Cutting simulation of manifold volumetric meshes

C. Forest, H. Delingette, and N. Ayache

Épidaure Research Project, INRIA Sophia Antipolis
2004 route des Lucioles, 06902 Sophia Antipolis, France
*Corresponding author: Clement.Forest@inria.fr

Abstract: One of the most difficult problem in surgical simulation consists in simulating the removal of soft tissue. This paper proposes an efficient method for locally refining and removing tetrahedra in a real-time surgical simulator. One of the key feature of this algorithm is that the tetrahedral mesh stays a 3-manifold volume during the cutting simulation. Furthermore, our approach minimizes the number of generated tetrahedra while trying to optimize their shape quality. The removal of tetrahedra is performed with a strategy that combines local refinement with the removal of neighboring tetrahedra when a topological singularity is found.

1 Introduction

The simulation of cutting soft tissue is one a the major components of a surgical simulator. In fact, in a surgical procedure, the word cutting may be used to describe two different actions: incising which is performed with a scalpel, and removing soft tissue materials which is performed with an ultrasound cautery. Despite their different nature, the simulation of these two actions come up against a common problem, which is the topology modification of a volumetric mesh.

Incising algorithms have been the most commonly studied approaches in the literature. Most of them are based on subdivision algorithms whose principle is to divide each tetrahedron across a virtual surface defined by the path of a tool cutting edge[BG00, MK00]. These algorithms create a smooth and accurate surface of cut, but they suffer from two limitations. First, they tend to generate a large number of small tetrahedra of low shape quality. The number of tetrahedra may be reduced by moving mesh vertices along the surface of cut [NvdSO1], but this tends to worsen the quality of tetrahedra. Second, the simulation of incising supposes that the cut surface generated by the motion of a surgical tool is very smooth or even, as found in papers, locally planar. However, in most real-time surgical simulation systems, there is no constraints on the motion of surgical tools and most of the time the cut surface is not even close to a smooth surface. Furthermore, surgical cutting gestures do not usually consist of a single large gesture, but are made of repeated small incisions. Therefore, these algorithms are not of practical use for cutting volumetric meshes, at least when simulating an hepatectomy.

In this paper, we focus on the simulation of the removal of soft tissue material as performed with an ultrasound cautery. The targeted application is the simulation of hepatectomy, i.e. the resection of a liver functional segment. We suppose that all volumetric anatomical structures (for instance a liver) are represented with tetrahedral meshes that meet some criterion (see section 2.1). To remove soft tissue, we need to perform two distinct tasks : remove tetrahedral elements and control the element size such that holes have the same size as the cautery device. The former task may seem trivial since it could reduces itself to a self-evident “remove this tetrahedron from the list of
tetrahedra". However, due to additional constraints on the mesh topology (it has to be a manifold), it actually turns out to be a difficult problem to solve. The latter task consists in locally refining the mesh around the cut path. Indeed, in order to speed-up the deformation of soft tissue, it is preferable to use meshes with as few tetrahedra as possible. To obtain a realistic cut, it is therefore necessary to refine the mesh dynamically, as opposed to previous approaches [CDA00, PDA01] where the mesh was refined once-for-all at parts where the cutting could occur.

In our approach, the tasks of removing and refining tetrahedra are both devised in order to optimize two constraints. First, they must minimize time of computation and therefore cannot use sophisticated remeshing algorithm because each cutting operation should be performed in few a tens of milliseconds (typically 50-100 milliseconds). Second, they should produce tetrahedra with a high shape quality.

2 Tetrahedral Meshes for surgery simulation

2.1 Topological constraints

For the simulation of volumetric soft tissue, we use tetrahedral meshes as a geometric model. These meshes are built from triangulated surfaces with a dedicated mesh generation software. For our application, we chose to restrict the set of possible tetrahedral meshes to be both conformal and manifold. Conformality is required since we are using finite element modeling for the spatial discretization of the elastic energy (see [PDA01] for more details). In a conformal mesh, the intersection of two tetrahedra is either empty, or a common vertex, edge or triangle.

Furthermore, the tetrahedral mesh is a 3-manifold which implies that the neighborhood of a vertex is homeomorphic to a topological sphere for inner vertices and is homeomorphic to a half-sphere for surface vertices. More precisely, a tetrahedral mesh is a 3-manifold if the shell of a vertex (resp. an edge), ie the set of tetrahedra adjacent to vertex (resp. an edge), has only one connected component. In Figure 1, we show two examples of non-manifold volumetric objects. When the shell of a vertex or an edge is not singly-connected, we say that there exists a topological singularity at that vertex or an edge.

![Fig. 1. Examples of non manifold objects: (left) edge singularity; (right) vertex singularity](image)

Having a manifold tetrahedral mesh is not mandatory to perform surgery simulation. In fact, the previous version of our hepatic surgery simulator was not relying on a manifold mesh. However, when attempting to simulate complex gestures with realistic visual mesh, this feature becomes necessary. Indeed, the first advantage of having a manifold mesh is in terms of data structure. For instance, to find all tetrahedra adjacent to a given vertex, it is sufficient to
provide a single edge, triangle or tetrahedra since all remaining tetrahedra can be found by “marching around“ that vertex. Therefore it allows to decrease the redundancy of the data structure. Another advantage lies in the proper definition of a surface normal for each surface vertex since their shell is equivalent to a half-sphere.

Removing tetrahedra in conformal tetrahedral meshes is a trivial task but it proves to be much more difficult for manifold meshes. Thus, at least two authors have reported problems for removing topological singularities during cutting simulation [NvdS01,MLBdC01] without providing any solutions.

2.2 Data Structure

We found the design of a data structure for a tetrahedral mesh to have a strong impact on the computational efficiency of the cutting simulation and on the ease of implementation. As a detailed description of this data structure would fall outside the scope of this paper, we will only describe its main features below.

Our data structure relies on the notion of manifold mesh and the topological information is mainly stored in vertices and tetrahedra. These two objects are stored in lists and each tetrahedron points towards its 4 vertices, 6 edges, 4 triangles and 4 neighboring tetrahedra. We also have edge (resp. triangle) objects that are stored in a hash table indexed by the reference of its two (resp. three) vertices. To each vertex (resp. edge), we add a pointer on a neighboring tetrahedron (resp. triangle) in order to build its neighborhood. We “close” topologically the volumetric mesh by adding virtual vertices, edges, triangles and tetrahedra for each surface vertex.

3 Cutting Algorithm

3.1 Problem position

In our surgical simulator, the user manipulates a force-feedback device that has the same kinematics as a real surgical instruments in a laparoscopic procedure. The position and orientation of this virtual instrument is read periodically and collisions with the different virtual organs are detected with an efficient method [LCN99] based on OpenGL hardware acceleration. The input of the cutting algorithm is therefore a set of surface triangles and consequently a set of tetrahedra $T_{initial}$ (adjacent to these triangles). When simulating an ultrasound cautery, all tetrahedra at the neighborhood of the tool extremity are simply removed.

We proceed in two stages : first neighboring tetrahedra are refined and then a subset of these tetrahedra are removed. We first describe the refinement stage before detailing the deletion stage.

3.2 Local Mesh Refinement

We have chosen, for the sake of efficiency and simplicity, to locally refine a mesh by splitting edges into two edges. More precisely, the input of the refinement algorithm is a set of edges : these edges may be inside or on the surface. Then, we compute the set of tetrahedra that are adjacent to any edges in the set. Finally, we split each tetrahedron in this set in a systematic manner that depends on the number and the adjacency of edges. There are 10 distinct configurations for refinement that are displayed in Figure 2. In order to get continuity across two
neighboring tetrahedra (conformality), it is required in some configuration to take into account the lexicographic order of vertices (any other order between vertices could be used).

![Diagram of tetrahedron configurations]

Fig. 2. The 10 configurations for splitting a tetrahedron.

When a single tetrahedron is split, we not only update the adjacency between elements, but also the rendering information (texture coordinate) and the mechanical information.

The local refinement is controled by a single distance threshold D_{ref} whose value depends on the diameter of the virtual tool (150% in our implementation). Given the set of tetrahedra $T_{initial}$ hit by the virtual tool, we build the set of edges E_{split} to be split. For each tetrahedron in $T_{initial}$, we scan each edge and add it into E_{split} if its edge length is greater than D_{ref}. We do not use directly this set for the refinement because it would create elongated tetrahedra with bad shape index. Thus, we additionally scan each edge e in E_{split} and look at all edges located in the shell of e (edges opposite to e inside each adjacent tetrahedron) ; if one of these edges has a length greater that p times the length of e then it is added to E_{split}. The purpose of this extra stage is to limit the ratio between the minimum and maximum edge length for the newly created tetrahedra. Then the edge set is fed into the refinement procedure that produces as an output, the list of newly created tetrahedra T_{new}. The refinement procedure is iterated until the edge set E_{split} is empty, by replacing the set of initial tetrahedra $T_{initial}$ with the list of new tetrahedra T_{new}. The value p controls the mesh quality after refinement but also the extent of the refinement. If p is set to a value close to 1.0 then the refinement procedure may create a large set of new tetrahedra of high quality after many iterations. On the contrary, it p is set to a large value (2.0 for instance) then no extra refinement will take place and the refined tetrahedra may be of poor quality. As a trade-off we are currently using $p = 1.5$ which, in practise, leads to no more than 3 refinement iterations.

3.3 Tetrahedra Removal

The second stage consists in removing tetrahedra. The list of initial tetrahedra intersected by the cautery device $T_{initial}$ has been potentially extented by the refinement procedure. From this list, we discard any tetrahedron that is too far
Fig. 3. Iterative refinement of tetrahedra located at the vicinity of a virtual surgical tool

away from the tool or that has an edge with a length greater than D_{ref} and call $T_{removal}$ the resulting set. The removal algorithm then consists in removing one-by-one all tetrahedra in $T_{removal}$.

For a given tetrahedron T, we test if it can be removed without creating topological singularities at a vertex or edge. This is done according to the number of faces (triangles) of that tetrahedron T that are lying on the mesh surface:

Case 1 If T has no face in the mesh surface (T is then inside the mesh), it can be removed iff none of its four vertices belongs to the surface.
Case 2 If T has exactly one face belonging on the surface, it can be removed iff the vertex opposite to that face does not belong to the surface.
Case 3 If T has exactly two faces belonging to the surface, it can be removed iff the edge opposite to these two faces does not belong to the surface.
Case 4 If T has three or four faces belonging to the surface it can always be removed.

In fact, the probability that a tetrahedron cannot be removed is fairly high. From a set of experiments (see Table 1), we have found that it may occur from 10% to 40% of the times depending on the mesh topology or the mesh geometry. Also singularities at vertices (cases 1 and 2) occur nearly 10 times more often than singularities at edges (case 3).

<table>
<thead>
<tr>
<th>Mesh</th>
<th>number of operations</th>
<th>% of removable tetrahedra</th>
<th>% of problems on vertices</th>
<th>% of problems on edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>89.3</td>
<td>9.2</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>265</td>
<td>62.3</td>
<td>31.7</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>460</td>
<td>84.1</td>
<td>13.5</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>1448</td>
<td>83.8</td>
<td>14.4</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>2268</td>
<td>86.1</td>
<td>13.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 1. Estimation of the occurrence of vertex or edge singularities when removing a tetrahedron on the mesh surface

There are different possible strategies for removing topological singularities. We have explored a variety of approaches and finally settled to use a combination of two strategies: the first based on local mesh refinement and the second based on the removal of neighboring tetrahedra. All approaches were evaluated with respect to two criteria: the overall number and shape quality of tetrahedra. The local refinement strategy can always be used to solve topological singularities, but it tends to create many small tetrahedra (see section 3.4). Removing neighboring tetrahedra does not have this drawback but cannot be applied for all configurations (see section 3.5). We propose to combine the two previous strategies to get an optimal result (see section 3.6).
3.4 Basic strategy based on refinement

This strategy is quite simple: we create new tetrahedra surrounding the singularity in order to “thicken” the mesh at that location. If a topological singularity occurs at a vertex (resp. edge) then all edges adjacent to that vertex (resp. edge) are split (see section 3.2) and we then remove all refined tetrahedra adjacent to that vertex (resp. edge) together with the child of the original tetrahedron. We can formally prove that these set of tetrahedra can always be removed without creating new singularities. This strategy works well in all cases but it creates many small tetrahedra of poor shape quality.

3.5 Strategy based on tetrahedra removal

Let T be the tetrahedron to be removed. The strategy consists in removing the smallest set of neighboring tetrahedra of T that can suppress a vertex or edge singularity without creating new ones. This is typically a search strategy however there is no guarantee that such set exists. This approach is well-suited for simulating surgical cuts since neighboring tetrahedra are also guaranteed to be small enough due to the local refinement stage. Furthermore, it is likely that neighboring tetrahedra of T also belongs to $\mathcal{T}_{\text{removal}}$ which implies that they would have been removed anyway.

The algorithm significantly differs whether a vertex or an edge singularity is considered. For a vertex singularity, we can better understand the search problem by looking at the shell of the singular vertex. In Figure 4, we display the shell of that singular vertex; it is equivalent to a half-sphere since it lies on the surface. The opposite triangle of this vertex in tetrahedron T is drawn in solid line (leftmost figure) and dark grey (rightmost figure). To raise the vertex singularity, we must find a set of adjacent tetrahedra (drawn as patterned triangles) that connect T to the border of the shell. The search is performed in a width-first manner so as to find the shortest possible path and is further arbitrarily limited to a depth of 10 in order to restrict the time spent in this search. When a path is found, its removability is tested and, on success the set $\mathcal{T}_{\text{removable}}$ is removed. If the test fails, we use an additional heuristics. It appears that the path we found, often divides the adjacency of one of the tetrahedron vertices into two connected components. Therefore, we also test the removability of the given path once extended with each of the two connected components. If one of those two sets appears to be actually removable it is temporarily stored and will be eventually used if no smaller removable set is determined. If no paths nor extended paths are found to be removable then we output an empty set $\mathcal{T}_{\text{removable}} = \emptyset$.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig4.png}
\caption{(left) The shell of a vertex that exhibit a topological singularity; (right) a path (patterned triangles) connecting tetrahedron T to the shell border}
\end{figure}

For an edge singularity, we look at all tetrahedra adjacent to that edge. Because this edge is lying on the surface, we can divide these tetrahedra into two
sets, rightmost and leftmost tetrahedra. We first test each of these two sets for removal and in case of failure, we also test if the whole set of adjacent tetrahedra can be removed. If not, we output an empty set. This algorithm is very simple and can be implemented in a very efficient manner. We could also add more heuristics in case of failure to try to solve more configurations. However, edge singularities do not occur very often and therefore we have decided to keep it simple.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>% of non resolved vertex singularity</th>
<th>Average cardinality vertex singularity</th>
<th>% of non resolved edge singularity</th>
<th>Average cardinality edge singularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.3</td>
<td>3.1</td>
<td>50.0</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>14.3</td>
<td>3.1</td>
<td>43.8</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>6.4</td>
<td>2.9</td>
<td>54.5</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>10.1</td>
<td>3.2</td>
<td>34.6</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>15.6</td>
<td>3.3</td>
<td>35.7</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table 2. Analysis of tetrahedra removal strategy in case of a vertex and edge singularity

The efficiency of these two algorithms are analysed in Table 2. In average the strategy of removing neighboring tetrahedra allows to solve nearly 90 % of vertex singularities and 60 % of edge singularities. The total number of tetrahedra removed is nearly 3 for a vertex singularity and 4 for an edge singularity. Considering that vertex (resp. edge) singularities only occur 15 % (resp. 3 %) of the times when removing a tetrahedra, this strategy of removing neighboring tetrahedra allows to remove nearly 97 % of all tetrahedra that should be removed. Furthermore, on the whole, the average number of tetrahedra removed when a single tetrahedron should be removed is 1.3 which only shows a 30 % increase.

3.6 Combined Strategy: optimized local refinement

To remove the remaining 3 % of tetrahedra that cannot be removed by the previous strategy, we use an optimized local refinement strategy. Instead of refining (splitting) all edges adjacent to a vertex or edge singularity as described in section 3.4, we propose to refine only a subset of these edges. For instance, for a vertex singularity, it suffices to refine a set of tetrahedra that creates a path from T to the border of the vertex shell (see Figure 4). Thus, when searching for a suitable set of removable tetrahedra as described in the previous section, we also store the shortest path connecting the tetrahedron T to the shell border. This shortest path is eventually used for the optimized local refinement.

Fig. 5. (top) Removal of an edge singularity after an optimized local refinement (middle figure); (bottom) Removal of a vertex singularity after an optimized local refinement (middle figure)
A similar approach is used for edge singularity where only a subset of adjacent edges are used corresponding to either the rightmost or leftmost set of adjacent tetrahedra.

Fig. 6. Sequence of a simulated liver resection

4 Conclusion

We have proposed an algorithm which is suitable for the interactive simulation of the removal of soft tissue. The local refinement stage allows to simulate fine cuts even on a coarse tetrahedral mesh. The trade-off between mesh quality and computation efficiency is governed by a single parameter $p > 1$ whose value can be set intuitively. For removing tetrahedra, our approach combines the deletion of neighboring tetrahedra (in 97% of cases) with the optimized refinement around topological singularities. A dedicated data structure for tetrahedral meshes has been an important component for its efficient implementation on a hepatic surgical simulator (see Figure 6).

References

