Cutting simulation of manifold volumetric meshes

C. Forest, H. Delingette, and N. Ayache

Epidaure Research Project, INRIA Sophia Antipolis
2004 route des Lucioles, 06902 Sophia Antipolis, France
*Corresponding author: Clement .Forest@Qinria.fr

Abstract: One of the most difficult problem in surgical simulation consists in sim-
ulating the removal of soft tissue. This paper proposes an efficient method for
locally refining and removing tetrahedra in a real-time surgical simulator. One of
the key feature of this algorithm is that the tetrahedral mesh stays a 3-manifold
volume during the cutting simulation. Furthermore, our approach minimizes the
number of generated tetrahedra while trying to optimize their shape quality. The
removal of tetrahedra is performed with a strategy that combines local refine-
ment with the removal of neighboring tetrahedra when a topological singularity
is found.

1 Introduction

The simulation of cutting soft tissue is one a the major components of a surgi-
cal simulator. In fact, in a surgical procedure, the word cutting may be used to
describe two different actions: incising which is performed with a scalpel, and re-
moving soft tissue materials which is performed with an ultrasound cautery. De-
spite their different nature, the simulation of these two actions come up against
a common problem, which is the topology modification of a volumetric mesh.

Incising algorithms have been the most commonly studied approaches in the
literature. Most of them are based on subdivision algorithms whose principle
is to divide each tetrahedron across a virtual surface defined by the path of a
tool cutting edge[BG00,MKO00]. These algorithms create a smooth and accurate
surface of cut, but they suffer from two limitations. First, they tend to generate a
large number of small tetrahedra of low shape quality. The number of tetrahedra
may be reduced by moving mesh vertices along the surface of cut [NvdS01], but
this tends to worsen the quality of tetrahedra. Second, the simulation of incising
supposes that the cut surface generated by the motion of a surgical tool is very
smooth or even, as found in papers, locally planar. However, in most real-time
surgical simulation systems, there is no constraints on the motion of surgical
tools and most of the time the cut surface is not even close to a smooth surface.
Furthermore, surgical cutting gestures do not usually consist of a single large
gesture, but are made of repeated small incisions. Therefore, these algorithms
are not of practical use for cutting volumetric meshes, at least when simulating
an hepatectomy.

In this paper, we focus on the simulation of the removal of soft tissue ma-
terial as performed with an ultrasound cautery. The targeted application is the
simulation of hepatectomy, i.e. the resection of a liver functional segment. We
suppose that all volumetric anatomical structures (for instance a liver) are rep-
resented with tetrahedral meshes that meet some criterion (see section 2.1).
To remove soft tissue, we need to perform two distinct tasks : remove tetra-
hedral elements and control the element size such that holes have the same
size as the cautery device. The former task may seem trivial since it could
reduces itself to a self-evident “remove this tetrahedron from the list of

tetrahedra”. However, due to additional constraints on the mesh topology (it
has to be a manifold), it actually turns out to be a difficult problem to solve.
The latter task consists in locally refining the mesh around the cut path. In-
deed, in order to speed-up the deformation of soft tissue, it is preferable to
use meshes with as few tetrahedra as possible. To obtain a realistic cut, it is
therefore necessary to refine the mesh dynamically, as opposed to previous ap-
proaches [CDA00,PDAOQ1] where the mesh was refined once-for-all at parts where
the cutting could occur.

In our approach, the tasks of removing and refining tetrahedra are both de-
vised in order to optimize two constraints. First, they must minimize time of
computation and therefore cannot use sophisticated remeshing algorithm be-
cause each cutting operation should be performed in few a tens of milliseconds
(typically 50-100 milliseconds). Second, they should produce tetrahedra with a
high shape quality.

2 Tetrahedral Meshes for surgery simulation

2.1 Topological constraints

For the simulation of volumetric soft tissue, we use tetrahedral meshes as a
geometric model. These meshes are built from triangulated surfaces with a dedi-
cated mesh generation software. For our application, we chose to restrict the set
of possible tetrahedral meshes to be both conformal and manifold. Conformality
is required since we are using finite element modeling for the spatial discretiza-
tion of the elastic energy (see [PDAO1] for more details). In a conformal mesh,
the intersection of two tetrahedra is either empty, or a common vertex, edge or
triangle.

Furthermore, the tetrahedral mesh is a 3-manifold which implies that the
neighborhood of a vertex is homeomorphic to a topological sphere for inner ver-
tices and is homeomorphic to a half-sphere for surface vertices. More precisely, a
tetrahedral mesh is a 3-manifold if the shell of a vertex (resp. an edge), ie the set
of tetrahedra adjacent to vertex (resp. an edge), has only one connected com-
ponent. In Figure 1, we show two examples of non-manifold volumetric objects.
When the shell of a vertex or an edge is not singly-connected, we say that there
exists a topological singularity at that vertex or an edge.

(=

Fig. 1. Examples of non manifold objects : (left) edge singularity; (right) vertex sin-
gularity

Having a manifold tetrahedral mesh is not mandatory to perform surgery
simulation. In fact, the previous version of our hepatic surgery simulator was
not relying on a manifold mesh. However, when attempting to simulate complex
gestures with realistic visual effects, this feature becomes necessary. Indeed, the
first advantage of having a manifold mesh is in terms of data structure. For
instance, to find all tetrahedra adjacent to a given vertex, it is sufficient to

provide a single edge, triangle or tetrahedra since all remaining tetrahedra can
be found by “marching around “ that vertex. Therefore it allows to decrease the
redundancy of the data structure. Another advantage lies in the proper definition
of a surface normal for each surface vertex since their shell is equivalent to a half-
sphere.

Removing tetrahedra in conformal tetrahedral meshes is a trivial task but it
proves to be much more difficult for manifold meshes. Thus, at least two authors
have reported problems for removing topological singularities during cutting
simulation[NvdS01,MLBdCO01] without providing any solutions.

2.2 Data Structure

We found the design of a data structure for a tetrahedral mesh to have a strong
impact on the computational efficiency of the cutting simulation and on the ease
of implementation. As a detailed description of this data structure would fall
outside the scope of this paper, we will only describe its main features below.

Our data structure relies on the notion of manifold mesh and the topological
information is mainly stored in vertices and tetrahedra. These two objects are
stored in lists and each tetrahedron points towards its 4 vertices, 6 edges, 4 tri-
angles and 4 neighboring tetrahedra. We also have edge (resp. triangle) objects
that are stored in a hash table indexed by the reference of its two (resp. three)
vertices. To each vertex (resp. edge), we add a pointer on a neighboring tetrahe-
dron (resp. triangle) in order to build its neighborhood. We “close” topologically
the volumetric mesh by adding virtual vertices, edges, triangles and tetrahedra
for each surface vertex.

3 Cutting Algorithm

3.1 Problem position

In our surgical simulator, the user manipulates a force-feedback device that
has the same kinematics as a real surgical instruments in a laparoscopic proce-
dure. The position and orientation of this virtual instrument is read periodically
and collisions with the different virtual organs are detected with an efficient
method [LCN99] based on OpenGL hardware acceleration. The input of the
cutting algorithm is therefore a set of surface triangles and consequently a set of
tetrahedra Tiniria: (adjacent to these triangles). When simulating an ultrasound
cautery, all tetrahedra at the neighborhhod of the tool extremity are simply
removed.

We proceed in two stages : first neighboring tetrahedra are refined and then
a subset of these tetrahedra are removed. We first describe the refinement stage
before detailing the deletion stage.

3.2 Local Mesh Refinement

We have chosen, for the sake of efficiency and simplicity, to locally refine a mesh
by splitting edges into two edges. More precisely, the input of the refinement
algorithm is a set of edges : these edges may be inside or on the surface. Then, we
compute the set of tetrahedra that are adjacent to any edges in the set. Finally,
we split each tetrahedron in this set in a systematic manner that depends on
the number and the adjacency of edges. There are 10 distinct configurations for
refinement that are displayed in Figure 2. In order to get continuity accross two

neighboring tetrahedra (conformality), it is required in some configuration to
take into account the lexicographic order of vertices (any other order between
vertices could be used).

assume B<C
AabacD, abBacD, acBCD

&y

assume B<C<D ABbcbd, AbcCed, Abcedbd, AbdedD AabedD
Aabacad, abBacad, acBCad, adBDC if A<C Aabbeed, AbcCed Aabacad, abbcacad
else abbcCod, AabCed if C<D abbeacD, acbeCD
if B<D abBbced, abBedD else acbcCad, adbcCD
else abbeedD, abBbeD if B<C abBbcad, adBbeD

else adabbcD, abBbeD

if A<C Aabodad, Aabbeod, AbeCed assume C<D Aabacad, abBbebd, acbeCed, adbdedD
else abbcCod, adebCod, AcbCad Aabacad, abBbcbd, acabbead, adabbebd abacadbc, cdachead, abbbead, adbdbocd
if B<D abBedad, abBbocd, cdBbeD acbeCad, adbeCbd, adbdCD
efse abBheD. abbeedD. adabodD

Fig. 2. The 10 configurations for splitting a tetrahedron.

When a single tetrahedron is split, we not only update the adjacency be-
tween elements, but also the rendering information (texture coordinate) and the
mechanical information.

The local refinement is controled by a single distance threshold D,.; whose
value depends on the diameter of the virtual tool (150 % in our implementation).
Given the set of tetrahedra 7i,;:;,; hit by the virtual tool, we build the set of
edges Epiir to be split. For each tetrahedron in Tinita1, We scan each edge and
add it into Espit if its edge length is greater than D,.r. We do not use directly
this set for the refinement because it would create elongated tetrahedra with bad
shape index. Thus, we additionally scan each edge e in &;;: and look at all edges
located in the shell of e (edges opposite to e inside each adjacent tetrahedron)
: if one of these edges has a length greater that p times the length of e then it
is added to &spis- The purpose of this extra stage is to limit the ratio between
the minimum and maximum edge length for the newly created tetrahedra. Then
the edge set is fed into the refinement procedure that produces as an output,
the list of newly created tetrahedra 7. The refinement procedure is iterated
until the edge set ¢ is empty, by replacing the set of initial tetrahedra Zipnstia
with the list of new tetrahedra 7;,..,. The value p controls the mesh quality after
refinement but also the extent of the refinement. If p is set to a value close to 1.0
then the refinement procedure may create a large set of new tetrahedra of high
quality after many iterations. On the contrary, it p is set to a large value (2.0
for instance) then no extra refinement will take place and the refined tetrahedra
may be of poor quality. As a trade-off we are currently using p = 1.5 which, in
practise, leads to no more than 3 refinement iterations.

3.3 Tetrahedra Removal

The second stage consists in removing tetrahedra. The list of initial tetrahedra
intersected by the cautery device 7i,;101 has been potentially extented by the
refinement procedure. From this list, we discard any tetrahedron that is too far

Fig. 3. Iterative refinement of tetrahedra located at the vincinity of a virtual surgical
tool

away from the tool or that has an edge with a length greater than D,.; and
call Tremovar the resulting set. The removal algorithm then consists in removing
one-by-one all tetrahedra in Ziemoval-

For a given tetrahedron T'; we test if it can be removed without creating
topological singularities at a vertex or edge. This is done according to the number
of faces (triangles) of that tetrahedron T that are lying on the mesh surface :

Case 1 If T has no face in the mesh surface (T is then inside the mesh), it can be
removed iff none of its four vertices belongs to the surface.

Case 2 If T has exactly one face belonging on the surface, it can be removed iff the
vertex opposite to that face does not belong to the surface.

Case 3 If T has exactly two faces belonging to the surface, it can be removed iff the
edge opposite to these two faces does not belong to the surface.

Case 4 If T has three or four faces belonging to the surface it can always be removed.

In fact, the probability that a tetrahedron cannot be removed is fairly high.
From a set of experiments (see Table 1), we have found that it may occur from
10% to 40 % of the times depending on the mesh topology or the mesh geometry.
Also singularities at vertices (cases 1 and 2) occur nearly 10 times more often
than singularities at edges (case 3).

number |% of removable|% of problems|% of problems
Mesh|of operations| tetrahedra on vertices on edges
1 130 89.3 9.2 1.5
2 265 62.3 31.7 6.0
3 460 84.1 13.5 2.4
4 1448 83.8 14.4 1.8
5 2268 86.1 13.3 0.6

Table 1. Estimation of the occurence of vertex or edge singularities when removing a
tetrahedron on the mesh surface

There are different possible strategies for removing topological singularities.
We have explored a variety of approaches and finally settled to use a combina-
tion of two strategies : the first based on local mesh refinement and the second
based on the removal of neighboring tetrahedra. All approaches were evaluated
with respect to two criteria : the overall number and shape quality of tetrahedra.
The local refinement strategy can always be used to solve topological singular-
ities, but it tends to create many small tetrahedra (see section 3.4). Removing
neighboring tetrahedra does not have this drawback but cannot be applied for
all configurations (see section 3.5). We propose to combine the two previous
strategies to get an optimal result (see section 3.6).

3.4 Basic strategy based on refinement

This strategy is quite simple : we create new tetrahedra surrounding the singu-
larity in order to “thicken” the mesh at that location. If a topological singularity
occurs at a vertex (resp. edge) then all edges adjacent to that vertex (resp. edge)
are split (see section 3.2) and we then remove all refined tetrahedra adjacent to
that vertex (resp. edge) together with the child of the original tetrahedron. We
can formally prove that these set of tetrahedra can always be removed without
creating new singularities. This strategy works well in all cases but it creates
many small tetrahedra of poor shape quality.

3.5 Strategy based on tetrahedra removal

Let T be the tetrahedron to be removed. The strategy consists in removing
the smallest set of neighboring tetrahedra of T' that can suppress a vertex or
edge singularity without creating new ones. This is typically a search strategy
however there is no guarantee that such set exists. This approach is well-suited
for simulating surgical cuts since neighboring tetrahedra are also guaranteed to
be small enough due to the local refinement stage. Furthermore, it is likely that
neighboring tetrahedra of T also belongs t0 Ziemovar Which implies that they
would have been removed anyway.

The algorithm significantly differs whether a vertex or an edge singularity is
considered. For a vertex singularity, we can better understand the search problem
by looking at the shell of the singular vertex. In Figure 4, we display the shell of
that singular vertex :it is equivalent to a half-sphere since it lies on the surface.
The opposite triangle of this vertex in tetrahedron 7' is drawn in solid line
(leftmost figure) and dark grey (rightmost figure). To raise the vertex singularity,
we must find a set of adjacent tetrahedra (drawn as patterned triangles) that
connect T' to the border of the shell. The search is performed in a width-first
manner so as to find the shortest possible path and is further arbitrarily limited
to a depth of 10 in order to restrict the time spent in this search. When a path is
found, its removability is tested and, on success the set ZTremovabie 18 removed. If
the test fails, we use an additional heuristics. It appears that the path we found,
often divides the adjacency of one of the tetrahedron vertices into two connected
components. Therefore, we also test the removability of the given path once
extended with each of the two connected components. If one of those two sets
appears to be actually removable it is temporally stored and will be eventually
used if no smaller removable set is determined. If no paths nor extended paths
are found to be removable then we output an empty set Tremovabie = {}-

Fig. 4. (left)The shell of a vertex that exihit a topological singularity; (right) a path
(patterned triangles) connecting tetrahedron 7" to the shell border

For an edge singularity, we look at all tetrahedra adjacent to that edge.
Because this edge is lying on the surface, we can divide these tetrahedra into two

sets, rightmost and leftmost tetrahedra. We first test each of these two sets for
removal and in case of failure, we also test if the whole set of adjacent tetrahedra
can be removed. If not, we output an empty set. This algorithm is very simple
and can be implemented in a very efficient manner. We could also add more
heuristics in case of failure to try to solve more configurations. However, edge
singularities do not occur very often and therefore we have decided to keep it
simple.

% of non resolved|average cardinality|% of non resolved|average cardinality
Mesh |vertex singularity | vertex singularity | edge singularity | edge singularity
1 8.3 3.1 50.0 6.0
2 14.3 3.1 43.8 4.7
3 6.4 2.9 54.5 5.0
4 10.1 3.2 34.6 4.0
5 15.6 3.3 35.7 3.8

Table 2. Analysis of tetrahedra removal strategy in case of a vertex and edge singu-
larity

The efficiency of these two algorithms are analysed in Table 2. In average
the strategy of removing neighboring tetrahedra allows to solve nearly 90 % of
vertex singularities and 60 % of edge singularities. The total number of tetra-
hedra removed is nearly 3 for a vertex singularity and 4 for an edge singularity.
Considering that vertex (resp. edge) singularities only occur 15 % (resp. 3 %)
of the times when removing a tetrahedra, this strategy of removing neighbor-
ing tetrahedra allows to remove nearly 97 % of all tetrahedra that should be
removed. Furthermore, on the whole, the average number of tetrahedra removed
when a single tetrahedron should be removed is 1.3 which only shows a 30 %
increase.

3.6 Combined Strategy : optimized local refinement

To remove the remaining 3 % of tetrahedra that cannot be removed by the pre-
vious strategy, we use an optimized local refinement strategy. Instead of refining
(splitting) all edges adjacent to a vertex or edge singularity as described in sec-
tion 3.4, we propose to refine only a subset of these edges. For instance, for a
vertex singularity, it suffices to refine a set of tetrahedra that creates a path from
T to the border of the vertex shell (see Figure 4). Thus, when searching for a
suitable set of removable tetrahedra as described in the previous section, we also
store the shortest path connecting the tetrahedron T' to the shell border. This
shortest path is eventually used for the optimized local refinement.

Fig. 5. (top) Removal of an edge singularity after an optimized local refinement (middle
figure); (bottom) Removal of a vertex singularity after an optimized local refinement
(middle figure)

A similar approach is used for edge singularity where only a subset of adjacent
edges are used corresponding to either the rightmost or leftmost set of adjacent
tetrahedra.

Fig. 6. Sequence of a simulated liver resection

4 Conclusion

We have proposed an algorithm which is suitable for the interactive simulation of
the removal of soft tissue. The local refinement stage allows to simulate fine cuts
even on a coarse tetrahedral mesh. The trade-off between mesh quality and com-
putation efficiency is governed by a single parameter p > 1 whose value can be
set intuitively. For removing tetrahedra, our approach combines the deletion of
neighboring tetrahedra (in 97 % of cases) with the optimized refinement around
topological singularities. A dedicated data structure for tetrahedral meshes has
been an important component for its efficient implementation on a hepatic sur-
gical simulator (see Figure 6).

References

[BGOO] Daniel Bielser and Markus H. Gross. Interactive simulation of surgical cuts.
In Proc. Pacific Graphics 2000, pages 116-125. IEEE Computer Society
Press, October 2000.

[CDA00] S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model allowing
real-time cutting, deformations and force-feedback for surgery training and
simulation. The Visual Computer, 16(8):437-452, 2000.

[LCN99] J-C. Lombardo, M.P. Cani, and F. Neyret. Real-time collision detection
for virtual surgery. In Computer Animation, Geneva Switzerland, May
26-28 1999.

[MKO00] Andrew B. Mor and Takeo Kanade. Modifying soft tissue models: Pro-
gressive cutting with minimal new element creation. In MICCAI, pages
598-607, 2000.

[MLBdCO01] C. Mendoza, C. Laugier, and F Boux de Casson. Virtual reality cutting
phenomena using force feedback for surgery simulations. In Proc. of the
IMIVA workshop of MICCAI, Utrecht(NL), 2001.

[NvdS01] Han-Wen Nienhuys and A. Frank van der Stappen. Supporting cuts and fi-
nite element deformation in interactive surgery simulation. In W.J. Niessen
and M.A. Viergever, editors, Procs. of the Fourth International Conference
on Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI’01), pages 145-152. Springer Verlag, October 2001.

[PDAO1] G. Picinbono, H. Delingette, and N. Ayache. Non-linear and anisotropic
elastic soft tissue models for medical simulation. In ICRA2001: IEEE In-
ternational Conference Robotics and Automation, Seoul Korea, May 2001.
Best conference paper award.

