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Abstract

We present a framework for cardiac motion recovery usingattiigstment of an electromechanical
model of the heart to cine Magnetic Resonance Images (MRI¥ dpproach is based on a constrained
minimisation of an energy coupling the model and the data. @ethod can be seen as a data assimi-
lation of a dynamic system that allows us to weight apprdelyathe confidence in the model and the
confidence in the data. After a short overview of the eleceohanical model of the ventricles, we de-
scribe the processing of cine MR images and the methodolmgyétion recovery. Then, we compare
this method to the methodology used in data assimilatioesétted results on motion recovery from
given cine-MRI are very promising. In particular, we shovattlour coupling approach allows us to
recover some tangential component of the ventricles matibith cannot be obtained from classical
geometrical tracking approaches due to the aperture proble

1 Introduction

The modelling of the heart’s electromechanical activityars active research are§, [9, 1, 13, 4]. The
simulation of the heart has received growing attention dughé importance of cardiovascular diseases in
industrialised nations and to the high complexity of thedias function.

In order to help the clinical practice of cardiologists, stimportant however that those models not only
describe with some degree of realism the cardiac functiomlso be patient specific. Creating such person-
alised cardiac models implies that the anatomy of the paisetaken into account but also that the model
parameters are tailored such that the simulated cardiacomatatches well with the observed cardiac
motion. This represents a great challenge due to the imrptsysiological complexity of the underlying
phenomena which combine tissue mechanics, fluid dynamesrephysiology, energetic metabolism and
cardiovascular regulation. Also only partial informatioan be derived from clinical data for a specific
patient making the parameter estimation an ill-posed probl

The objective of this paper is to propose a methodology tinas at creating personalised electromechanical
model of the heart from cine MR images. Previous wd@kl[0, 8, 12] on the adjustment of a geometrical

model of the heart on time series of medical images are mbaadgd on the concept of deformable models.
In such a framework, a surface or volumetric mesh is fittedht apparent boundaries of the heart by



minimising the sum of two energies: an image term and a reging or internal term. In such approaches,
the model can be considered agatic system evolving under the minimization of an energy.

Conversely, electromechanical models of the heartginamic systems that evolve even in the absence of
any image term. Adjusting such dynamic systems to time sariedata (a method also known as "data
assimilation”) is fundamentally different from adjustiagstatic system since the parameters of the dynamic
system are additional degrees of freedom that should bmasti. In the medical imaging community,
P.C Shi and his group introduced data assimilation teclasiday integrating cardiac models and Kalman
filters for state and parameter estimation, see for instib@leand [18]. However, such techniques, such as
extended or unscented Kalman filtering, are often limitedh®ycurse of dimensionality since they involve
full covariance matrices whose size are equal to the squaremumber of state variables augmented by
the number of parameters to estimate. In the case of climipplications, as cardiac electromechanical
models are already complex dynamic systems with changingdery conditions (cardiac phases), having
a computationnally efficient estimation method is crucial.

In this paper, we propose an efficient method to estimate tite §.e. the position and velocity) of an
electromechanical model from cine MR images which is irepiirom the deformable model framework
used in medical image analysis. The goal of this paper is twwshe formal equivalence between this
approach and a filtering method introduced by Moireau e7alged in data assimilation, which is different
from Kalman-like filters such as the one used 118][ The filtering approach proposed i@][does not
involve any matrix inversion (except the mass matrix whigl idiagonal constant matrix), so that it allows
much faster computations: the motion of a whole cardiacecgnla mesh with 50 000 tetrahedral elements is
estimated in about 10 minutes on a regular PC. This incrdaggsly its potential future clinical application.
The theoretical efficiency of this filter for mechanical st has been demonstratedh [The theoretical
equivalence between the deformable model approach prdguse and this filtering approach leads to a
better understanding of the trade-off between the elecobranical model and the image data.

We assume in this paper that model parameters are well kniavangler to focus only on state estimation.

Some preliminary results on parameter estimation are pteddn conclusion, but this is not the goal of

this paper. The proposed approach is first validated on syinthme series of images and then applied to
clinical cine MR images of a human heatrt.

2 Electromechanical model

We consider in this paper a fairly reduced electromechamuadel since we want the complexity of the
model to match the relatively sparse measures availabhe firtaging data. Furthermore, this coarse level
of modeling allows us to simulate a whole cardiac cycle on amwéth 50 000 tetrahedral elements in about
5 minutes on a regular PC. Of course, the heart is a nonlingéeral undergoing large strain. Thus, the
assumptions of our simplified model are not realistic, batglobal behavior of the heart is well represented.
Furthermore, the limited computational time makes theresion of the mechanical state and parameters
tractable and allows us to test the behaviour of the modekdasof heart beats.

2.1 Anatomy Description

The two ventricles are represented as a tetrahedral voiimmeésh including some anatomical information
such as the myocardium geometry, the definition of somecaliranatomical regions (the American Heart
Association regions), and the local orientation of fibrese ¥8n build such a mesh from MR images, as
explained below in sectioB.1. The local fibre orientation can be either created from basiatomical
assumptions (elevation angle across the wall) or extrdoteal Diffusion Tensor MRI (DT-MRI) L1].



2.2 Simulation of the cardiac electrophysiology

2.2 Simulation of the cardiac electrophysiology

Several electrophysiological models have been proposéukifiterature. Due to its efficiency, we use an
Eikonal approach for the electrophysiology propagatioih & volumetric implementation of the algorithm
described in 15]. The depolarisation timé&; of the electrical wave for a given vertex of the volumet-
ric mesh is computed by solving the anisotropic Eikonal ¢éiqua/?(0t] DOtg) = 1, wherev is the local
conduction velocity parameter aftlis the tensor defining the conduction anisotropy. In the fdwerdi-
natesD = diag(1,p,p), wherep is the conduction anisotropy ratio between longitudinal &ransverse
directions. An anisotropic multi-front fast marching afigom was developed in order to solve this model
very efficiently.

2.3 Simulation of the myocardium contraction

The biomechanical model presented here is derived from é-suidle modelling of the myocardium de-
tailed in [2]. The mechanical model is composed of two elements, as slowkig. 1.a. The former is a
parallel element which represents the passive properfifseaissue. This parallel element is anisotropic
linear visco-elastic. The second element is an active aotilie element controlled by the electrophysiol-
ogy. More precisely, when the action potential is highenthagiven threshold (i.e. when we reach the
depolarisation timéy), some calcium stored in the sarcoplasmic reticulum intheecardiac cells is used
for the ATP hydrolysis which provides energy to the molecutetors in the sarcomeres, generating the
contraction of the fibre. The duration of this depolarisaiti®the action potential duration (APD). The elec-
trical commandu is then set to a constakirp which represents the rate of the hydrolysis of the ATP. After
contraction, during the repolarisation, calcium moveskhato the sarcoplasmic reticulum and this calcium
decrease allows the relaxation of the muscle. The elettrimamandu is then set to another constankrs
which represents the activity of the sarcoplasmic reticulu

Thus, the contractile element is controlled by its corresfilag commandi through the differential equa-
tion: oc + |uloc = |u|; 00 Whereaog is the strength of the contraction, aog the maximum contraction.
Then, with its associated commandiescribed above, the strength of the contraction for eachahtedron
element is:

0o (1— e« during depolarisation ty <t < t;

ac(t) = { oc(ty ) eesti—t) during repolarisation t, <t <ty+HP (1)

wheret, =ty + APD is the repolarisation time andP the heart period. The commamdand the intensity
of the resulting contraction are represented on Eilg. Then, the active contractile element creates a stress
tensoroc f @ f wheref is the 3D fibre orientation and the dyadic product. For each vertex of each element,

, _ .1 L _
this results in a 3D force vectdg = 2 Js(ocf ® f)AdSwith fi the surface normal arithe element surface.

Finally, we represent the simplified dynamic law by a stiffmenatrixK for the transverse anisotropic
elastic part (parallel element), a diagonal mass maifrand a damping matri for the internal viscosity
part, which is the Rayleigh damping mat@x= aM + K, the contraction force vectdt: created by the
contractile elements, a force vectigs corresponding to the pressure forces in the ventricles afwica
vectorFg corresponding to other boundary conditions. The resultmgof motion is:

MY +CY +KY = Fpy + Fc + Fg 2)

with Y = (X1,Y1,21,...%,¥i,Z,... X\, YN, Zn) T the position vectorN the number of mesh vertice&s, i, z)
the position of thé®" vertex,Y = 9 the velocity,Y = &Y the acceleration an: = (fg,.... fg,... fg,) the
assembled contraction force.
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Figure 1: (a) Simplified biomechanical model. (b) Electricammand and intensity of contraction.

LetX = (Y,Y)T. Then,X is the state vector of the following dynamical system:

{x = AX+R(U,0)
X(0) = Xo

whereXg is the initial state vectof is the set of parameters of the model such as maximum coiityaicir
example and wherA (which depends of some parameters too) Rradte defined by:

[ Osnan I3n,3N _ Osn
A= < Mk —MIC ) R= < Fev + Fc+Fg > (4)

We simulate the four cardiac phases (filling, isovolumetdntraction, ejection and isovolumetric relax-
ation) as described inlfl]. The arterial pressures were computed using a 3-elementkssel model
described in17].

3)

3 Mesh Creation and Model Initialisation

3.1 Mesh Creation

4D (3D +t) cine MRI provides time series of high resolutionaiges of the heart that describe in part or
in total one (averaged) cardiac cycle. A cine-MRI typicatiynsists in a sequence of 15 to 20 3D images
for one cycle. The high intensity contrast between myocendand ventricular blood pool allows a rough

segmentation of the blood pools based on the combinatiohreholding and connected component ex-
traction. This segmentation is only used to demonstrateptissibilities of the method, a discussion on
the various segmentation methods is out of the scope of ttiédea Fig. 2.c presents these two connected
components for one image of the cardiac cycle. We need td buibmputational mesh of the myocardium,

(b) (©

Figure 2: (a) Mid-diastole image. (b) Segmented mesh wittthstic fibre directions. (¢) Segmented blood
pools of one MR image of the cardiac cycle.



3.2 Model Initialisation

adjusted to the MRI image corresponding to the beginninguofsomulation cycle. The first instant of our
simulation cycle is the mid-diastole which correspondsrtanstant when the ventricles are almost filled,
just before the atrial contraction (P wave). We select fas the mid-diastole image, using the volume
curves, detailed in the next paragraph. Then, the epicareind left and right ventricles endocardia were
delineated on this image using an interactive tool. Thedieaddions generate three binary masks of the
epicardium and the endocardia which are combined to obterbinary mask of the myocardium used to
create the mesh. This is done with isosurface extractiontetnrahedral mesh generation, using the INRIA
software GHS3D (http://www.simulog.fr/mesh/gener2 Jitm

We also need the local fibre orientation for this mesh. We geaesynthetic fibre by linearly interpolating
the elevation angle between the fibre and the short axis pleome 8(° on the endocardium te-80° on the
epicardium. Fig2.b represents the obtained anatomical mesh with its syatfiete directions.

3.2 Model Initialisation
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Figure 3: Left (solid line) and right (dashed line) venteiclolumes from MRI.

Electrical Model: As cardiac MRI is ECG-gated, we know the heart rate (here datiperiod is B s)
and the acquisition times of the 3D images related to the Rewsstant. This allows a first synchronisation
between the image sequence and the simulation cycle. Adabiieal information is not fully available,
we need to extract additional information from the imagese b the limited field of view, we only see part
of the right ventricle in the MR images. Futhermore, the tigéntricle blood pool has a grey level which
varies along the cardiac cycle in cine MR images, thus tlalégig is not reliable. Finally the trabeculae
make the right ventricle segmentation difficult. For allsbeeasons, we have an important difference in
volume between the two ventricles, as shown in Bg.A more advanced segmentation method could
overcome most of these difficulties, but this is out of thepscof this article. As our action potential
propagation model only needs as inputs the time of the lisiiton of the electrical wave and the action
potential duration for each element, we extract averagaegafrom the volume curves. On these, one can
observe the times of the beginning of the atrial contractiowave), of the ventricular contraction (R wave),
and of the ventricular relaxation (T wave) independentlydach ventricle (see Fi@). These times were
set respectively t0.0827 s, 0125 s, 0425 s. Then, we set the average value of the APD to the differen
between the times of the beginning of the ventricular catitva and relaxation. Thus, for each vertex, APD
is equal to 300 ms.

Mechanical Model: The passive mechanical parameters used are taken frontetetdre L6]. For the
active component, we can use the volume curves to compuggdbigon fraction, which is closely related to
these parameters, in order to initialise it. However, duhégpossible error on the right ventricle volume, we
use only the left ventricle volume curve to calibrate thebgllocontractility (the maximum contractilitgg
constant for all the volumetric mesh) in order to obtain thene ejection fraction as the one computed
from the left ventricle volume curve. For our data was set to @73 MPa/mm. The rest position of the
mechanical model is defined as the mid-diastole mesh created



4 Coupling Model and Data: Methodology

In this section, we describe a method for coupling a dynaiyétesn, the electromechanical model of the
heart, and motion information from cine MRI. We start by dissing the choice of a metric to compare the
simulated and observed motion and then describe formadlythblem at hand: having a dynamic system
that matches the available observations. Finally we shaw rtiotion tracking following a deformable
model approach is equivalent to a data assimilation fortrmlavhere the error is minimised. This data
assimilation formulation is directly inspired from the rmetlology of [7].

4.1 Metrics for comparing simulated and observed cardiac motion

Our objective is to minimize the discrepancy between thaikited cardiac motion and the actual one. One
of the major difficulty is that in cine-MRI (which is the mairyamic modality in clinical routine MRI),
only the apparent motion is visible. We see how the boundasye®, but we loose information on the
tangential motion, which is important in the heart. We neegdrbvide a metric to compare the model and
the data taking this into account.

Since at each image instant the binary segmentation of g and left blood pools are available it is
reasonable to define the metric as the distance of the modetardial surfaces to the blood pool surfaces
as they should ideally match. Thus, for each pdfjraf one endocardium surface of the mesh, we find the
nearest point;® on the corresponding surface extracted in the MR image.ll\de@ want the distance;
betweenY; andY° to be zero. This approach is illustrated in Fig(in green) in whichri; is the normal to
the blood pool surface at the poirit.

Howewer, the distance maps must be either precomputedg@st@osts) or computed during the estimation
(computationnal costs). Thus, in this paper, we proposestothe reverse metrics: the distance of the
blood pool voxels to the mesh vertices as shown in Eign red). In this figureN; is the normal to the
mesh at the poin¥;. Thus, for each poin¥; of one endocardium surface, we find the pO’(ﬁf‘g of the
corresponding surface in the image contour for which theestgoint of the heart mesh¥s Ideally, we
want the distance; betweer; andY;"™ to be zero.

Figure 4: Distances; of the mesh to the blood pool (green) athabf the blood pool to the mesh (red).

Data interpolation: Due to limited temporal resolution, only a few MR images arailable for a cardiac
cycle. The time step used in the estimation is far smallen tih@ period between two MR images and
we need information at each time step. Rather than intetipgldhe MR images, which would blur the
contours, we prefer to interpolate the image forces desdrib the previous paragraph and computed at the
previous and next images at each time step ($df¢r details).

4.2 Deformable Model Approach

This approach is based on segmentation by deformable miodetich we minimise the sum of the energy
of the dynamic system representing the heart and the enemggsponding to images forces, which are



4.3 Data assimilation approach

computed from contour images with distance maps for examplee introduction of the model in the
minimised energy allows us to recover some movement whinhatebe obtained from classical geometrical
tracking approaches. Of course, the image forces have nsigdbgical meaning, but if we couple the
model and the data and if we estimate the model parametelish(usthe next step of this work), the
motion generated by the model should converge to the onenaubén the images. Thus, the intensity
of image forces should decrease along the estimation anestirmated motion should be more and more
physiological.

The definition of image forces are consistent with the meteicosen in the previous section. Namely, for
each mesh point;, we seek the closest poi]ﬁifmg along the normal directiolﬂli of the mesh a¥,. Since
the blood pool surfaces are roughly segmented as binaryas)age computée(i'mg as the intersection of the
normal line aty; with the isosurface(x,y,z) = 127.5 for binary masks set tb= 255. This intersection can
be computed fairly efficiently and with a subvoxel accurddgre complex image forces involving intensity
profiles, image blocks or textures could be used instead@grsm [3]. Here, we minimise the following
energy:

Eimg(Y,Y,Y'™) = ZinYi =Xl (5)
i=

whereN; is the normal of the endocardium surface at the p%inm is the number of points of the endo-
cardium surfaces (the poin¥ are indexed from 1 ton for more simplicity) andy; is the confidence in the
measure(i'mg. When we differentiate this energy with respeclrtove obtain:

T | T -¥™) | = | 2vdz o ©

Finally, this approach consists in adding the image forags(2,Y,)N; to the vertexY; belonging to endo-
cardium surfaces. This is similar to the pro-active defdsteanodel described irlH].

4.3 Data assimilation approach

We will show in the following that this minimisation of engrgan be related to a data assimilation approach.
The methodology of this data assimilation is directly imsgifrom [7]. In this approach, two parts are taken
into account: the electromechanical model described byatimu3 with inputs consisting in the electrical
command and different external loads, and the availablergagons. We assume that the parameters of the
model are known, unlike the initial position conditiap on which we make an error @k (X(0) = Xp+&x).

A new dynamical system callesiate observer takes as inputs the electrical command and the image data
and returns thestimated state, written asX which should converge to theue state X. In classical data
assimilation approach, thabservation Z (measures) can be directly computed from the true 3tatbanks

to anobservation operator H such thatz = H X. Then, the observations computed from the estimate
state Z = HX) are compared to the measured observati@sd the differencéZ — Z) calledinnovation

is taken into account in the sate observer dynamics.

In our case, if we not& the blood pool surfaces, we no longer hae=- H X since with cine MRI, we
cannot track any material points during a cardiac cycletebud, we can compare the two surfadeandZ
through a distance map which can be formalizedH&X,Z) = 0. The observation operator is taken as the
gradient of the square distance between the two surld¢¥sZ) = 0d%(Z,X) =0



4.3 Data assimilation approach

The estimated staté does not match perfectly with the observation, and theeefbe error between the
estimated state and the true state can be quantifiedisiftiz, X) = 2d(z,X)0d(Z, X). Note that1d?(Z, X)
is a vector of the same size ¥sand its velocity components and its components which cpoms to
points that are not on endocardium surfaces are 0. For pomthe endocardludez(Z X) = 20;0d;
whered; = ||Y; — Y'mgH Furthermore, by definition of a distance maji; = N; whereN; is the normal of
the heart mesh at poiit. Then, the built state observer is:
X = AX+R(u,6)+KqOd*(Z,X) @
X(0) = Xo
with Kq the gain associated with the data. We can see that with a highthe estimated state will rely more
on image data information than in the electromechanicalehddonversely, with no gain, the observer do
not take into account the data and is equivalent to the elmetchanical model. Thus, the choice of the
gainKy depends on the relative confidence in the model and the data.

Itis of high interest to analyse the error between the egéthatateX and the true stat¥ in order to choose
the gain. With a proper choice of the gain, the error shouldveaye towards zero. We write the error
dynamics by subtracting the model (equat®)rfrom the observer (equation:
{ X = AR+KeOP(Z,X)
X(0) = &
After linearising the data and assuming that the estimate is close toX:

(8)

0d?(Z,X) = 0d*(Z,X) + Hg(X)(X = X) (9)

whereHd(X) a matrixn x nwheren s the size of the state vect¥r Its components corresponding to points
on endocardium surfaces are the 3 Hessian matrix of the squared distadcand are null otherwise. Since
the real stateX is supposed to coincide with the position and the movemettiefipparent boundaries in
the imagez, thenJd?(Z, X) = 0. The error dynamics is:

{ X = (A+KgHg)X
X(0) = &

A result of the control theory shows that this error converge 0 if all eigenvalues ofA+ KgHg) matrix
have negative real parts. This provides a criterion forcelg the gain matrixy.

(10)

In practice, we choose the gatfy as in [7] : Kg = yM~tH]. Indeed, if we decompose the error dynamics,
we have:

MY +CY + (K +yHIHq)Y = 0 (11)

Therefore with this choice dfy, the stiffness of the error dynamics is increased. It ingplia increase of
the frequency and the damping of the eigenmodes, and therafbetter convergence toward zero. Here
we see the difference between this filtering method and Kralfittering methods such as the one proposed
in [18]. The gainKy is not the Kalman gain, so that the result of the filter is net dptimal result in a
stochastic way, buty is chosen in order to ensure the convergence of the &rtoward zero. Although we
do not ensure an optimal result, we avoid to compute the sevef a combination of covariance matrices,
thus leading to a much faster filter than the Kalman approach.

We use the Houbolt implicit scheme to integrate equafiorsince the image term is also made implicit,
the generalised stiffness matrix that is involved in thedinsystem of equations should change at each
time step since the matridg depends on the position of endocardium vertiéesHowever, modifying the
generalised stiffness matrix at each time step impliesdah@holesky decomposition or a preconditioning
must be performed at each iteration which is computatignedty expensive. Since the stiffness matfixs



constant, we chose to estimate the tet] HaYiiqt numerically, by first computing the positiofy, g as if
there were no image forces and then multiplying it\,bgg Hg. This proved to be a fairly efficient approach
since the preconditioning of the generalised stiffnesgimastonly done once. This also gives better results
than a semi-implicit scheme where image forces are estavaplicitly.

Finally, one should note tha; is an eigenvector of the Hessian matrix of the distance dhayith eigen-
value 1. Therefore, when using the gain matrixas=yM—tHJ, the dynamic law of the state observer is
given by :

MY +CY +KY = Fpy + Fo + Fg -+ yH] 0d2(Z,X) = Fpy + Fe+ Fs + | 2yd(Z,Y))Ni 12)

This corresponds exactly to the formulation we obtainedhwit deformable model approach.

5 Results

5.1 Validation with synthetic data

In order to validate our state estimation method in a quatinté way, we generated synthetic cine-MR
images using the electromechanical model with standargegalMe took 29 instants of the second simulated
cycle and we generated the corresponding segmented 3D smasgjag rasterisation of the tetrahedra. As
we assume here that the model is known, all parameters of tielnused in the state estimation are the
same than the ones used to generate the synthetic data.hEhmisly error is on the initial position. We can
then quantify the evolution of the mean position error irs idieal case.

State error analysis: We observed, as expected, that the root mean squared eMBHERdecreases with
time, under the action of the state estimation filter. Hehne, gainy was set to 8. Fig. 5.a shows the
evolution of the position error along three cardiac cyclégy. 5.b shows the intensity of the contraction
forces and the intensity of the image forces for one endaalavdrtex and along three cardiac cycles. We
can see that the image forces decrease rapidly in the firestofithe first cycles and that the images forces
remain small compared to the intensity of physical forceshsas the contraction forces. We can see also
that the image forces do not vanish exactly to zero. The dsirg of this RMSE depends on the spatial
resolution of the images.

first cycle second cycle third cycle

RMSE(mm)
volumes(mL)

s s AR
tmes(s) . mes © time(s)
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Figure 5: (a) Root mean squared error for three differentigpeesolutions. Solid line: 1 mm, dashed
line 0.75mm, dash-dot: .6mm (in all three directions). (b) Intensity of the contrantforce (dashed
line) and intensity of the image force (solid line) for an eodrdial vertex along three cycles. (c) Left
ventricle volume curves from the images (solid red), andHtioee different temporal resolutions: complete
sequence (30 images, dash-dot blue), 15 (dash magenta)(kmd) slash-dot cyan).



5.2 Results with clinical data

Effect of the spatial resolution of the MR images: The voxel sizes used in the synthetic images are respec-
tively 1mm, Q75mm and G mm in all three directions. The RMSE decreases if we iner¢hs spatial
resolution of the images and seems to converge to valueswahécsmaller than the spatial resolution of the
images and which should correspond to numerical approlamairors (see Figh.a).

Effect of the temporal resolution of the MR images: For this we used real images (see details in next sec-
tion). The first one was a complete cine-MRI sequence (30 @sladhe second and the third ones were
subsamples of the cine-MRI sequence (respectively 15 amh§és). Fig5.c shows that the left ventri-
cle volume is better approximated in the case of sequendis3®ior 15 images than in the case of the
sequence of 5 images. Nevertheless, as the contractilityedeft ventricle was well calibrated, the knowl-
edge of the model allows us to obtain good information on dfievientricle volume curve, and to compute
good approximations of the ejection fraction. The left viete ejection fractions obtained respectively from
the complete segmented sequence, from the estimationentiplete MRI sequence, and with 15 and 5
images sequences are respectively26%, 5934%, 5756% and 5B4%.

Cardiac Function Estimation: ~ Finally, in Fig.6, the physiological curves obtained from the state estinati
are compared with the ones given by the reference simulafldvese physiological curves correspond to
the right and left ventricular pressures (F&a), volumes (Fig6.b) and flows (Fig6.c). In the isovolumic
phases, pressures are computed to counterbalance eftecealsuch as contraction forces and image forces
in the case of the estimation in order to keep the volume eohstVe can see that in these phases, and in
the ejection phases in which the pressures depend on floaugginthe Windkessel model, the pressures are
well recovered. We can see also that after a small periodaltietinitial position error, the volumes and the
global evolution of the flow are well recovered. As flows are tterivative of volumes, errors on volumes
due to the oscillation of image forces are magnified.

S(mmHg)

flow(mL/s)

4.8.8.8. 8.8 2.8

di | os | os
time(s) time(s) time(s)

(a) Pressures (b) Volumes (c) Flows

Figure 6: Comparison of: a) Left (red) and right (blue) vantlar pressures(in mmHg). (b) Left (red)
and right (blue) ventricular volumes (in mL) (c) Left (red)daright (blue) flows (in mL/s) in the reference
simulation (dashed curves) and in the estimation (solideg)rwith reference images of voxel size df thm

in all three directions.

5.2 Results with clinical data

Several estimations were made with different values of #iegin order to see the effect of the gain on the
state estimation. Fig.shows the MRI segmentation at a titnef the cardiac cycle. The superimposed lines
represents the endocardium and epicardium surfaces ofderd meshes obtained with different valuey.of
The higher value of the gain gives more confidence in the dhaba in the model, then the image forces are
larger in this case as we see in Figd and7.c. We can see that the left ventricle is well tracked in the tw
cases, while the right ventricle is better tracked in theeag#fghe higher gain. It shows that the contractility
parameter in the right ventricle does not equal the one imgt@entricle, which we calibrated with the left
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Figure 7: a) Delineation of two estimated heart meshes avendimet; during the contraction. These
delineation are superimposed to the short axis view of tiggnsatation. The cyan and red mesh were
obtained respectively with a gainequal to 08 and 02. b) and c): 3D view of the estimated heart meshes
with a gain of 08 (b) and a gain of @ (c) at the same timg. Colours correspond to the intensity of the
image forces (in MPa.mn?).

volume curve obtained from the cine-MRI. Thus, it allows aisi¢tect differences in parameters, which can
lead to parameter estimation.

In order to qualitatively evaluate the estimated motion,used tagged MRI on the same subject to extract
the projection of the 3D real cardiac motion in a number ofrslais view (Fig. 8.a). The qualitative
comparison with the projection of the 3D estimated motioig.(B.b) is promising, as we observe similar
motion patterns. The estimated motion is much smootheralthetinfluence of the model. We are working
on a more quantitative comparison with the estimated motion

Figure 8: Projection on a short axis view of the 3D end-di&stnotion respectively extracted from tagged
MR images (a) and estimated from cine-MRI with the presenmethod (b). (same subject)

6 Conclusion

Coupling electromechanical models of the heart with clihidata in order to help diagnosis and therapy
planning is still very challenging. This article presertte link between deformable models and data as-
similation in order to estimate cardiac motion from cine-MRhe proposed method allows to keep the
low computational cost of deformable models while usinggmurous mathematical framework. Motion
recovery is demonstrated on synthetic and real data. Theseiging preliminary results will be extended
in order to perform parameter estimation, which is the uiiengoal of the approach.
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