convexity
criterion (named LCC(P,Q,R, S)) if and only if:

LCC(P,Q,R, S) =
1

ωP .ωQ.ωR.ωS
.

xQ xR xS xP

yQ yR yS yP

zQ zR zS zP

ωQ ωR ωS ωP

≥ 0.

For symmetry reasons, we come down to the chamfer mask generator only.
As the chamfer mask generator is organized in cones, we would rather express the local

convexity criterion for each cone of the chamfer mask generator. Figure 18 shows the
projection of a cone of the chamfer mask generator and its neighbors. We will then apply

Figure 18: Geometry of LCC for chamfer mask generator cones

the local convexity criterion on the three edges of the cone basis. We call A′, B′ and C ′ the
symmetric points of A, B and C in the chamfer mask, that is to say, the third vertex of the
neighboring triangle. If the symmetric of a point belongs to the chamfer mask generator,
its weight (ωA′ , or ωB′ or ωC′) is its corresponding one. If one of the symmetric point, A′

for example is not in the generator, then, as the mask is built by symmetry around the
generator, the weight ωA′ will be the weight of A.

We apply the LLC for each edge of the triangle ABC:

• On the edge [BC], we consider the tetrahedron ABA′C to obtain:

∗ ωA ∆BA′C − ωB ∆A′CA + ωA′ ∆BCA − ωC ∆ABA′ ≥ 0 (1)

i.e.
∆ABC ωA′ −∆A′BC ωA −∆AA′C ωB −∆ABA′ ωC ≥ 0 (2)
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• On the edge [AC], we consider the tetrahedron B′ABC to obtain:

∗ ωB′ ∆ABC − ωA ∆BCB′ + ωB ∆CB′A − ωC ∆B′AB ≥ 0 (3)

i.e.
∆ABC ωB′ −∆B′BC ωA −∆AB′C ωB −∆ABB′ ωC ≥ 0 (4)

• On the edge [AB], we consider the tetrahedron CAC ′B to obtain:

∗ ωC ∆AC′B − ωA ∆C′BC + ωC′ ∆BCA − ωB ∆CAC′ ≥ 0 (5)

i.e
∆ABC ωC′ −∆C′BC ωA −∆AC′C ωB −∆ABC′ ωC ≥ 0 (6)

When we put together the equations 2, 4, 6, we obtain the following constraints system of
inequalities:

∆ABC

(
ωA′

ωB′

ωC′

)
−

[( ∆A′BC ∆AA′C ∆ABA′

∆B′BC ∆AB′C ∆ABB′

∆C′BC ∆AC′C ∆ABC′

)(
ωA

ωB

ωC

)]
≥ 0 (7)

Figure 19 shows the equivalent rational balls of two different masks, one which induces
a norm, and another one which does not.

4 How to be as close as possible to the Euclidean norm?

In the previous section, we saw conditions to ensure that a chamfer mask induces a norm.
Now, we focus on the weights of the chamfer mask to obtain a chamfer map close to the
Euclidean one. For a chamfer norm, being close the the Euclidean norm means minimizing
the error between the map induced by the chamfer mask and a map induced by the Euclidean
norm. There are several ways to define the error of the chamfer map with respect to the
Euclidean map. In the following section, we present a short review of the state of the art in
terms of error computation, before introducing our approach.

4.1 State of the art for the error computation

The first approaches to compute optimal chamfer mask coefficients consisted in searching
“manually” the optimal real coefficients for a given mask, and then to adapt them for integer
values.
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(a) Rational ball of a 3D 5 × 5 ×
5 isotropic chamfer mask inducing a
norm

(b) Rational ball of a 3D 5 × 5 × 5
isotropic chamfer mask not inducing
a norm

Figure 19: Convex and non convex equivalent rational balls

4.1.1 An example of 2D 3× 3 isotropic real mask coefficients calculation

G. Borgefors was the first one to propose a method to calculate the optimal chamfer mask
coefficients for the dimensions 2, 3 or more in [Bor84], [Bor86] and [Bor96]. Here is an
example of coefficients calculation for a 2D 3× 3 isotropic chamfer mask. For symmetrical
reasons, there are only two coefficients to calculate : a (the horizontal one), and b (the
diagonal one), as shown in figure 20 (a). Moreover, we can consider only the points such
that 0 ≤ y ≤ x. To find optimal coefficients, G. Borgefors minimizes the maximal error
induced by the chamfer map calculation in relation with the Euclidean map. She performs
the calculation on the points located on a straight line x = M , and minimizes the maximum
error on this line. Figure 20 (b) represents the geometry of the calculation. For each point
P (M,y) located on the line x = M , we get:

• Euclidean distance : deuclidian(O, P ) =
√

M2 + y2

• Chamfer distance : dchamfer(O,P ) = y.b + (M − y).a = y(b− a) + Ma

• absolute error at P : AE(y) = dchamfer(y)−deuclidian(y) = y(b−a)+Ma−
√

M2 + y2

To obtain these values, we must have
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(a) (b) on a straight line x = M (c) on a circle R = M

Figure 20: Chamfer mask error calculation

• b > a and b < 2a to consider the shortest path

• 0 ≤ y ≤ M (for the other cases, we use the symmetry)

The derivative of the function

AE :
{

[0,M ] −→ R
y 7−→ y(b− a) + Ma−

√
M2 + y2

is AE′ : y 7−→ (b− a)− y√
M2+y2

and is null for ymax = M(b−a)√
1−(b−a)2

. The error can thus be maximal for:

• (P0) y = 0: EA0max = (a− 1)M

• (P ) y = ymax: EA1max = (a−
√

1− (b− a)2)M

• (P2) y = x: EA2max = (b−
√

2)M

G. Borgefors minimizes the maximum of these three errors, and obtains optimal values fo a

and b : aopt = 1+
√

2
√

2−2
2 ≈ 0.95509... and bopt = 2

√
2−1+

√
2
√

2−2
2 ≈ 1.36930.... Note that

bopt <
√

2, indeed, taking b =
√

2 corresponds to consider the error only on the horizontal
and diagonal directions. In fact, the maximum error comes from a direction located at about
23 degrees of the horizontal direction.
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4.1.2 Approximation of real optimal values to integer chamfer mask coefficients

Now that we have optimal real coefficients, we want to approximate them by integers for
homogeneity and computational reasons. To do so, we search to obtain a rational number
bint

aint
as close as possible to bopt

aopt
. For example, for aint = 1, bint = round( bopt

aopt
× aint) = 1,

for aint = 2, bint = round( bopt

aopt
× aint) = 3, and for aint = 3, bint = round( bopt

aopt
× aint) = 4...

The latter one is the most popular couple of coefficients for 2D 3×3 isotropic chamfer mask.
When computing a chamfer map with the chamfer mask Mg

C = {(−−−→(1, 0), 3), (
−−−→
(1, 1), 4)}, one

must divide it by 3 to obtain the real values. In the following, we will note ε = aint the
scale coefficient of the chamfer map. To obtain the error induced by the map on a straight
line x = M , one must divide dchamfer by ε.

4.1.3 Other error calculations

B.J.H. Verwer in [Ver91] criticized the definition of the error used, because the calculation
is done on a straight line. Indeed, on a straight line, the error committed in a 45 degrees
direction is bigger than the one committed in the horizontal direction. The error commit-
ted in the diagonal direction influences too much the error minimization by inducing an
anisotropy in the error minimization scheme. Verwer therefore proposed to calculate this
error on a unit circle. In fact, calculating an absolute error on a unit circle is equivalent to
calculating a relative error on a straight line or on a circle of any radius. We summarize in
the following table (see figure 1) the various error definitions and the maxima obtained by
the approach introduced in the previous section.

These methods can be extended for wider 2D masks [Bor86], [Ver91], for 3D masks see
[Bor96], for other dimensions [Bor84], and even for some anisotropic images [Che97], [SB02].
But they remain tedious and can not be systematized. When we get anisotropic images,
their anisotropy can vary from one to the other. This is why we want an automatic method
to compute chamfer mask coefficients.

4.2 Analytical expression of the error to the Euclidean distance
induced by the chamfer mask

4.2.1 Which error to use ?

We want to calculate chamfer mask coefficients which will induce a chamfer map close to
the Euclidean one. To do so, we choose coefficients which minimize the error with respect
to the Euclidean norm. In the previous section, we saw some calculation of absolute and
relative maximum error to the Euclidean norm. But these calculations were dedicated to one
kind of chamfer mask. We now consider a more general expression of the error against the
Euclidean norm. Thus we consider an anisotropic grid, with a unit horizontal displacement
and with anisotropy in the vertical and depth direction. Figure 21 represents an element of
this grid.
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For the line x = M For the circle R = M

Point coordinates P (M,y) P (
√

M2 − y2, y)
Work Area Boundaries y0 = 0 y0 = 0
(y = x) y1 = M y1 = M√

2

deuclidian(O,P )
√

M2 + y2 M

dchamfer(O,P ) y.b + (M − y).a y.b + (
√

M2 − y2 − y).a
i.e. (b− a).y + Ma i.e. (b− a).y + a.

√
M2 − y2

Absolute error
F abs(y) (b− a).y + Ma−

√
M2 + y2 (b− a).y + a.

√
M2 − y2 −M

∂F abs

∂y (y) (b− a)− y√
M2+y2

(b− a)− ay√
M2−y2

∂F abs

∂y (yMax) = 0 ymax = (b− a)M
√

1
1−(b−a)2 ymax = (b−a)M√

a2+(b−a)2

Possible maxima
y = y0 =⇒ F abs

max1(y) (a− 1)M (a− 1)M
y = ymax =⇒ F abs

max2(y) (a−
√

1− (b− a)2)M (
√

(b− a)2 + a2 − 1)M
y = y1 =⇒ F abs

max3(y) (b−
√

2)M ( b√
2
− 1)M

Relative error

F rel(y) F rel
line(y) = F abs

line(y)
deuclidian(y) F rel

circle(y) = F abs
circle(y)

deuclidian(y)

(b−a).y+Ma√
M2+y2

− 1 (b−a).y+a.
√

M2−y2

M − 1

∂F rel

∂y (y) M(M(b−a)−ya)√
M2+y2

3 (b− a)− ay

M
√

M2+y2

∂F rel

∂y (yMax) = 0 ymax = M b−a
a ymax = M(b−a)√

(b−a)2+a2

Possible maxima
y = y0 =⇒ F abs

max1(y) (a− 1) (a− 1)
y = ymax =⇒ F abs

max2(y)
√

(b− a)2 + a2 − 1
√

(b− a)2 + a2 − 1
y = y1 =⇒ F abs

max3(y)
√

2
2 (
√

2− b) b√
2
− 1

Table 1: Several computation error schemes

Figure 21: Anisotropic grid element
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As seen earlier, the absolute error can induce an irregularity of the distance around a
circle. Moreover, calculating the relative error on a plane is equivalent to calculating the
absolute error on the unit circle. We choose the projection on planes as the associated
calculation is easier.

4.2.2 General expression

For symmetrical reasons, the calculation of the maximum and minimum error to the Eu-
clidean distance is made only for the generator of the mask. Moreover, as seen in section
2.3.3 the generator of a mask is composed of regular cones. Let 〈〈−→v i,−→v j ,−→v k〉〉 be a discrete
regular cone of a chamfer mask. For each point P (x, y, z) of this discrete cone, the chamfer
norm nC at the point P depends only on ωi, ωj and ωk. This means that threre exist
a, b, c ∈ Z such that

nC(P ) = a.ωi + b.ωj + c.ωk (8)

with −−→
OP = a.~vi + b.~vj + c.~vk

We obtain the following system: x
y
z

 =

 xi xj xk

yi yj yk

zi zj zk

 a
b
c


i.e.  a

b
c

 =

 xi xj xk

yi yj yk

zi zj zk

−1 x
y
z


As we considerer regular cones, ∆i,j,k = ±1 and the matrix is reversal. We obtain:

a =
1

∆i,j,k

∣∣∣∣∣∣
x xj xk

y yj yk

z zj zk

∣∣∣∣∣∣
b =

1
∆i,j,k

∣∣∣∣∣∣
xi x xk

yi y yk

zi z zk

∣∣∣∣∣∣
c =

1
∆i,j,k

∣∣∣∣∣∣
xi xj x
yi yj y
zi zj z

∣∣∣∣∣∣

a =
1

∆i,j,k

(
(yjzk − ykzj).x + (xkzj − xjzk).y + (xjyk − xkyj).z

)
(9)

RR n◦ 0123456789



28 Fouard & Malandain

b =
1

∆i,j,k

(
(ykzi − yizk).x + (xizk − xkzi).y + (xkyi − xiyk).z

)
(10)

c =
1

∆i,j,k

(
(yizj − yjzi).x + (xjzi − xizj).y + (xiyj − xjyi).z

)
(11)

(12)

If we replace a, b, c by their values ginen by (9), (10), and 11 in 8, we obtain:

nC = 1
∆i,j,k

( (
(yjzk − ykzj).x + (xkzj − xjzk).y + (xjyk − xkyj).z

)
.ωi

+
(
(ykzi − yizk).x + (xizk − xkzi).y + (xkyi − xiyk).z

)
.ωj

+
(
(yizj − yjzi).x + (xjzi − xizj).y + (xiyj − xjyi).z

)
.ωk

)
= 1

∆i,j,k

( (
(yjzk − ykzj).ωi + (ykzi − yizk).ωj + (yizj − yjzi).ωk

)
.x

+
(
(xkzj − xjzk).ωi + (xizk − xkzi).ωj + (xjzi − xizj).ωk

)
.y

+
(
(xjyk − xkyj).ωi + (xkyi − xiyk).ωj + (xiyj − xjyi).ωk

)
.z

)
This can be expressed by:

nC(x, y, z) = α.x + β.y + γ.z (13)

with

• α = (yjzk − ykzj).ωi + (ykzi − yizk).ωj + (yizj − yjzi).ωk

• β = (xkzj − xjzk).ωi + (xizk − xkzi).ωj + (xjzi − xizj).ωk

• γ = (xjyk − xkyj).ωi + (xkyi − xiyk).ωj + (xiyj − xjyi).ωk

The Euclidean norm at this point is:

nE(x, y, z) =
√

d2
xx2 + d2

yy2 + d2
zz

2 (14)

The expressions 13 and 14 are also verified in the continuous cone.
The chamfer map is filled with integers and scaled with the weight of the unit displace-

ment (usually, the horizontal displacement). To obtain the real norm map value, we must
scale the map by this factor (called ε). This leads us to consider the following relative error:

Erelative =
nC

ε − nE

nE

Erelative(x, y, z) =
αx + βy + γz

ε
√

d2
xx2 + d2

yy2 + d2
zz

2
− 1 (15)

Figure 22 shows the cones of a 5× 5× 5 mask generator. Depending on the orientation
of the cone, this error has to be minimized on either the plane x = M , or y = M , or z = M .
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Figure 22: Cones of a 5× 5× 5 mask generator

4.2.3 Projection on the plan x = M,M 6= 0

In this section we consider the points on the intersection of a cone 〈〈−→vi ,−→vj ,−→vk〉〉 and the plan
x = M . The vertices of this triangle are the points Vl = (M,M yl

xl
,M zl

xl
) = (M,My′l,Mz′l)

for l = i, j, k. The coordinates of P (x, y, z) become Ppx(Mx′,My′,Mz′)

• x′ = x
M = 1,

• y′ = y
M and

• z′ = z
M .

On this plan, the error function becomes:

Fx : (y′, z′) −→ 1
ε

α + βy′ + γz′√
d2

x + d2
yy′2 + d2

zz
′2
− 1 (16)

This function is defined and continuous on the triangle (ViVjVk).
Figure 23 shows a 3D representation of this function for the unique cone of the following

chamfer mask generators:

(a) Mg
C = {(−−−−→(1, 0, 0), 3), (

−−−−→
(1, 1, 0), 6), (

−−−−→
(1, 1, 1), 8)} in an anisotropic image: dx = 1, dy = 1.5,

dz = 2
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(a) dx = 1, dy = 1.5, dz = 2, α = 3, β = 3,
γ = 2

(b) dx = 1, dy = 1, dz = 1, α = 1,

β =
√

2− 1, γ =
√

5−
√

2

Figure 23: Fx(y′, z′)

(b) Mg
C = {(−−−−→(1, 0, 0), 1), (

−−−−→
(1, 1, 0),

√
2), (

−−−−→
(1, 1, 1),

√
5)} in an isotropic image.

As Fx is continuous on a closed and bounded interval, it is bounded and reaches its
bounds. Its extrema can be located inside the triangle (case (a)), on the edges of the
triangle (case (b)), or on the summit of the triangle (case (c)).

a The extreme value is inside the triangle

∂Fx

∂y′
(y′, z′) =

βd2
x − (α + γz′)y′d2

y + βz′2d2
z

ε(d2
x + d2

yy′2 + d2
zz
′2)

3
2

(17)

∂Fx

∂z′
(y′, z′) =

γd2
x + γy′2d2

y − (α + βy′)z′d2
z

ε(d2
x + d2

yy′2 + d2
zz
′2)

3
2

(18)

(17) and (18) are both null for (yxMax, zxMax) = (βd2
x

αd2
y
,

γd2
x

αdz2 )

The extreme value of the function becomes :

FxMax = Fx(
βd2

x

αdy2
,

γd2
x

αdz2
) =

1
ε

√
α2

d2
x

+
β2

d2
y

+
γ2

d2
z

− 1 (19)
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b The extreme is on an edge
There are three edges, but we will only present the calculation for [ViVj ]. In this case,
a point P belonging to the edge can be represented by P = aVi + (1 − a)Vj , which
means:

• y′ = ay′i + (1− a)y′j = (y′i − y′j)a + y′j

• z′ = az′i + (1− a)z′j = (z′i − z′j)a + z′j

The error function becomes:

FxEdge(a) =
1
ε

α + β(a(yi − yj) + yj) + γ(a(zi − zj) + zj)√
1 + dy2(a(yi − yj) + yj)2 + dz2(a(zi − zj) + zj)2

− 1 (20)

which is extremal for:

amax =
(β(y′i − y′j) + γ(z′i − z′j))d

2
x − y′j(α(y′i − y′j) + γ(y′iz

′
j − y′jz

′
i))d

2
y − z′j(α(z′i − z′j) + β(z′iy

′
j − z′jy

′
i))d

2
z

(y′i − y′j)(α(y′i − y′j) + γ(y′iz
′
j − y′jz

′
i))d2

y + (z′i − z′j)(α(z′i − z′j) + β(z′iy
′
j − z′jy

′
i))d2

z

If 0 ≤ amax ≤ 1, the extreme value FxEdgeMax of FxEdge is given by FxEdgeMax(amax)
whose form is not simple enough to be displayed here.

c The extremum is reached on one of the triangle’s vertices Vl, where the relative error is
given by:

FxV ertex =
1
ε

ωl√
x2

l d
2
x + y2

l d2
y + z2

l d2
z

− 1

4.2.4 Projection on the plan y = M,M 6= 0

In this section we consider the points on the intersection of a cone 〈〈−→vi ,−→vj ,−→vk〉〉 and the plan
y = M .

The vertices of this triangle are the points Vl = (M xl

yl
,M,M zl

yl
) = (Mx′l,M,Mz′l) for

l = i, j, k. The coordinates of P (x, y, z) become Ppx(Mx′,My′,Mz′)

• x′ = x
M ,

• y′ = y
M = 1 and

• z′ = z
M .

On this plan, the error function becomes:

Fy : (x′, z′) −→ 1
ε

αx′ + β + γz′√
d2

xx′2 + d2
y + d2

zz
′2
− 1 (21)
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a The extreme is inside the triangle

∂Fy

∂x′
(x′, z′) =

−(β + γz′)x′d2
x + αd2

y + αz′2d2
z

ε(d2
xx′2 + d2

y + d2
zz
′2)

3
2

(22)

∂Fy

∂z′
(x′, z′) =

γx′2d2
x + γd2

y − (β + αx′)z′d2
z

ε(d2
xx′2 + d2

y + d2
zz
′2)

3
2

(23)

(22) and (23) are both null for (xyMax, zyMax) =
(

αd2
y

βd2
x
,

γd2
y

βd2
z

)
.

The extreme value of the function becomes :

FyMax =
1
ε

√
α2

d2
x

+
β2

dy2
+

γ2

dz2
− 1 (24)

b The extreme is on an edge
There are three edges, but we will only present the calculation for [ViVj ]. In this case,
a point P belonging to the edge can be represented by P = aVi + (1 − a)Vj , which
means:

• x′ = ax′i + (1− a)x′j = (x′i − x′j)a + x′j

• z′ = az′i + (1− a)z′j = (z′i − z′j)a + z′j

The error function becomes:

FyEdge(a) =
1
ε

α(a(x′i − x′j) + x′j) + β + γ(a(z′i − z′j) + z′j)√
dx2(a(x′i − x′j) + x′j)2 + d2

y + d2
z(a(z′i − z′j) + z′j)2

− 1 (25)

which is extremal for:

amax =
−x′j(β(x′i − x′j) + γ(x′iz

′
j − x′jz

′
i))d

2
x + (x′i − x′j) + γ(z′i − z′j))d

2
y − z′j(β(z′i − z′j) + α(z′ix

′
j − z′jx

′
i))d

2
z

(x′i − x′j)(β(x′i − x′j) + γ(x′iz
′
j − x′jz

′
i))d2

x + (z′i − z′j)(β(z′i − z′j) + α(z′ix
′
j − z′jx

′
i))d2

z

If 0 ≤ amax ≤ 1, the extreme value FxEdgeMax of FxEdge is given by FxEdgeMax(amax)
whose form is not simple enough to be displayed here.

c The extremum is reached on one of the triangle’s vertices Vl, where the relative error is
given by:

FyV ertex =
1
ε

ωl√
x2

l d
2
x + y2

l d2
y + z2

l d2
z

− 1
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4.2.5 Projection on the plan z = M,M 6= 0

In this section we will consider the points on the intersection of a cone 〈〈−→vi ,−→vj ,−→vk〉〉 and the
plan z = M .

The vertices of this triangle are the points Vl = (M xl

zl
,M yl

zl
,M) = (Mx′l,My′l,M) for

l = i, j, k. The coordinates of P (x, y, z) become Ppx(Mx′,My′,Mz′)

• x′ = x
M ,

• y′ = y
M and

• z′ = z
M = 1.

On this plan, the error function becomes:

Fz : (x′, y′) −→ 1
ε

αx′ + βy′ + γ√
d2

xx′2 + d2
yy′2 + d2

z

− 1 (26)

a The extreme is inside the triangle

∂Fz

∂x′
(x′, y′) =

−(γ + βy′)x′d2
x + αy′2d2

y + αd2
z

ε(d2
xx′2 + d2

yy′2 + dz2)
3
2

(27)

∂Fz

∂y′
(x′, y′) =

βx′2d2
x − (γ + αx′)y′d2

y + βd2
z

ε(d2
xx′2 + d2

yy′2 + dz2)
3
2

(28)

(27) and (28) are both null for (xzMax, yzMax) =
(

αd2
z

γd2
x
,

βd2
z

γd2
y

)
The extreme value of the

function becomes :

FzMax =
1
ε

√
α2

d2
x

+
β2

dy2
+

γ2

dz2
− 1 (29)

b The extreme is on an edge There are three edges, but we will only present the calculation
for [ViVj ]. In this case, a point P belonging to the edge can be represented by P =
aVi + (1− a)Vj , which means:

• x′ = ax′i + (1− a)x′j = (x′i − x′j)a + x′j

• y′ = ay′i + (1− a)y′j = (y′i − y′j)a + y′j

The error function becomes:

FyEdge(a) =
1
ε

α(a(x′i − x′j) + x′j) + β(a(y′i − y′j) + y′j)γ√
dx2(a(x′i − x′j) + x′j)2 + dy2(a(y′i − y′j) + y′j)2 + d2

z

− 1 (30)

which is extremal for:

amax =
−x′j(γ(x′i − x′j) + β(x′iy

′
j − x′jy

′
i))d

2
x − y′j(γ(y′i − y′j) + α(y′ix

′
j − y′jx

′
i))d

2
y + (α(x′i − x′j) + β(y′i − y′j))d

2
z

(x′i − x′j)(γ(x′i − x′j) + β(x′iy
′
j − x′jy

′
i))d2

x + (y′i − y′j)(γ(y′i − y′j) + α(y′ix
′
j − y′jx

′
i))d2

y
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If 0 ≤ amax ≤ 1, the extreme value FxEdgeMax of FxEdge is given by FxEdgeMax(amax)
whose form is not simple enough to be displayed here.

c The extremum is reached on one of the triangle’s vertices Vl, where the relative error is
given by:

FzV ertex =
1
ε

ωl√
x2

l d
2
x + y2

l d2
y + z2

l d2
z

− 1

4.3 Optimization of the error rate

Let be FM, the global error function of the mask generator. For each (x, y, z) ∈ 1
8Z3 =

{(x, y, z) ∈ Z3 : 0 ≤ x, 0 ≤ y, 0 ≤ z} FM is the projection of Erelative on the plan
corresponding to the discrete cone where (x, y, z) lies. The extrema of FM are obtained by
taking the extrema of the projection of the error fuction for each cone of the mask generator.
The absolute values of these extrema are called error rate and write :

• τmin = min(Fp)

• τmax = max(Fp)

• τ = max(|τmin|, |τmax|)

The error amplitude is defined as : amp = |τmax − τmin|.
In the last section, we saw that the use of the scale factor ε is essential to compare

a chamfer distance dC

ε with the Euclidean distance dE . We first fixed it to the littlest
coefficient corresponding to the horizontal unit displacement.

In [Thi94], E. Thiel computes an optimized scale factor to reduce the error rate τ to
the half of the error amplitude. Let us write τε the error rate obtained with a scale ε. He
showed that by choosing

εopt = ε

(
|τmin|+ |τmax|

2
+ 1
)

(31)

we obtain

τopt =
|τmin|+ |τmax|

2
(32)

In the following, we will choose the chamfer mask coefficients that minimize τopt.

5 How to compute automatically chamfer map coeffi-
cients ?

The computation of optimal coefficients for a mask of size (2n + 1)3 is done in three steps:
generation of the Farey triangulation, generation of the norm constraints, and iterative
computation of the optimal sets of weights.
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5.1 Building the Farey triangulation

The recursive automated construction of the Farey triangulation of order n is described in
appendix A.2.2. This triangulation T g

C corresponds to isotropic chamfer mask generator
Mg

C . When dealing with anisotropic lattice, one have to add extra vectors to the mask
generator and extra cones to the triangulation.

This is achieved by symmetry considerations. For instance, for a 33 mask, if the voxel
size dz along z is different from the ones along x and y, dx and dy, we have to consider in the
mask generator, in addition to the vectors { ~(1, 0, 0), ~(1, 1, 0), ~(1, 1, 1)}, the two extra vectors
{ ~(0, 0, 1), ~(1, 0, 1)} that corresponds to weights induced by the anisotropy. These extra vec-
tors belongs to the two extra cones, 〈〈 ~(1, 0, 0), ~(1, 0, 1), ~(1, 1, 1)〉〉 and 〈〈 ~(0, 0, 1), ~(1, 0, 1), ~(1, 1, 1)〉〉,
that are to be considered for the error computation and the local convexity constraints.

5.2 Generating convexity criteria

The triangulation T g
C has been built as described above. It allows us to generate all the

local convexity constraints (equation 7) that are to be verified. They have to be generated
for every edge inside the mask generator, but also for the edges that are at the border of the
mask generator. For the latter, the fourth point (see figure 18) is derived from symmetry
considerations.

Please notice that each of the generated LCC depends on 4 weights ωi.

5.3 Finding the optimal coefficients

This is the tough part. We have to identify the m-tuples (ω1 . . . ωm) of weights corresponding
to the chamfer mask generator Mg

C = {~vi, 1 ≤ i ≤ m} to find the optimal ones that yield
optimal error.

These sets of optimal coefficients are searched by a brute-force method. However, we
try to reduce this computationally expensive search by throwing away m-tuples (ω1 . . . ωm)
as soon as part of them do not satisfy the local convexity constraints (as sketched by below
recursive algorithm1).

1: procedure Test( n )
2: if some LCCs can be verified with (ωi, . . . ωn) then
3: test these LCCs and return if one of them is not verified
4: if n equals to m then %All ωi are set.
5: Compute the error τopt

6: if this τopt is smaller than the previous one then
7: (ωi, . . . , ωm) is an optimal set of coefficients
8: return
9: for ωn+1 from ω1||~vi||∞ to ω1||~vi||1 do %Iteratively set a value to ωn+1.

10: Test( n + 1 )
1Java code is available from http://www-sop.inria.fr/epidaure/personnel/Celine.Fouard/.
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11: %Main Program
12: for ω1 from 1 to some user provided value do
13: Test( 1 )

ω1, the coefficient corresponding to the direction of smallest voxel size, varies from 1 to some
maximal value provided by the user, while the other coefficients are searched in the interval
[ω1||~vi||∞, ω1||~vi||1]. Error computation is only performed on coefficients sets that verify all
the local convexity constraints. As a result, this algorithm gives all the optimal m-tuples in
lexicographical order.

6 Results

6.1 wide isotropic masks

6.1.1 3× 3× 3 isotropic mask

The program gives the following properties of the 3× 3× 3 chamfer mask generator:

Mask Points:
0: [(1, 0, 0), 0]
1: [(1, 1, 0), 0]
2: [(1, 1, 1), 0]

Mask Cones:
{[(1, 0, 0), 0], [(1, 1, 0), 0], [(1, 1, 1), 0]}

Cones Symetrics
{[(0, 1, 0), 0], [(1, 0, 1), 0], [(1, 1, -1), 0]}

These properties can be illustrated by figure 24. The local convexity criteria calculated with
the symetrics for each edge of the mask generator are:

Local Convexity Criteria
w1 <= 2w0
w0 + w2 <= 2w1
2w1 <= 2w2

If we write the chamfer mask generator points with their lexicographic order ((1, 0, 0) 7−→ a,
(1, 1, 0) 7−→ b and (1, 1, 1) 7−→ c), we obtain the following properties:

ωb ≤ 2ωa (33)
ωa + ωc ≤ 2ωb (34)

ωb ≤ ωc (35)
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Figure 24: Projection of the geometry of the 3× 3× 3 chamfer mask generator

The following table summurize the first optimal 3× 3× 3 chamfer mask generator coef-
ficients.

(1, 0, 0) (1, 1, 0) (1, 1, 1)
a b c εopt τopt

1 1 1 1.211 0.211
1 2 2 1.207 0.207
2 3 3 2.252 0.126
2 3 4 2.225 0.112
3 4 5 3.244 0.081
4 6 7 4.291 0.073
7 10 12 7.473 0.068
11 16 19 11.740 0.067
12 17 21 12.801 0.067
19 27 33 20.235 0.065
22 31 38 23.429 0.065
26 37 45 27.681 0.065
41 58 71 43.629 0.064
123 174 213 130.886 0.064
198 280 343 210.693 0.064
224 317 388 238.359 0.064
239 338 414 254.313 0.064
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6.1.2 3× 3× 5 isotropic mask

The program gives the following properties of the 3× 3× 5 chamfer mask generator:

Mask Points:
0: [(1, 0, 0), 0]
1: [(1, 1, 0), 0]
2: [(1, 1, 1), 0]
3: [(2, 1, 1), 0]

Mask Cones:
{[(1, 0, 0), 0], [(1, 1, 0), 0], [(2, 1, 1), 0]}
{[(2, 1, 1), 0], [(1, 1, 0), 0], [(1, 1, 1), 0]}

Cones Symetrics
{[(1, 1, 1), 0], [(1, 0, 1), 0], [(2, 1, -1), 0]}
{[(1, 2, 1), 0], [(1, 0, 1), 0], [(1, 0, 0), 0]}

These properties can be illustrated by figure 25. The local convexity criteria calculated with

Figure 25: Projection of the geometry of the 3× 3× 5 chamfer mask generator

the symetrics for each edge of the mask generator are:

Local Convexity Criteria
w3 <= w2 + w0
w3 <= 2w1
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2w0 + 2w1 <= 2w3
w1 + 2w2 <= 2w3

The following table summurize the first optimal 3× 3× 5 chamfer mask generator coef-
ficients.

(1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 1)
a b c e εopt τopt

1 1 1 2 1.211 0.211
1 2 2 3 1.207 0.207
2 2 3 4 2.293 0.146
2 3 3 5 2.252 0.146
2 3 4 6 2.225 0.112
3 4 5 7 3.167 0.056
5 7 9 13 5.264 0.053
7 10 12 17 7.344 0.049
7 10 13 18 7.341 0.049
10 14 17 24 10.486 0.049
10 14 18 25 10.459 0.046
12 17 21 30 12.519 0.043
17 24 30 42 17.721 0.042
24 34 42 59 25.010 0.042
41 58 71 101 42.719 0.042
41 58 72 101 42.715 0.042
46 65 80 113 47.924 0.042
53 75 92 130 55.210 0.042
58 82 101 142 60.415 0.042
70 99 122 172 72.914 0.042
82 116 143 201 85.410 0.042
99 140 172 243 103.117 0.042
111 157 193 272 115.610 0.042
140 198 243 343 145.811 0.042
169 239 293 414 176.012 0.041

6.1.3 3× 5× 5 isotropic mask

The program gives the following properties of the 3× 5× 5 chamfer mask generator:

Mask Points:
0: [(1, 0, 0), 0]
1: [(1, 1, 0), 0]
2: [(1, 1, 1), 0]
3: [(2, 1, 1), 0]
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4: [(2, 1, 0), 0]

Mask Cones:
{[(2, 1, 1), 0], [(1, 1, 0), 0], [(1, 1, 1), 0]}
{[(1, 0, 0), 0], [(2, 1, 0), 0], [(2, 1, 1), 0]}
{[(2, 1, 0), 0], [(1, 1, 0), 0], [(2, 1, 1), 0]}

Cones Symetrics
{[(1, 2, 1), 0], [(1, 0, 1), 0], [(2, 1, 0), 0]}
{[(1, 1, 0), 0], [(2, 0, 1), 0], [(2, 1, -1), 0]}
{[(1, 1, 1), 0], [(1, 0, 0), 0], [(2, 1, -1), 0]}

These properties can be illustrated by figure 26. The local convexity criteria calculated with

Figure 26: Projection of the geometry of the 3× 5× 5 chamfer mask generator

the symetrics for each edge of the mask generator are:

Local Convexity Criteria
w1 + 2w2 <= 2w3
w3 <= 2w1
w3 + w1 <= w4 + w2
w4 <= w1 + w0
2w0 + w3 <= 2w4
2w4 <= 2w3
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%

The following table summurize the first optimal 3× 5× 5 chamfer mask generator coef-
ficients.

(1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 0) (2, 1, 1)
a b c d e εopt τopt

1 1 1 2 2 1.211 0.211
1 2 2 3 3 1.211 0.211
2 2 3 4 4 2.293 0.146
2 3 3 5 5 2.252 0.126
2 3 4 5 6 2.225 0.112
3 4 5 7 7 3.167 0.056
4 6 7 9 10 4.179 0.045
6 8 10 13 14 6.254 0.042
7 10 12 16 17 7.210 0.030
10 14 17 22 24 10.297 0.030
17 24 29 38 41 17.491 0.029
19 27 33 43 47 19.525 0.028
22 31 38 49 54 22.597 0.027
26 47 45 59 64 26.703 0.027
29 41 50 65 71 29.781 0.027
34 48 59 76 83 34.897 0.026
41 58 71 92 101 42.080 0.026
46 65 80 103 113 47.195 0.026
53 75 92 119 130 54.348 0.025
60 85 104 135 147 61.520 0.025
63 89 109 141 154 64.591 0.025
82 116 142 184 201 84.058 0.025
116 164 201 260 284 118.895 0.025
145 205 251 324 355 148.614 0.025
198 280 343 443 485 202.900 0.025

6.1.4 5× 5× 5 isotropic mask

The program gives the following properties of the 5× 5× 5 chamfer mask generator:

Mask Points:
0: [(1, 0, 0), 0]
1: [(1, 1, 0), 0]
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2: [(1, 1, 1), 0]
3: [(2, 1, 1), 0]
4: [(2, 1, 0), 0]
5: [(2, 2, 1), 0]

Mask Cones:
{[(1, 0, 0), 0], [(2, 1, 0), 0], [(2, 1, 1), 0]}
{[(2, 1, 0), 0], [(1, 1, 0), 0], [(2, 1, 1), 0]}
{[(2, 1, 1), 0], [(1, 1, 0), 0], [(2, 2, 1), 0]}
{[(2, 1, 1), 0], [(2, 2, 1), 0], [(1, 1, 1), 0]}

Cones Symetrics
{[(1, 1, 0), 0], [(2, 0, 1), 0], [(2, 1, -1), 0]}
{[(2, 2, 1), 0], [(1, 0, 0), 0], [(2, 1, -1), 0]}
{[(1, 2, 1), 0], [(1, 1, 1), 0], [(2, 1, 0), 0]}
{[(1, 2, 1), 0], [(2, 1, 2), 0], [(1, 1, 0), 0]}

These properties can be illustrated by figure 27. The local convexity criteria calculated with

Figure 27: Projection of the geometry of the 5× 5× 5 chamfer mask generator

the symetrics for each edge of the mask generator are:

Local Convexity Criteria
w4 <= w1 + w0
2w0 + w3 <= 2w4
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2w4 <= 2w3
2w1 + w3 <= w5 + w4
2w4 <= 2w3
2w5 <= 2w3 + w1
w5 <= w2 + w1
w5 + w2 <= 2w3
w3 + 2w2 <= 2w5

The following table summurize the first optimal 5× 5× 5 chamfer mask generator coef-
ficients.

(1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 0) (2, 1, 1) (2, 2, 1)
a b c d e f εopt τopt

1 1 1 2 2 2 1.211 0.211
1 2 2 3 3 4 1.207 0.207
2 2 3 4 4 5 1.207 0.207
2 3 3 5 5 6 2.252 0.126
2 3 4 5 6 7 2.225 0.112
3 4 5 7 7 9 3.167 0.056
4 6 7 9 10 13 4.179 0.045
5 7 9 11 12 15 5.149 0.030
9 13 16 20 22 28 9.245 0.027
11 16 20 25 27 34 11.288 0.026
20 29 35 45 49 62 20.500 0.025
29 41 51 65 71 88 29.722 0.025
49 70 85 110 120 150 50.220 0.025
69 98 120 155 169 210 70.718 0.025
71 101 123 159 174 217 72.766 0.025
80 114 139 179 196 245 81.982 0.025
89 126 155 199 218 271 91.201 0.025

Table 2:

6.1.5 7× 7× 7 isotropic mask

The program gives the following properties of the 7× 7× 7 chamfer mask generator:

Mask Points:
0: [(1, 0, 0), 0]
1: [(1, 1, 0), 0]
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2: [(1, 1, 1), 0]
3: [(2, 1, 1), 0]
4: [(2, 1, 0), 0]
5: [(2, 2, 1), 0]
6: [(3, 1, 1), 0]
7: [(3, 2, 1), 0]
8: [(3, 3, 1), 0]
9: [(3, 3, 2), 0]
10: [(3, 1, 0), 0]
11: [(3, 2, 0), 0]
12: [(3, 2, 2), 0]

Mask Cones:
{[(3, 1, 1), 0], [(2, 1, 0), 0], [(2, 1, 1), 0]}
{[(2, 1, 0), 0], [(3, 2, 1), 0], [(2, 1, 1), 0]}
{[(2, 1, 1), 0], [(3, 3, 1), 0], [(2, 2, 1), 0]}
{[(2, 1, 1), 0], [(2, 2, 1), 0], [(3, 3, 2), 0]}
{[(1, 0, 0), 0], [(3, 1, 0), 0], [(3, 1, 1), 0]}
{[(3, 1, 0), 0], [(2, 1, 0), 0], [(3, 1, 1), 0]}
{[(2, 1, 0), 0], [(3, 2, 0), 0], [(3, 2, 1), 0]}
{[(3, 2, 0), 0], [(1, 1, 0), 0], [(3, 2, 1), 0]}
{[(2, 1, 1), 0], [(3, 2, 1), 0], [(3, 3, 1), 0]}
{[(3, 2, 1), 0], [(1, 1, 0), 0], [(3, 3, 1), 0]}
{[(2, 1, 1), 0], [(3, 3, 2), 0], [(3, 2, 2), 0]}
{[(3, 2, 2), 0], [(3, 3, 2), 0], [(1, 1, 1), 0]}

Cones Symetrics
{[(3, 2, 1), 0], [(2, 0, 1), 0], [(3, 1, 0), 0]}
{[(3, 3, 1), 0], [(3, 1, 1), 0], [(3, 2, 0), 0]}
{[(1, 2, 1), 0], [(3, 3, 2), 0], [(3, 2, 1), 0]}
{[(1, 2, 1), 0], [(3, 2, 2), 0], [(3, 3, 1), 0]}
{[(2, 1, 0), 0], [(3, 0, 1), 0], [(3, 1, -1), 0]}
{[(2, 1, 1), 0], [(1, 0, 0), 0], [(3, 1, -1), 0]}
{[(1, 1, 0), 0], [(2, 1, 1), 0], [(3, 2, -1), 0]}
{[(3, 3, 1), 0], [(2, 1, 0), 0], [(3, 2, -1), 0]}
{[(1, 1, 0), 0], [(2, 2, 1), 0], [(2, 1, 0), 0]}
{[(2, 3, 1), 0], [(2, 1, 1), 0], [(3, 2, 0), 0]}
{[(1, 1, 1), 0], [(3, 2, 3), 0], [(2, 2, 1), 0]}
{[(2, 3, 2), 0], [(3, 2, 3), 0], [(2, 1, 1), 0]}

These properties can be illustrated by figure 28. The local convexity criteria calculated with
the symetrics for each edge of the mask generator are:
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Figure 28: Projection of the geometry of the 7× 7× 7 chamfer mask generator

Local Convexity Criteria
w4 + 2w3 <= w7 + w6
2w6 <= 2w4 + w3
w6 + w4 <= w10 + w3
3w7 <= w8 + w4 + 2w3
w4 + w7 <= w11 + w3
3w5 <= 2w3 + w8
3w5 <= w9 + w8
w3 + w8 <= w7 + w5
w9 <= 2w3
w3 + w9 <= w12 + w5
w10 <= w4 + w0
3w0 + w6 <= 2w10
2w10 <= 2w6
2w10 <= 2w6
w11 <= w1 + w4
2w11 <= 2w7
3w1 + w7 <= w8 + w11
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2w11 <= 2w7
w7 <= w1 + w3
2w8 <= 2w7 + w1
w12 <= w2 + w3
4w12 <= 3w3 + 2w9
w9 + 2w2 <= 2w12
w12 + 3w2 <= 2w9

The following 3 summurize the first optimal 7×7×7 chamfer mask generator coefficients.

a b c d e f g h i j k l m εopt τopt

1 1 1 2 2 2 3 3 3 3 3 3 3 1.211 0.211
1 2 2 3 3 4 4 4 5 5 5 6 6 1.207 0.207
2 2 3 4 4 5 6 6 6 6 7 7 8 2.293 0.146
2 3 3 5 5 6 7 7 8 8 8 9 9 2.252 0.126
2 3 4 5 6 7 7 8 8 9 10 10 11 2.225 0.112
3 4 5 6 7 9 9 9 10 11 12 13 14 3.158 0.053
4 6 7 9 10 13 13 14 15 16 17 19 20 4.179 0.045
5 7 9 11 12 15 16 16 18 19 21 22 24 5.186 0.037
5 7 9 11 12 15 16 17 18 19 21 22 24 5.149 0.030
7 10 12 16 17 21 22 23 26 27 29 31 33 7.176 0.025
8 11 14 18 19 24 25 26 29 30 33 34 38 8.184 0.023
10 14 17 22 24 30 32 33 36 37 41 43 47 10.224 0.022
11 16 19 25 27 34 35 37 41 42 46 49 53 11.238 0.022
12 17 21 27 29 36 38 40 44 45 49 52 56 12.245 0.020
14 20 24 31 34 34 44 46 51 53 58 62 67 14.248 0.018
17 24 30 38 42 52 54 57 62 65 71 75 81 17.275 0.016

Table 3:

6.2 anisotropic masks

Table 4 presents optimal sets of weights of a 3 × 3 × 3 chamfer mask for an anisotropic
grid with dx = 1, dy = 1.5, dz = 3.0. The points belonging to this mask are: aX(1, 0, 0),
aY (0, 1, 0), aZ(0, 0, 1), bY Z(0, 1, 1), bXZ(1, 0, 1), bXY (1, 1, 0), and c(1, 1, 1).

Mask Points:
0: [(1, 0, 0), 0]
1: [(0, 1, 0), 0]
2: [(0, 0, 1), 0]
3: [(0, 1, 1), 0]
4: [(1, 0, 1), 0]
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5: [(1, 1, 0), 0]
6: [(1, 1, 1), 0]

Mask Cones:
{[(1, 0, 0), 0], [(1, 1, 0), 0], [(1, 1, 1), 0]}
{[(1, 0, 0), 0], [(1, 1, 1), 0], [(1, 0, 1), 0]}
{[(0, 0, 1), 0], [(1, 0, 1), 0], [(1, 1, 1), 0]}
{[(0, 0, 1), 0], [(1, 1, 1), 0], [(0, 1, 1), 0]}
{[(0, 1, 1), 0], [(1, 1, 1), 0], [(0, 1, 0), 0]}
{[(0, 1, 0), 0], [(1, 1, 1), 0], [(1, 1, 0), 0]}

Cones Symetrics:
{[(0, 1, 0), 0], [(1, 0, 1), 0], [(1, 1, -1), 0]}
{[(0, 0, 1), 0], [(1, -1, 1), 0], [(1, 1, 0), 0]}
{[(1, 0, 0), 0], [(0, 1, 1), 0], [(1, -1, 1), 0]}
{[(0, 1, 0), 0], [(-1, 1, 1), 0], [(1, 0, 1), 0]}
{[(1, 1, 0), 0], [(-1, 1, 1), 0], [(0, 0, 1), 0]}
{[(1, 0, 0), 0], [(1, 1, -1), 0], [(0, 1, 1), 0]}

Local Convexity Criteria:
w5 <= w1 + w0
w0 + w6 <= w4 + w5
2w5 <= 2w6
w4 <= w2 + w0
2w4 <= 2w6
w2 + w6 <= w3 + w4
w3 <= w1 + w2
2w3 <= 2w6
w6 + w1 <= w5 + w3

7 Conclusion

We have proposed an automated approach to compute optimal chamfer norm coefficients
for mask of any size and for lattice of any anisotropy. It is based on the Farey triangulation
that permits us to recursively build large masks while ensuring a regular triangulation of
the chamfer mask generators. It allows us to automatically compute the error of any mask,
thanks to analytical expressions of errors we can derive on regular cones. In addition, the
coefficients we calculate verify norm constraints, thus yields scale invariant chamfer maps.
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aX aY aZ bY Z bXZ bXY c εopt τopt(%)
1 2 3 3 3 2 3 1.257 25.66
1 2 3 4 4 2 4 1.238 23.79
2 3 6 6 6 3 6 2.370 18.49
2 3 6 7 6 4 7 2.353 17.65
2 3 6 7 7 4 7 2.302 15.09
4 6 12 13 12 7 13 4.592 14.81
4 6 12 13 13 7 14 4.584 14.60
4 6 12 14 13 7 14 4.581 14.52
5 8 15 17 16 9 17 5.703 14.06
6 9 18 20 19 11 21 6.834 13.90
6 9 18 21 19 11 21 6.815 13.59
10 15 30 34 32 18 35 11.343 13.43

Table 4: 3× 3× 3 chamfer mask coefficients for anisotropic grid.

A Farey Series/Sets

A.1 Farey Series

A.1.1 Farey Series Points

definition A.1 (Farey Series)
A Farey series Fn of level n is an increasing sequence of irreducible fractions between 0 and
1 and whose denominator does not exceed n. i.e.:

y

x
∈ Fn iff

{
0 ≤ y ≤ x ≤ n and
pgcd(y, x) = 1

0 and 1 are included in Fn as 0
1 and 1

1 .
For example the Farey series at the level 5 writes:

F5 =
{

0
1
,

1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

1
1

}
The Farey series elements verify the following properties (see [HW78] for demonstration):

• If y
x and y′

x′ are two successive terms of Fn, then xy′ − yx′ = 1.

• If y
x , y′′

x′′ and y′

x′ are tree successive terms of Fn, then: y′′

x′′ = y+y′

x+x′ .

• If y
x and y′

x′ are two successive terms of Fn, then:

– x + x′ > n
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– The median y+y′

x+x′ of y
x and y′

x′ is in the interval [ y
x , y′

x′ ].

We can thus build Fn+1 from Fn by inserting the new term y+y′

x+x′ in each couple ( y
x , y′

x′ ) if
x + x′ ≤ n + 1. For example, starting form F1 = { 0

1 , 1
1}, we can build F2 = { 0

1 , 1
2 , 1

1} by
adding the term 0+1

1+1 = 1
2 between 0

1 and 1
1 . And so on... Here are the first Farey series:

F1 = { 0
1 , 1

1}
F2 = { 0

1 , 1
2 , 1

1}
F3 = { 0

1 , 1
3 , 1

2 , 2
3 , 1

1}
F4 = { 0

1 , 1
4 , 1

3 , 1
2 , 2

3 , 3
4 , 1

1}
F5 = { 0

1 , 1
5 , 1

4 , 1
3 , 2

5 , 1
2 , 3

5 , 2
3 , 3

4 , 4
5 , 1

1}
F6 = { 0

1 , 1
6 , 1

5 , 1
4 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 3
4 , 4

5 , 5
6 , 1

1}
We can see these fractions y

x as the coordinates of a point (x, y) of the fundamental network
of Z2. Figure 29 shows the representation of the 2D points of F6.

Figure 29: first 2D visible points

definition A.2 (Visible point)
A point P (x, y) ∈ Z2 is said to be visible from the origin, if there is no point on the fun-
damental network of Z2 located on (OP ) between O and P . A necessary and sufficient
condition for P to be visible is gcd(x, y) = 1. (see [HW78] for a demonstration).

Let us write a, b, c, ... the visible points in the first eighth of the plan, ordered by their
distance to the origin. They are represented in figure 29. Now if we order the first visible
points by their angle to the horizontal direction, we obtain:

a(1, 0), k(6, 1), h(5, 1), f(4, 1), d(3, 1), i(5, 2), c(2, 1), j(5, 3), e(3, 2), g(4, 3), l(5, 4), m(6, 5), b(1, 1)
(36)
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which exactly correspond with:

F6 =
{

0
1
,

1
6
,

1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

5
6
,

1
1

}
(37)

Theoreme A.3
Let be Vn the set of visible points Mi(xi, yi) ordered by their angle in relation to the hori-
zontal direction, and such that xi ≤ n. Then, the rational numbers yi

xi
are exactly the Farey

series of level n.
(see [Thi94] for the demonstration).
We now have a mean to build the visible points which will be used in a chamfer mask, by
building the corresponding Farey series.

A.1.2 Farey Series Triangulation

The triangulation formed with the Farey points in the increasing order (see (36) and (37)
for examples) is regular. Let yi

xi
and yj

xj
be two successive rational numbers of a Farey series,

and −→vi and −→vj the corresponding 2D vectors. Then, the discrete cone 〈〈−→vi ,−→vj 〉〉 is regular.
Indeed,

∆i,j =
xi xj

yi yj
= xiyj − yixj = 1

(see the properties of Farey series).

A.2 Farey Sets

Farey series can be extended to 3D: they are called Farey sets.

A.2.1 Farey Sets Points

definition A.4 (Farey Set)
A Farey set F̂n of level n is a set of irreducible points ( y

x , z
x ) in [0, 1]2 whose denominator

does net exceed n. i.e.:

(y

x
,

z

x

)
∈ F̂n iff


x ≤ n and
0 ≤ y ≤ x and
0 ≤ z ≤ x and
pgcd(x, y, z) = 1

definition A.5 (+̂)
Let ( y

x , z
x ) and ( y′

x′ ,
z′

x′ ) be two points of F̂n. +̂ is defined by:(y

x
,

z

x

)
+̂
(

y′

x′
,

z′

x′

)
=
(

y + y′

x + x′
,
z + z′

x + x′

)
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The Farey set elements verify the following properties:
Let Q̂, R̂, Ŝ be 3 points of the Farey set F̂n. If (Q̂, R̂, Ŝ) is a regular triangle of Fn, and
P̂ ∈ Fn+1 such that P̂ ⊂ (Q̂, R̂, Ŝ), then

P̂ = Q̂+̂R̂ or

P̂ = R̂+̂Ŝ or

P̂ = Ŝ+̂Q̂

We can thus build F̂n+1 from F̂n in the same way than for the Farey series. Here are some
examples of Farey sets:
F̂1 = {( 0

1 , 0
1 ), ( 0

1 , 1
1 ), ( 1

1 , 1
1 )}.

F̂2 = {( 0
1 , 0

1 ), ( 0
1 , 1

1 ), ( 1
1 , 1

1 ), ( 0
2 , 1

2 ), ( 1
2 , 1

2 ), ( 1
2 , 2

2 )}
F̂3 = {( 0

1 , 0
1 ), ( 0

1 , 1
1 ), ( 1

1 , 1
1 ), ( 0

2 , 1
2 ), ( 1

2 , 1
2 ), ( 1

2 , 2
2 ), ( 0

3 , 1
3 ), ( 1

3 , 1
3 ), ( 1

3 , 2
3 ), ( 0

3 , 2
3 ), ( 1

3 , 3
3 ), ( 2

3 , 2
3 ), ( 2

3 , 3
3 )}

Figure 30 shows a spatial representation of the Farey set F̂3. By definition of the Farey

Figure 30: Spatial representation of F̂3

sets, Farey sets points are 3D visible points (pgcd(x, y, z) = 1).

A.2.2 Farey Sets Triangulation

Here we expose an automatic method to build regular triangulation from Farey sets points.

First step
We start from the cone 〈〈−→a ,

−→
b ,−→c 〉〉 with −→a (1, 0, 0), −→b (1, 1, 0), and −→c (1, 1, 1), build with
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the points of F̂1 (see figure 31 (a)). This cone is regular:

∆−→a ,
−→
b ,−→c =

1 1 1
0 1 1
0 0 1

= 1.

From n to n + 1
Then, for each direct triangle (ÂB̂Ĉ) of the regular triangulation of F̂n, we choose the an
edge, for example [AC]. We then calculate

B̂′ = Â+̂Ĉ :

 x
B̂′ = xÂ + xĈ

y
B̂′ = yÂ + yĈ

z
B̂′ = zÂ + zĈ

If x
B̂′ > n + 1, we mark the triangle as already done, and we choose another triangle of the

triangulation. Else, we obtain 2 new direct triangles (ÂB̂B̂′) and (B̂′B̂Ĉ). These triangles
are regular:

∆
ÂB̂B̂′ =

xÂ xB̂ x
B̂′

yÂ yB̂ y
B̂′

zÂ zB̂ z
B̂′

=
xÂ xB̂ xÂ + xĈ
yÂ yB̂ yÂ + yĈ
zÂ zB̂ zÂ + zĈ

= xAyB(zA + zC) + xB(yA + yC)zA + (xA + xC)yAzB

−(xA + xC)yBzA − xByA(zA + zC)− xA(yA + yC)zB

= xAyBzC + xByCzA + xCyAzB − xCyBzA − xByAzC − xAyCzB

= ∆ÂB̂Ĉ
= 1

In the same way, we obtain ∆
B̂′B̂Ĉ

= ∆ÂB̂Ĉ = 1. We repeat the operation with the new
triangles until we do not find any point whose x-coordinate is lower or equal to n + 1. We
obtain the points and a regular triangulation of F̂n+1.

Figure 31 shows the projection on the plan x = 1 of the Farey triangulation from F̂1 to
F̂4. For each step we compute the median of the largest edge of the triangle.

If we compute the points and this triangulation of F̂n, we obtain the points and the
triangulation of a mask generator for a (2n + 1)× (2n + 1)× (2n + 1) mask.
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