
Surface Contact and Reaction Force Models for
Laparoscopic Simulation

Clément Forest, Hervé Delingette, Nicholas Ayache

Epidaure Research Project
INRIA Sophia-Antipolis, 2004 route des Lucioles

06902 Sophia-Antipolis, France

Abstract. In surgery simulation, most existing methods assume that
the contact between a virtual instrument and a soft tissue model occur
at a single point. However, there is a gross approximation when simulat-
ing laparoscopic procedures since the instrument shaft is used in several
surgical tasks. In this paper, we propose a new algorithm for modeling
the collision response of a soft tissue when interacting with a volumetric
virtual instrument involving both the shaft and the tip of the instrument.
The proposed method generates visually coherent mesh deformations and
plausible force-feedback in a real-time surgical simulator even when the
mesh geometry is irregular.

1 Introduction

The purpose of a surgical simulator is essentially to provide a computer-
ized system suitable for the training of young residents. This system can
be decomposed into two components: a user interface and a simulation
engine. The nature of the user interface is clearly important because a
large part of the training consists in acquiring gesture skills. As an ex-
ample, in the context of a laparoscopic simulator, the length of surgical
instruments (nearly 30 cm) and their specific motion must be carefully
modeled. Indeed, because the motion of those instruments are restricted
to pass through a fixed point, surgeons often use the shaft of their instru-
ments to gently push soft tissue away without causing any bleeding. For
instance, this type of gesture is used quite extensively to manipulate the
liver in cholecysectomy procedures.

In most surgical simulators, when considering the collision response
of soft tissues with a virtual instrument, that interaction is assumed to
occur at a single point [1]: only the possible contact with the instru-
ment tip is considered. Of course this assumption greatly simplifies the
collision response algorithm and consequently decreases the computation
time. However, it also worsens the realism of the simulation and, most

importantly, it significantly limits the set of gestures that can be learned
by medical residents.

In [2, 3], Ho et al. propose an haptic rendering technique that can
model the contact between a line segment and an object. However, this
approach is only suitable for convex objects or for objects that can be di-
vided into a limited number of convex components. More recently, Picin-
bono et al. [4] have introduced an algorithm that can handle the collision
between laparoscopic instruments and soft tissue meshes which consists
in the projection of vertices on an average plane. Unfortunately, that ap-
proach is only valid when the surface of the soft tissue model is smooth.
Therefore, it cannot be used during the resection of soft tissue when the
surface can become quite irregular.

In this paper, we describe a surface contact and reaction force model
that is suitable for the simulation of surgical instruments interacting with
soft tissue for laparoscopic simulation. Note that we do not focus on the
action of specific instruments like a bipolar cautery device but solely on
the mechanical contact caused by the shaft or tip of instruments. Those
models can be applied on any type of triangulated surface whether it is
smooth or not.

Force feedback Device

Force Position

Contact
Deformation

Graphical
Rendering

Mesh
Deformation

Collision
Detection

Simulation
Step

(30Hz)
Simulation Process

Local Model

Position

Shared
Memory

Force Feedback Process
(500Hz)

Read Position
Send Forces

Reaction Force
Computation

FFB Step

Fig. 1. Architecture of the Epidaure Laparoscopic Simulator

The contact and reaction force models are presented in the context
of the hepatic surgery simulator developed in the Epidaure Project at
INRIA Sophia-Antipolis. The simulated procedure in this platform is
the resection of one or several anatomical segments of the liver with an
ultrasonic-based device called a cavitron [5]. The system includes three
force-feedback devices that serve as input devices for two instruments and
one endoscope. Those devices are currently Laparoscopic Impulse Engines
(LIE) from Immersion Corp. In figure 1, a sketch of the simulation engine
is shown. In this paper, we only partially describe the contact deformation
and the reaction force processing algorithms. The former computes the
displacement of vertices entailed by the collision between an instrument
and the liver while the latter computes the reaction forces that are felt
by the user when manipulating the surgical instruments. The description

of other algorithms falls outside the scope of this paper. In a nutshell, the
collision detection between each virtual instrument and each soft tissue
model is based on graphics acceleration [6] due to the cylindrical geom-
etry of those instruments. The tetrahedral mesh of the liver is deformed
according to the tensor-mass algorithm [7], based on linear elasticity and
finite-elements modeling. Finally, topological modifications use a removal
tetrahedra method [5] which maintains the manifold property of the mesh.

2 Contact Deformation Algorithm

2.1 Introduction

In physically-based simulation, there are two common methods for simu-
lating the contact between objects. The former one is called the constraint
method [8]: whenever a collision is detected at the given time step, the ex-
act time of the collision is determined, then the position or shape of those
objects are updated and the simulation resumes at the time of collision.
Because it implies moving back in time, this approach is widely used in
computer animation but is hard to adapt to real-time applications.

The second method for simulating the contact between objects is the
penalty method [9] and it consists in adding a force proportional to the
inter-penetration distance as to push both objects apart. This approach
is simple to implement and is in general used in real-time simulation or
when the objects geometry is complex, as in clothes simulation [10]. How-
ever, the choice of the optimal amplitude of the reaction force is difficult
to estimate and it does not truly prevent the collision between those ob-
jects. This last limitation has been reduced for force feedback applications
through the god-object method [11]. This approach was devised to model
the contact between a point and a rigid surface and was later extended
by Ho [2] to include the contact with a line segment and a rigid object.
Its main idea is to maintain simultaneously two positions of the probe,
one being its ideal position (always located outside or on the object sur-
face) the other being its virtual corresponds to the actual position of the
external device.

In this paper, we are modeling the contact of instruments with soft
tissue and not rigid objects. Since a collision can be caused by the mesh
deformation, the proxy method cannot be used directly. Indeed, it might
be impossible to determine a non colliding ideal position for the probe.
Furthermore, our algorithm copes with cylindrical instruments (not only
line segments) and with general soft tissue surfaces, convex or non convex,
smooth or non smooth. It proceeds in five steps (see Figure 2):

1. Definition of a reference frame;
2. Determining colliding edges;
3. Preventing edge collision;
4. Moving triangles away from the tip of the instrument;
5. Moving edges and vertices outside of the instrument volume.

(a) (b) (c) (d)

Fig. 2. The main steps of the algorithm seen in the instrument frame. (a) Determining
the colliding edges. (b) Preventing the edge collision. (c) Moving triangles out of the
instrument tip. (d) Moving edges and vertices out of the instrument volume.

2.2 Definition of a reference frame

In the remainder, each virtual instrument, independently of its nature, is
represented as the dilatation of radius r of a line segment of length l. Let
Z and P be the instrument main axis direction and tip position at the
current time step and Zold, Pold be its direction and tip position at the pre-
vious time step. During the last time step, the instrument and the mesh
representing the soft tissue may have moved. To simplify the analysis of
the collision, we propose to consider the relative displacement of the mesh
with respect to the instrument. Because all surgical instruments are sup-
posed to be rigid objects, we need to determine the rigid transformation
R that transforms the instrument position from its previous configuration
{Zold, Pold} into its current configuration {Z,P}. This transformation is
simply determined by writing the 3 equalities of equation 1.

R(Zold) = Z (a)
R(Pold) = P (b)

R(Zold ∧ Z) = Zold ∧ Z (c)

 (1)

The relative displacement between a virtual instrument and a vertex
A, moving from position At−∆t to position At can then be estimated in
the reference frame of the instrument at its current state {Z,P}. In this
frame, point At−∆t is transformed intoR(At−∆t). To simplify the analysis,
we will consider that in this frame, the trajectory linking R(At−∆t) and
At is a straight line. This assumption is justified by the relatively small
speed at which a surgical instrument is moved compared to the frequency
(nearly 30Hz) of the trajectory analysis. We propose to further simplify

notations by writing A = R(At−∆t) and ∆A = At −R(At−∆t) such that
A + ∆A = At (dropping the temporal exponent).

vZ Zold

Z

Zold

P

Pold

Fig. 3. The instrument rigid transforma-
tion

Tool Axis

P β

α
t

Α

Β+∆Β
Α+∆Α

Β

Fig. 4. Detection of the intersecting edges

2.3 Determining colliding edges

Let E = {A,B} be an edge of the soft tissue mesh. We want to find
whether this edge has intersected the axis during the last time step. Note
that the computation of the intersection between two edges, one static and
one moving has been proposed by Schömer [12] but we believe that the
solution below is more efficient to implement. Following the assumptions
on the linearity of the points trajectory in the reference frame, edge E
collided with the virtual instrument if there exists (t, α, β) in [0, 1]×[0, 1]×
−]∞, 0] such that:

A + t.∆A + α(B + t.∆B −A− t.∆A) = P + βZ (2)

The variable t represents the instant of collision, and α and β are the
relative positions of the point of collision with respect to the edge and the
instrument axis. To find possible solutions, we first eliminate parameters
α and β by taking the dot product of equation 2 with vector (B + t.∆B−
A− t.∆A) ∧ Z. This leads to a second degree equation of variable t:

t2.(∆A.((∆B −∆A)) ∧ Z) + t.(∆A.((B −A) ∧ Z)
−(P −A).(∆B −∆A) ∧ Z)) = (P −A).((B −A) ∧ Z)

(3)

Lets t1 and t2 be the roots of that equation. The corresponding values
of α and β can be computed easily by taking the vectorial product of the
equation (2) with the vector Z and with the vector (B+ ti.∆B−A−∆B)
respectively:

αi =
‖ (P −A− ti.∆A) ∧ Z ‖

‖ (B + ti.∆B −A− ti.∆A) ∧ Z ‖
(4)

βi =
‖ (A + ti∆A− P) ∧ (B + ti∆B −A− ti∆A) ‖

‖ Z ∧ (B + ∆B −A− ti∆A) ‖
(5)

If exactly one of the two triplets (ti, αi, βi) corresponds to an intersec-
tion (ie. is inside the set [0, 1]× [0, 1]× [0, l]), then we consider that edge
E “has crossed the instrument axis” and is called a colliding edge. Oth-
erwise, we consider that no collisions between the edge and instrument
have occurred. Also, if the instrument has collided the mesh and bounced
back during the previous time step, this collision will not be taken into
account.

Finding all colliding edges could be very computationally intensive, if
all edges were tested. Instead, we take advantage of the list of triangles
that is outputed by the collision detection algorithm. Those triangles
are intersected by the virtual instrument in its current position {Z,P}
and therefore have colliding edges. From those edges, we use a marching
algorithm that searches for colliding edges from one triangle to the next,
towards the tip of the instrument, until no additional colliding edge is
found.

Using collision detection to find colliding edges may not be reliable if
the instrument entirely crosses the mesh in one time step. Again, in the
context of surgery simulation, given the speed of the tip of the instrument
and the typical shape of the liver, this should not occur if the main process
runs at nearly 30Hz.

2.4 Preventing edge collision

The second stage of our contact processing algorithm consists in mov-
ing vertices in order to prevent all edges from crossing the instrument
axis. One could simply stop the movement of a vertex relatively to the
instrument as soon as one of its adjacent edges intersects the axis of the
instrument. Unfortunately, for some configurations, this method does not
prevent edges from crossing the axis (see Figure 5).

For each vertex adjacent to a colliding edge we assign a confidence
interval [tmin, tmax] such that when the vertex position is moved within
this interval, we can guaranty that none of its adjacent edges cross the
instrument axis. We first initialize that interval to [0, 1] for all vertices.
Then we successively consider every edge E = (A,B) that crosses the
axis at instant tc ∈ [0, 1]. Let ∆A be the displacement of vertex A during
the last time step in the reference frame. If the motion of vertex A moves
edge E closer to the axis, then the new confidence interval for this vertex
is set to [tmin, tmax] ∩ [0, tc]; otherwise it is set to [tmin, tmax] ∩ [tc, 1]. To
find whether the vertex motion will make edge E become closer or further

(b) (c)(a)

V0

V2

V1

V0

V2

V1

V2

V0
V’0

V1

Tool Axis Tool Axis Tool Axis

Fig. 5. (a) Initial position of two edges sharing a vertices in the reference frame. Arrows
indicate the displacements from the previous to the current configuration. (b) Axis
intersections are tested for each edge independently and vertices are stopped as soon
as an adjacent edge intersect the axis: V0 and V1 are stopped first followed by V2, but
this does not prevent the edge V0V2 from crossing the axis. (c) Vertices are stopped
using our method described below.

away from the axis, we just look at the sign of following expression:

(∆A ∧ (Z ∧AB)).(AP ∧ (Z ∧AB)) (6)

When processing an edge, the confidence interval of one vertex may
become empty. In this case, the vertex position is set to its position at
tmin if the vertex bring the edge towards the axis and to its position at
tmax otherwise. With that vertex set to a fixed position, we compute the
new instant t

′
c of the collision with that particular edge and we update

the confidence interval for its other adjacent vertex; in practice, that
confidence interval appears to be never empty.

Once a confidence interval is assigned for all the vertices we move them
to the position corresponding to the center of their confidence interval.

2.5 Moving triangles at the tip of the instrument

At the end of the previous stage, all colliding edges have been removed.
However, if the tip of the instrument was previously colliding with the
mesh, that collision should still occur. The next step consists in moving
the colliding triangle outside the volume of the instrument. Lets Pprox

be the intersection point between the mesh and the axis. If they do not
intersect, Pprox is set to the mesh point closest to the tip of the instrument.
We compute the normal vector nprox at Pprox with the following formula:

nprox = α0n0 + α1n1 + α2n2 (7)

where α0, α1 and α2 are the barycentric coordinates of Pprox in his triangle
and where n0, n1 and n2 are the normals at the triangle vertices. We

propose to project the triangle containing Pprox on a plane P along the
axis Z. The plane P is orthogonal to nprox and is slightly moved away at
a distance r from the tip of the instrument.

2.6 Moving edges and vertices outside of the instrument
volume

In the last stage of the algorithm, edges and vertices located in the neigh-
borhood of the instrument are moved outside the cylindrical volume of
the instrument. First, vertices are moved away in a direction orthogonal
to the axis Z and then edges are eventually pushed away from the cylin-
drical volume by computing the closest distance from that edge to the
main axis of the instrument.

3 Reaction Forces Computation

In the literature, there are three main algorithms for computing react-
ing forces. First, reacting force can be precomputed before the simulation
and extrapolated in real time [13]. They can also be computed according
to the current mechanical model [1] or be estimated in a pure geomet-
ric manner based on inter-penetration distance. We chose to provide a
stable and efficient solution by combining the last two approaches. In or-
der to deal with the difference in update rate between the mechanical
model (30 Hz) and the reaction force model (at least 300 Hz for a stable
haptic feedback with soft tissues [14]), we use a method based on the
buffer model [15]. A separate reaction force loop transmits the positions
of the input devices and receives a simplified local representation of the
soft tissue model suitable for an efficient force computation. Transitions
between two successive local models are made progressively in order to
smooth irregularities.

Our local model consists of two planes. The former represents the
neighborhood of the tip of the instrument and is defined as the plane P
having normal nprox (see section 2.5). The latter represents the contact
with the shaft of the instrument and contains the instrument main axis
and is orthogonal to the average cross product of the instrument axis
with the direction of all neighboring edges. For each of those two planes,
a force Fi is computed which is proportional to the penetration depth of
the tip in the half-space delimited by the corresponding plane. Therefore,
if ni and Ai are respectively the normal and a point of the i-th plane, the
force Fi is computed in the following way:

Fi = λi ∗ (P −Ai).ni (8)

In this equation λi is the “apparent stiffness” of the material. This value
is proportional to the average Young Modulus of the tetrahedra located
in the neighborhood of the instrument (since our soft tissue model is
based on non-homogeneous linear elastic materials). The average Young
Modulus is sent in the local model and allows to feel the difference between
a soft and a stiff part of the model.

Fig. 6. The two planes composing the local
model sent to the reaction force separate pro-
cess.

0

Ff=F1

Ff=F0

F0 Ff

F1

Ff=F1+F0Zone (a): F0F1<0

Zone (c): F0F1>F0²

Zone (d):
0>F0F1>min(F0²,F1²)

Zone (b): F0F1>F1²

Fig. 7. The value of Ff given F0 and
according F1

To obtain a force which is smooth over time, the final force Ff is not
the sum of the two forces. Indeed, there are many configurations for which
the collision between the instrument and the mesh may randomly include
or not the tip of the instrument: this could generate a discontinuous force
thus leading to vibrations. Therefore, we propose to combine then is such
that if the two forces are pointing in the same direction, then the result-
ing force is the force vector of maximum intensity. If the two forces are
orthogonal or parallel in opposite direction, then the resulting force is the
sum of the two forces vectors (see also Figure 7).

if F0.F1 ≤ 0, Ff = F0 + F1

if ‖F0‖2 ≤ F0.F1, Ff = F0

if ‖F1‖2 ≤ F0.F1, Ff = F1

else Ff = F0∗(‖F1‖2∗(F0.F1−‖F0‖2))+F1∗(‖F0‖2∗(F0.F1−‖F1‖2))
(F0.F1)2−‖F0‖.‖F1‖

(a)
(b)
(c)
(d)

 (9)

Once computed, that force is split into axial and orthogonal com-
ponents. Those components are sent to the force feedback device once
translated into axial force and torques directives.

4 Conclusion

We have presented a method to simulate the contact between a soft tissue
triangular mesh and a volumetric virtual surgical instrument including
its shaft and its tip. It provides a robust way to constraint the mesh to

keep outside the cylindrical volume of the instrument and to generate
coherent and stable reaction forces. Its main limitation may lay in the
computation of the reaction forces that is mostly based on geometric
reasoning. In most circumstances, the computed force would differ from
the purely mechanical forces computed from the finite element method.

References

1. Mendoza, C., Sundaraj, K., Laugier, C.: Faithfull Force Feedback in Medical Sim-
ulators. In: International Symposium in Experimental Robotics. Volume VIII:
Experimental Robotics of Tracts in Advanced Robotics. Springer, Italy (2002)

2. Ho, C.H., Basdogan, C., Srinivasan, M.: Ray based haptic rendering: Force and
torque interactions between a line probe and 3d objects in virtual environments.
International Journal of Robotics Research 19 (2000) 668–683

3. Basdogan, C., Ho, C.H., Srinivasan, M.A.: Virtual environments for medical train-
ing: Graphical and haptic simulation of laparoscopic common bile duct exploration.
IEEE/ASME Transactions on Mechatronics 6 (2001) 269–285

4. Picinbono, G., et alt.: Improving realism of a surgery simulator: linear anisotropic
elasticity, complex interactions and force extrapolation. Journal of Visualisation
and Computer Animation 13 (2001) 147–167

5. Forest, C., Delingette, H., Ayache, N.: Cutting simulation of manifold volu-
metric meshes. In Dohi, T., Kikinis, R., eds.: Medical Image Computing and
Computer-Assisted Intervention (MICCAI’02). Volume 2489 of LNCS., Tokyo,
Springer (2002) 235–244

6. Lombardo, J.C., Cani, M., Neyret, F.: Real-time collision detection for virtual
surgery. In: Computer Animation, Geneva Switzerland (1999)

7. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tis-
sues for surgery simulation. IEEE Transactions On Visualization and Computer
Graphics 5 (1999) 62–73

8. Witkin, A., Baraff, D., Kass, M.: An introduction to physically based modeling
(1994) SIGGRAPH’94 Course Notes, Course No. 32.

9. Deguet, A., Joukhadar, A., Laugier, C.: Models and algorithms for the collision of
rigid and deformable bodies. In: Robotics: the algorithmic perspective. AKPeters
(1998) 327–338

10. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and
friction for cloth animation. In: 29th annual conference on Computer graphics and
interactive techniques, ACM Press (2002) 594–603

11. Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic
display. In: International Conference on Intelligent Robots and Systems. Volume 3.,
Pittsburgh, Pennsylvania (1995) 146–151

12. Schömer, E., Christian, T.: Efficient collision detection for moving polyhedra. In:
Proc. of the Eleventh Annual Symp. on Computational Geometry. (1995) 51–60

13. Mahvash, M., Hayward, V.: Haptic simulation of a tool in contact with a nonlinear
deformable body. In: Surgical Simulation and Soft Tissue Deformation. Volume
2673 (lncs)., Juan-les-pins, France (2003) 311–320

14. Ellis, R.E., Ismaeil, O.M., Lipsett, M.: Design and evaluation of a high-performance
haptic interface. Robotica 14 (1997) 321–327

15. Balaniuk, R.: Using fast local modeling to buffer haptic data. In: Proceeding of
the 4th PhantoM User Group Workshop (PUG’99), Cambridge (1999) 7–11

