SKELETONIZATION BY BLOCKS FOR LARGE 3D DATASETS:
APPLICATION TO BRAIN MICROCIRCULATION
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ABSTRACT

Skeletons are compact representations that allow mathemat-
ical analysis of objects. A skeleton must be homotopic, thin
and medial in relation to the object it represents. Numerous
approaches already exist which focus on computational ef-
ficiency. However, when dealing with data too large to be
loaded into the main memory of a personal computer, such
approaches can no longer be used. We present in this article
a skeletonization algorithm that processes the data locally
(in sub-images) while preserving global properties (medial
localization). Our privileged application is the study of the
cerebral micro-vascularisation, and we show some results
obtained on a mosaic of 3-D images acquired by confocal
microscopy.

1. INTRODUCTION

Skeletonization gives a compact representation of shapes,
even in the case of complex topology. In dimension 2, skele-
tons are connected center lines (figure 1 (a)). In dimension
3, skeletons can be center lines as in dimension 2 (figure 1
(b)) or center surfaces. They are commonly used in image

(a) 2D centerlines

(b) 3D centerlines

Fig. 1. Samples of center lines

analysis and pattern recognition, as they can synthetically
describe shapes and mathematical properties of objects, for
example length or surface area. Many algorithms have been
proposed to compute skeletons [1], but all of them implicitly
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suppose that the image can be processed at once in the com-
puter memory. However, as image resolution keeps increas-
ing, image size keeps growing, which leads to a huge in-
crease of the amount of data to study. For example, vascular
network analysis in medical imaging or oil network analy-
sis in petrol imaging can lead to images of several gigabytes
(see section 2). These kind of images cannot be loaded at
once in a standard computer memory. We should therefore
propose adapted methods to process such images. For many
image processing tools, processing in sub-images does not
involve much difficulty (for example algebraic operations,
mathematical morphologic operators, filtering, etc). This
is not the case for skeletonization, because we must ensure
that the global properties of a skeleton (as being located at
the center of the global object for example) are preserved
by local operations. In the following section, we present
our data, and the pre-processing we apply on them. Then
we present the general skeleton computation algorithm fol-
lowed by its adaptation for a block by block implementa-
tion. At last, we present the results on our images.

2. MICRO-VASCULAR DATA

Our application aims at analyzing the brain micro-vascular
network morphology to help anatomists to have a better
knowledge of micro-vascular anatomy (for example, mea-
sures on the network fractal dimension can give informa-
tion on tissue [2]) and physiologists to better understand
the mechanism of several image modalities depending on
vascularity. Indeed, fMRI, may be biased by micro-vascu-
larisation structures [3]. To better understand what exactly
happens, a quantification of micro-vascular features, as for
example vessel density, is needed.

To perform such an analysis, we study wide cortex areas
with a confocal microscope. We then extract the vessel cen-
ter lines and modelize vessels as a set of cylinders centered
at the center lines points and with radii corresponding to the
distance map value at these points.

Our data come from Duvernoy’s collection [4]. A human
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brain has been injected with Indian ink and then cut in thin
sections to be observed with a traditional microscope. These
sections can also be observed with a confocal microscope.
The mean size of a confocal microscope image is about
600 x 600 x 300 pm, which is much smaller than the orig-
inal sections. To study wider areas, we build an image mo-
saic: the section is located on a table which can be trans-
lated with a micro-metric screw. Once an image is taken,
we translate the section and take another image, and so on.
Figure 2 shows such a mosaic. This method allows to ob-

Fig. 2. image mosaic (18 images of 25 Mb each)

tain a mosaic with about a hundred images, representing
several mm? of the brain. Each image is composed with
about 512 x 512 x 100 voxels (25M D).

The acquisition protocol provides an overlap of about 50
voxels between the mosaic images. In addition the micro-
metric screw may lead to imprecise relative image positions.
We re-estimate the image positions by optimizing a similar-
ity measure on the overlapping area. We then perform fil-
tering and morphological operations on the mosaic before
binarizing it by a simple user-defined threshold. At last,
we compute a block by block chamfer map with anisotropic
chamfer mask coefficients [5].

3. SKELETONIZATION

3.1. Distance Ordered Homotopic Thinning

A skeleton is a subset of the foreground object that verifies
the following properties:

homotopy: the skeleton is topologically equivalent to the
original image. It has the same number of connected
components, holes and cavities as the original image.

thinness: the skeleton is one point wide except at junc-
tion points, where the connectivity can require several
points.

medialness: the skeleton is centrally located within the fore-
ground object.

Skeletons can be built in the continuous space using Voronoi
diagrams. Discrete points are chosen on the object contour.
The skeleton is the subgraph of the Voronoi diagram of these

points, which is entirely included within the object. The ob-
tained skeleton is connected, topologically equivalent to the
object, centered and thin. But this method rises difficul-
ties when applied on the discrete space. Moreover the algo-
rithm complexity and the computational time are crippling
for huge images. On the other hand, we can be interested in
discrete methods, generally fast and easy to use. The skele-
tonization process can be based on:

thinning: the skeleton is computed by iteratively peeling
off the boundary of the object, layer-by-layer. The
deletable points (simple points' that are also border
points and non-end points?) are removed either se-
quentially [7] or in parallel [8, 9, 10, 11, 12], or with
morphological operations [13]. These methods lead
to a skeleton homotopic to the object, by construc-
tion, thin and geometrically representative (if the end-
points have been correctly characterized), but not nec-
essarily centered.

distance maps: the skeleton is defined as the locus of the
local maxima of the distance map [14, 15, 16]. The
principle of these methods is to calculate the distance
map of the object, to find local maxima and to re-
connect these maxima. The resulting skeleton is cen-
tered by construction, thin, depending on the local
maxima threshold, but not necessarily homotopic, de-
pending on the path reconstruction.

Hybrid methods have been recently introduced to take ad-
vantage of both of these approaches [17, 18]. These meth-
ods, called Distance Ordered Homotopic Thinning (DOHT),
use a homotopic thinning, this means an iterative deletion of
simple points, leading to a homotopic skeleton, but in the in-
creasing distance map order leading to a centered skeleton.
In order to better preserve rotation invariance, we add to this
method a directional strategy inherited from the parallel al-
gorithms. For each distance, we first consider border points,
located on the east of the object, then the border points lo-
cated on the bottom, then those located on the west, then on
the south, and at last those located on the top of the object.

3.2. Block by block skeletonization

Here, we adapt the previous skeletonization algorithm to
huge images, proceeding block by block. This adaptation
is guided by the skeleton properties : homotopy, medialness
and thinness.

l'a point is said simple if its deletion preserves the object topology (see
[6] for simple points characterization).

2If all simple points are removed iteratively the result object is topo-
logically equivalent to the original one, but far too simple: a connected
component without hole nor cavity will be shrinked to a single point. Con-
ditions of end point are defined for points located on the border of a line or
surface to keep it a line or a surface.
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3.2.1. Homotopy

Homotopy is a local property which can be reached by look-
ing at the neighborhood of points to delete. Problems of ho-
motopy may appear at the borders of blocks. Indeed, neigh-
borhoods of points located at block borders are unknown.
If we consider these neighborhoods as background points
as well as foreground points, disconnection will appear at
block junctions (see figure 3 (a)). To solve this problem, we

' original object '
obtained skeleton

original object

disconnection

limit between 2 blocks

limit between 2 blocks

(a) (b)

Fig. 3. disconnections between 2 blocks.

“freeze” points located at the border of a block, i.e. we con-
sider as deletable only points whose whole neighborhood is
included within the block. This condition guarantees a ho-
motopic skeleton since only simple points will be deleted.
We can then notice additional branches appearing. These
elements correspond to low value of the distance map and
will be deleted if we process the algorithm once again on
the block border.

3.2.2. Medialness

As opposed to local property as homotopy, medialness is a
regional property which is more difficult to ensure. Indeed,
if we delete every points except the border ones in a block,
the skeleton may be relocated. As shown in figure 4 (a),
some points expected to be in the skeleton can be deleted.
The connected component kept from the object becomes the
“freezed” points of the border. The skeleton is “stucked”

distance to
the block

expected __
skeleton border

obtained __\ // (lislun& to
skeleton // %5 the object
>, border
P
limit between ......... 1 ]
2 blocks - ' f
(2) (b) (©)

Fig. 4. skeleton relocation

to the border of the first thinned block and not located at
the object center. To overcome this problem, we consider
as deletable only points whose distance to the block border
is larger than its distance to the object border (see figure 4
(b)). This means that a point can be deleted only if its as-
sociated maximal ball is entirely included within the block.
We can notice that this condition also allows to “freeze” the

points located at the block border as wanted in the previous
section. Figure 4 (c) shows the object component which is
kept after this skeletonization phase. The expected skele-
ton is located within this component, but is not really cen-
tered. Anyway, if we apply another skeletonization phase
on this area, the simple points deletion will be ordered by
the distance map of the original object. The correct skeleton
will be located on this distance map maxima, and the skele-
tonization algorithm will delete every point located around
these maxima before reaching the expected skeleton points.
This will lead to a medial skeleton.

3.2.3. Thinness

The two previous conditions lead to a homotopic and medial
skeleton. But it may remain thick. Indeed, object areas lo-
cated at the borders of blocks have not entirely been thinned.
To obtain a thin skeleton, we re-apply the skeletonization al-
gorithm with the same conditions, but on the area remained
thick, that is to say the block borders areas. This is done by
shifting image blocks. Figure 5 shows a 2D example of the

=

B

(a) (b) ()

Fig. 5. skeleton thinness

different blocs:

first pass: we first divide the original image into several
adjacent blocks (figure 5 (a)).

pass on x boundary: border block areas have not been en-
tirely thinned. We cut up the image into stripes over-
lapping the previous boundaries (figure 5 (b)). The
stripes are twice as wide as the largest radius found in
the distance map to ensure that every point remaining
in the stripes will be thinned.

pass ony and z boundary: we process the same way on y
boundaries (figure 5 (c)), and then on z boundaries.

The obtained skeleton is homotopic because the neighbor-
hood of any deleted points was entirely known, medial be-
cause the thinning is performed using the distance map or-
der and we take care of not relocating the skeleton, and thin
because we process several passes on the block boundaries
in a way that every part of the object is located at least once
at the center of a block.
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4. RESULTS

Figure 6 shows the center lines obtained when we apply the
skeletonization algorithm presented here on the image mo-
saic of figure 2. This result allows to see vessel network

Fig. 6. vessel center lines

connections. Moreover, to extract morphometric features
of the vessel network, we add diameters to the center lines.
To do so, we model a vessel as a set of cylinders centered
in the center lines points and which radii correspond to the
distance map value at these points (see figure 7).

Fig. 7. center lines added with vessel diameters

5. CONCLUSION

‘We have presented a pattern recognition tool adapted to huge
images through a particular application (study of the brain
micro-vascularisation network). Indeed as huge images can-
not be loaded at once in a standard computer memory, they
need adapted algorithms. Our block by block skeletoniza-
tion method preserves the global properties as well as the
local properties of a skeleton by avoiding border effects. In-
deed in a first pass, we process 3D blocks without over-
lapping, then, we process sub-images covering boundaries.
The size of these sub-images depends on the size of the ob-
ject to thin. Doing so, inner block areas are processed only
once. The algorithm overhead due to the block by block
process appears only on boundaries. We have also shown
that for our application, our tools allow to extract quantita-
tive information precious for neuro-anatomists and neuro-
physiologists to describe the brain micro-vascular network.
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