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Abstract

One of the most important task in surgical simulation
is the ability to cut volumetric organs. Several algorithms
have already been described but none of them can actually
maintain a specific and important topological property of
the mesh called manifoldness. In this article we define the
notion of manifoldness and we explain why it is important
to preserve it. We propose a new algorithm that maintains
manifoldness and that implements a very simple cut strat-
egy: the removing of soft tissue material, which is an effi-
cient way to simulate the action of an ultrasound cautery.
Finally we present experimental results which show the ef-
ficiency of this algorithm in a surgery simulation system.
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1 Cutting in surgical simulation

Cutting is one of the most important gesture in surgery
and most of surgical simulation systems offer or wish to
offer cutting facilities for at least some of the represented
organs [12]. Cutting has been quite extensively studied for
surface models[16, 14] but has received little attention for
volumetric meshes.

In a surgical procedure, cutting means two different ac-
tions: incising which is performed with a scalpel, and re-
moving soft tissue materials which is performed with an ul-
trasound cautery.

Incising algorithms are the most commonly studied in
the literature. Most of them are based on subdivision
algorithms whose principle is to divide each tetrahedron
across a virtual surface defined by the path of a tool cutting
edge[1, 8]. Although they are very accurate in the render-
ing of the cut these algorithms suffer from two limitations.
First, they tend to create a large number of small tetrahedra
having a low shape quality which can be a major problem
for the implementation of finite element models. Recently,
Nienhuys[9] proposed a 3D adaptive mesh algorithm which

tries to avoid the creation of tetrahedra by moving mesh ver-
tices along the cut surface and by splitting additional tri-
angles. However, this approach limits the number of ad-
ditional vertices at the cost of creating tetrahedra of poor
quality.

Second, these algorithms suppose that the cut surface
created by the motion of a surgical tool is very smooth or
is locally planar. However, in real-time surgical simulation
systems, there are no constraints on the motion of surgical
tools and most of the time the cut surface is not even close to
be a smooth surface. Furthermore, surgical cutting gestures
do not usually consist of a single large gesture, but are made
of repeated small incisions. Therefore, these algorithms are
not of practical use for cutting volumetric meshes, at least
when simulating an hepatectomy.

Cutting by removing soft tissue material can be
efficiently represented by a simple removal of tetra-
hedra and since it does not modify the quality of
mesh elements, it is well suited for real-time soft
tissue simulation. Although it usually reduces to
a self-evident “remove this tetrahedron from
the list of tetrahedra”, it often requires that the
size of removed tetrahedra is small enough to obtain a real-
istic cut and therefore it implies to manage meshes of rela-
tively large size (especially when compared with the previ-
ous approach). In this article, we suppose that this problem
is solved by using a mesh locally refined at parts where the
cut occurs[11].

Figure 1. Example of non manifold objects

However, the obvious algorithm “remove this
tetrahedron from the list of tetrahe-
dra”, cannot be used for realistic cutting simulation



because it does not constrain the mesh to be a manifold
volume. The notion of manifold is defined in section 2
but Figure 1 gives an example of non manifold volumetric
volumes.

2 Manifoldness

The notion of manifold surface or volume, or manifold-
ness, has been studied mainly in the case of triangulated
surfaces [4] but very few papers have focused on volumetric
tetrahedral meshes. This is mainly due to the fact that most
authors are interested in either creating volumetric mesh
from surface meshes[10] or in performing local remeshing
where they suppose the initial mesh is a manifold. Only au-
thors that have addressed the problem of cutting into tetra-
hedral meshes have reported problems while preserving the
manifold nature of the mesh[9, 7] without solving it.

Manifoldness differs from conformality which is neces-
sary for all of the finite elements algorithms, by adding a
topological requirement that is the absence of singularities,
as described in [2]. A mesh composed of two tetrahedra
linked by a single vertex or a single edge are not manifold
meshes.

Definition 2.1 A mesh is a conformal mesh if

� all tetrahedra have a non-empty interior
� the intersection of two tetrahedra are either an empty

set, a common vertex, a common edge or a common face.

Definition 2.2 A mesh is a manifold mesh if:

� it is conformal mesh
� all vertices have a neighborhood that is homeomorphic

to a topological sphere for inner vertices and to a topologi-
cal half-sphere for surface vertices.

� all edges have a connected adjacency.

Manifoldness for a tetrahedral mesh is very important be-
cause it is a requirement for performing many low-level
tasks including:

� computing vertex normal Normals are especially use-
ful for the rendering of the mesh surface with Gouraud
shading or with the PN triangles[15]. In the case of surgi-
cal simulation, vertices normals are also necessary to com-
pute the mesh deformation and the reaction force sent to the
force-feedback device.

� mesh smoothing Many algorithms such as Laplacian
smoothing are based on finding all adjacent vertices to a
given vertex. Finite element methods do not require man-
ifoldness (but only conformality) although non manifold
mesh often leads to ill-conditioned linear systems of equa-
tions.

Figure 2. Removing the tetrahedron can
cause a singularity on an edge (left) or on
a vertex (right)

� mesh subdivision Subdivision surfaces and vol-
umes [13] require a regular connectivity between vertices.

Finally and most importantly, manifold meshes allow to
access all adjacency relationships between vertices, edges,
triangles and tetrahedra with a minimum amount of infor-
mation.

3 Cutting Algorithm

3.1 Problem position

Our surgical simulator is based on a Laparoscopic Im-
pulse Engine[5] which simulates the handle of a laparo-
scopic instrument. The collisions between the tool and the
organs are detected with an efficient hardware accelerated
method [6] and several approaches based on an original bio-
mechanical modeling of soft tissues have been implemented
and tested [3, 11]. In the case of the ultrasound cautery all
the tetrahedra detected close to the tool extremity are simply
removed.

As demonstrated in section 4, it is frequent to find a
tetrahedron that cannot be removed without creating a non-
manifold mesh. Indeed, it can be easily shown that it is
impossible to pierce right through the mesh (Figure 2) or to
separate two connected components (Figure 2) by removing
tetrahedra one by one and without ever creating any singu-
larities.

3.2 Strategies for solving topological singularities

Several approaches can be designed to prevent topolog-
ical singularities. For instance, when a potential topologi-
cal problem has been identified, one could refine locally the
mesh around this singularity and remove both the refined
tetrahedron and the singularity neighborhood. Indeed, this
approach is interesting because it always allows to remove
the targeted tetrahedron, but it can not prevent future new
singularities around newly created vertices thus leading to
cascading refinements. Furthermore, it tends to create many
new, small and poorly shaped tetrahedra.

A second possibility would be to split up vertices, edges
and triangles around each singularity to remove adjacency



between elements. However, a split operation at a ver-
tex can potentially causes singularities on any edge or ver-
tex adjacent to the initial vertex, thus leading to cascading
splits. Furthermore, by splitting triangles and vertices, we
can easily create self-intersecting meshes which greatly re-
duce the visual realism of the simulation.

In fact, we have partially implemented these two ap-
proaches but we decided to abandon them because they lead
to rather complex and computationally expensive solutions.
It should be emphasized that the difficulty in removing
topological singularities significantly increases from trian-
gulated surface meshes to volumetric ones. For 2-manifolds
for instance, singularities can be easily solved by splitting
vertices and edges. As mentioned before, it is no longer the
case for 3-manifolds as singularities can propagate far away
from the initial tetrahedron.

The idea of the algorithm we propose in this article is
the following: starting from a tetrahedron

�
, we provide

a set
���������
	���
����

of tetrahedra containing
�

which can be
removed while preserving the manifold nature of the tetra-
hedral mesh. In some cases, this set is reduced to the initial
tetrahedron, or, in very few cases, to an empty set when no
local solution has been found.

We now describe in more details this new approach.

3.3 Testing removability

A basic component of the algorithm presented below is
to test if a single tetrahedron or a set of tetrahedra can be
removed without creating topological problems.

3.3.1 Case of a single tetrahedron

Testing the removability of a single tetrahedron is quite
easy. This is done according to the number of faces of that
tetrahedron which belong to the mesh surface. Let

�
be the

tetrahedron to be removed.

� If
�

has no faces on the mesh surface (
�

is then inside
the mesh), it can be safely removed iff none of its four
vertices are part of the mesh surface.

� If
�

has exactly one face on the mesh surface, it can be
safely removed iff the vertex opposite to that face does
not belong to the surface.

� If
�

has exactly two faces on the surface (
�

makes an
angle in the mesh surface), it can be safely removable
iff the edge opposite to the two faces does not lye on
the surface

� If
�

has three or four faces on the surface (case of a
pyramid put down on the mesh case or of a single float-
ing tetrahedron) it can always be removed.

3.3.2 Case of a set of tetrahedra

Testing the removability of a whole set of tetrahedra is much
more complicated than for a single tetrahedron Basically,
we have to check that the mesh surface that would result
from the removal of that set is a 2-manifold (the neighbor-
hood of all its vertices is simply connected and each edge
is only adjacent to two and only two triangles). Let � be
the set of tetrahedra to be removed. The test is performed in
three stages:

1. retrieving the sets � 	 , � � and ��� of all vertices, edges
and triangles of the new surface that are adjacent to the
set � of tetrahedra. This is done easily by skimming
through of the tetrahedra of �

2. testing each edge of � � by scanning their neighborhood
and checking that the latter has not been disconnected
by one of the tetrahedra of � .

3. testing each vertex of � 	 by retrieving all the new sur-
face triangles adjacent to each vertex and checking that
triangles are connected through their edges in a single
connected component.

3.4 Algorithm Description

Let
�

be the tetrahedron to be removed. We are trying to
determine a set ��� ������	���
���� of tetrahedra that can be removed
(while preserving manifoldness) such that

��� ��� ������	���
���� .
There are obviously many removable sets, the most trivial
one being the whole mesh. Therefore, we need to give ad-
ditional criteria for defining the optimal set � � ������	���
���� .

Our first criterion is to minimize the cardinality of
� � ������	���
���� (i.e. the number of tetrahedra to remove). In-
deed, it is very reasonable to restrict as much as possible the
side effect of preserving the manifold nature of the mesh.
In term of surgery simulation, it simply tries to avoid the re-
moval of much larger area by the lancet than expected. Note
that we could have replaced this criterion by minimizing the
overall volume of � � ������	���
���� rather than its cardinality.

The second criterion consists in restricting the tetrahedra
of � � ������	���
���� to be adjacent to (i.e. to contain) one of the
four vertices of

�
. The reasons are twofold. First, we want

that � � ������	���
���� to be located around
�

to enforce the visual
realism of the cutting. Second, we want to limit the com-
putation time of ��� ������	���
���� since we are targeting real-time
applications. Unfortunately limiting spatially the search of
��� ������	���
���� implies in some cases the absence of local solu-
tions. Figure 3 shows an example in 2D of the absence of
solutions. In 3D, such cases are possible, though not very
frequent in practice. When the search fails, we decide to
return an empty set � � �����
	���
���� �"!$# .
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Figure 3. In blue, the minimum cardinality
removable set containing the green triangle

3.4.1 Classification
The first step of the algorithm is to test the removability
of tetrahedron

�
. Using the test described above, we can

differentiate between three cases:
� The tetrahedron can not be removed and has exactly one
face on the surface, the problem is then located on the vertex
opposite to that face,

� The tetrahedron can not be removed and has exactly two
faces on the surface, the problem is then located on the edge
opposite to the two faces,

� The tetrahedron can be removed.

When the tetrahedron
�

cannot be removed, we apply
two different algorithms depending on the singularity loca-
tion.

3.4.2 Vertex singularity
A typical flattened map of the adjacency of such a prob-
lematic vertex is shown Figure 4 which can be seen as the
representation of the planisphere seen by that vertex. The
removal of the tetrahedron, in green in the figure, would
create a hole in that planisphere and the vertex adjacency
would no longer be homeomorphic to an half sphere. The
idea is to suppress that hole by searching a path starting
from the removed tetrahedra and going out of the vertex ad-
jacency. This search is performed in a width-first manner in
order to get the shortest path and is further arbitrarily lim-
ited to a depth of 10 in order to restrict the time spent in this
search. When a path is found, its removability is tested and,
on success the set � � ������	���
���� is determined.

If the test fails, we use an additional heuristics. It appears
to be often the case that the path we found, divides the adja-
cency of one of the tetrahedron vertices into two connected
components. Therefore, we also test the removability of the
given path extended with each one of those two connected
components. If one of those two sets appears to be actu-
ally removable it is temporally stored and will be eventually
used if no smaller removable set are determined.

If no paths are found to be removable then, we output an
empty set ��� ������	���
���� � !$# .

3.4.3 Edge singularity

When the singularity is located at an edge, we test all tetra-
hedra surrounding that edge. Because, this edge is on the

����������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������

Figure 4. A vertex adjacency and the corre-
sponding flattened map

surface, we can divide these tetrahedra into two sets, corre-
sponding to the leftmost and rightmost tetrahedra. We first
test the removale for each of these two sets and in case none
can be removed we also test if all tetrahedra adjacent to that
edge can be removed. If not, we output an empty set.

This algorithm is very simple and can be implemented in
a very efficient manner. We could also add more heuristics
in case of failure to try to solve more configurations. How-
ever, because edge singularities do not occur very often, we
have decided to keep it very simple.

4 Results

In order to test this method we have simulated the action
of an ultrasound cautery on several meshes of different size,
geometry and shape quality. At each of the simulation steps
we try to remove the tetrahedra located next to the tool ex-
tremity. We then measure the percentage of resolved cases
and the average cardinality of the removed set. To be more
significant, if a non-removable tetrahedron is encountered
several times it is only reported once.

The meshes that were used are:���
A simple cylinder�	�
A thin sheet with an average thickness of two tetrahedra
��
A rough mesh of a liver (3970 tetrahedra) obtained with

a 3D-Mesher� �
A locally refined mesh of the same liver (8454 tetrahe-

dra), obtained with a 3D-Mesher
	�
A locally refined of a liver (9933 tetrahedra for a third of

the liver) obtained with a home-made edge splitting method

The results appear to be quite stable from one mesh to the
other and independent of the number of tetrahedra removed
or of the shape quality of the meshing. The only differences
appear with meshes showing strong topological singularity
(thin sheet and cylinder).

� Importance of the algorithm

nb. of removable pbs. on pbs. on
Mesh operations tetrahedra vertices edges

1 130 89.3% 9.2% 1.5%
2 265 62.3% 31.7% 6.0%
3 460 84.1% 13.5% 2.4%
4 1448 83.8% 14.4% 1.8%
5 2268 86.1% 13.3% 0.6%



Those figures show for each one of the meshes the num-
ber of attempted removing operations and the percentages
of the latter which correspond respectively to a remov-
able tetrahedron, to a tetrahedron whose removal would
have caused a topologic problem on a vertex and to one
that would have caused a problem on an edge. On aver-
age, 15% of the encountered tetrahedra could lead to non-
manifoldness if removed. However, if those tetrahedra are
not actually removed that ratio increases sharply. Among
those 15%, 80-90% are due to singularities on vertices and
10-20% to singularities on edges

� Algorithm on the vertices

simple extended non average card.
Mesh path path resolved of removed set

1 50.0% 41.7% 8.3% 3.1
2 63.1% 22.6% 14.3% 3.1
3 71.0% 22.6% 6.4% 2.9
4 64.4% 25.5% 10.1% 3.2
5 63.1% 21.3% 15.6% 3.3

A solution is found in about 85% of the cases and the
average cardinality of the encountered sets is 3.3. The addi-
tional heuristic is also an important part of the methodology
since it gives a solution in almost a quarter of cases.

� Algorithm on the edges

half whole non average card.
Mesh adjacency adjacency resolved of removed set

1 0.0% 50.0% 50.0% 6.0
2 18.7% 37.5% 43.8% 4.7
3 18.2% 27.3% 54.5% 5.0
4 46.2% 19.2% 34.6% 4.0
5 42.9% 21.4% 35.7% 3.8

The algorithm we proposed for solving this case is not
as efficient and solves only half of the encountered cases.
However, this is only of few importance this case appearing
in less than 2% of the removal operations.

� Global figures

General Problems
Mesh non average card. non average card.

solved of removed set solved of removed set
1 1.5% 1.2 14.2% 3.5
2 7.1% 1.8 19.0% 3.3
3 2.2% 1.3 13.7% 3.0
4 2.1% 1.3 12.8% 3.3
5 2.3% 1.3 16.5% 3.3

The algorithm solves more than 97% of the encountered
cases, the removed set has an average cardinality of 1.4.
Only considering problematic cases, those figures are re-
spectively 85% and 3.3.

The ability to solve 97% of cases is satisfying for the
purpose of surgery simulation. Indeed at each step of the
simulation several (5 or 6) tetrahedra are tested for removal
and in practice there is always at least one for which the
removal can actually be performed.
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