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Abstract. We present a comparison between a voxel based approach
and a region based technique for detecting brain activation signals in
sequences of functional Magnetic Resonance Images (fMRI). The region
based approach uses an automatic parcellation of the brain that can
incorporate anatomical constraints. A standard univariate voxel based
detection method (Statistical Parametric Mapping [5]) is used and the
results are compared to those obtained when performing detection of
signals extracted from the parcels. Results on a fMRI experimental pro-
tocol are presented and show a greater sensitivity using the parcelling
technique. This result remains true when the data are analyzed at several
resolutions.

1 Introduction

Since the discovery of fMRI [10], the analysis of these series of images has been
an extremely active field of research. One of the challenge when analyzing these
noisy data is to detect very small increase of activity in the brain. Many ap-
proaches have been proposed for this purpose. They can be classified in sev-
eral overlapping categories such as multivariate versus univariate, voxel based
versus region based, parametric versus non parametric, inferential versus ex-
ploratory, etc.

Despite the number of approaches proposed, the only one that is extensively
used to detect the brain activity is to fit at each and every voxel in the brain
a linear model that represents the expected voxel time course derived from the
experimental paradigm. A test is then applied to detect voxels that have a sig-
nificant part of their variance explained by the model. An obvious problem with
this technique is that the threshold controlling for the type one error (false pos-
itive rate) has to be adjusted depending on the number of tests performed, here
as many as voxels in the brain (in the order of 20000). Because voxels are spa-
tially dependent, techniques have been developed to set this threshold such that
the correction for multiple comparison does not lead to a conservative test with



reduced sensitivity. For this purpose, the theory of random field has been exten-
sively developed and applied in particular through the work of K. Worsley [13].
This approach has been popularized by K. Friston and co-workers through the
distribution of the SPM package1.

Because brain regions activated by a given experimental paradigm generally
spread over many contiguous voxels, spatial regularization is used through the
application of spatial filters. These filters tend to increase the signal to noise ratio
(SNR) and permit a partial overlapping of the signal originating from different
subjects data that are not (and cannot be) perfectly aligned [7]. The correction
for multiple comparison is strongly linked to the size of the spatial filter since the
greater the dependence of the data, the less severe is the test correction. Clearly,
activated region with size and shape similar to the one of the filter are best
detected. Since activated regions can in principle have any size or shape, multi-
filtering or multi-scale approaches have been investigated [11, 14]. However, the
greater the filter size the less precise are the boundaries of the region.

In this work, we propose an alternative approach that consists in parcelling
the analyzed brain into a user defined number of regions (or parcels). The par-
celling method is able to take into account anatomical information extracted
from the T1-weighted MRI acquired together with the functional images. This
should allow for the use of relatively large spatial averaging informed by the
anatomy. It also should solve easily for the multiple comparison problem since
functional signals extracted from parcels can in a first approximation be consid-
ered independent. In the first section, we present the parcelling technique based
on a K-means algorithm with geodesic distances. The functional signal assign-
ment to the parcels and the detection model are then presented, followed by
a description of the methodology used to compare voxel and parcel based de-
tection analyses. Comparison has been investigated with several filter sizes and
corresponding numbers of parcels on an experimental protocol. We show that
the method is more sensitive at several resolutions.

2 Methods

2.1 Automatic parcellation of brain images

The aim is to provide a fully automatic parcellation of a certain volume of interest
(the cortex in our case) at a (user supplied) adjustable resolution. Furthermore,
a desired feature of such a parcellation is to obtain “homogeneous” parcels: a
first intuitive guess is to use a criterion based on the cells volume but, to prevent
the algorithm from finding very elongated cells, a criterion such as the sum of
inertia of each cell (intra-class variance) seems more relevant, thus introducing
a cell compactness concept. We propose an algorithm based on the K-means
clustering [3] using geodesic distances.

1 http://www.fil.ion.ucl.ac.uk/spm/



Definition of the volume of interest Here we restrict the functional data
analysis to the cortex. A segmentation of the grey matter is performed on a T1-
weighted image [9] and a brain mask is extracted from functional images using
an adapted threshold. The domain to parcel is then defined at an anatomical
resolution as the intersection (logical and) between these two binary images.

Parcellation of the domain The volume of interest is described by a set of 3D
coordinates {xi}. We define parcels as connected clusters of anatomical voxels,
represented by their centers of mass x̄j . The problem is then to find simultane-
ously a partition of the voxels {xi} into k classes Cj and the cell positions x̄j

minimizing the intra-class variance:

Iintra =
k∑

j=1

∑
i∈Cj

d2 (xi, xj)

Such an optimization problem is efficiently solved using the well-known K-means
algorithm in the classification context. After an initialization step that randomly
selects k distinct voxels in the volume of interest as the initial cell positions, the
criterion is solved using an alternate minimization of Iintra over:

1. The partition of the data (given cell positions): each voxel xi is assigned to
the class Cj that minimizes the distance to its position x̄j .

2. The cell positions (given a data partition): the position x̄j is chosen to min-
imize the variance of the xi’s assigned to this class.

With spatial data, each step of the K-means algorithm can be rephrased in
terms of discrete geometry.

Step 1 consists in the construction of a Voronöı diagram. Due to the non-
convexity of the domain, we cannot use Euclidean distances for the computation
of d. Indeed two points on opposite sides of a sulcus are close to each other
in Euclidean terms but may be geodesically far apart. Thus the geodesic 3D
distance (the shortest path within the volume of interest) is the most suitable.
We implemented 3D discrete Voronöı diagram with geodesic distances using
region growing and hierarchical queues adapted from [2].

Step 2 consists in computing the “geodesic center of mass” of each cell. Its
value may be obtained by a gradient descent on the intra-class variance but in
practice, most of the cells are still convex and the standard center of mass is
a good approximation. In our implementation, we use the Euclidean center of
mass as far as it stays within the cell, and a gradient descent otherwise.

Finally, the K-means clustering algorithm consists in repeating these two
estimations until convergence, reached when voxels assignments to the cells are
the same at two consecutive steps. There are proofs of the convergence even if
the domain is non-convex, but in our case we use approximations with discrete
distances that prevent a statement on convergence. We however observed that
this algorithm always converges in a reduced number of iterations (typically a few
dozens). Although implemented in 3D, we present, for display purpose, in figure 1
an example of convergence of the algorithm on a 2D cortex slice of an hemisphere
with 50 parcels. The algorithm can be further improved by introducing additional
anatomical constraints through the use of weighted geodesic distances.



Fig. 1. 2D geodesic Voronöı diagram with 50 seeds (black dots). Left: random initial-
ization. Right: after convergence of the K-means algorithm.

2.2 Signal assignment

In this section, we address the method used to assign a representative time course
at each parcel.

Parcellation being defined at an anatomical resolution, functional images are
oversampled at this resolution using spline interpolation. Numerous strategies
can then be used to provide a single temporal signal to each and every parcel
using all signals belonging to the same cell: average them with mean or median,
obtain the first eigenvector of their PCA or use multivariate analyses such as
CCA (Canonical Correlation Analysis) to find the linear compound of signals
that maximizes correlation with a model [4].

In the following, we used the sample mean in a first approximation leaving
a thorough study of the best sampling technique for future work.

2.3 Statistical detection model

We first present the model used to detect activated signals coming from voxels
or parcels. We used the General Linear Model (GLM) popularized by the SPM
software. Then we present the multiple comparison problem corrections used for
both voxel and parcel based analyses.

The General Linear Model Given a column vector Y corresponding to a
time course, the general linear model [5] is:

Y = Xβ + ε

where X is the so-called design matrix whose columns represent the a priori
information on expected signals, ε the residual error (assumed normally dis-
tributed) and β the parameters of the model.

In order to take into account the temporal autocorrelation of functional time
series, the data and the model are convolved by a Toeplitz smoothing matrix K
to impose a known autocorrelation V = KKT [6].

The maximum likelihood estimate of β, assuming a full rank design matrix,
is :

β̂ =
(
X∗T X∗)−1

X∗T KY with X∗ = KX



A contrast c of the parameter estimates is tested with:

T =
cT β̂(

V ar
[
cT β̂

])1/2
=

cT β̂

(cT σ̂2(X∗T X∗)−1X∗T V X∗(X∗T X∗)−1c)1/2

where σ̂2 is the estimated error variance. The effective degrees of freedom are
given by ν = trace(RV )2

trace(RV RV ) with R such as ε̂ = RY .
The null distribution of T may be approximated by a t-distribution with

ν degrees of freedom. Thus hypotheses regarding contrasts of the parameter
estimates can be tested and a threshold for a given voxel or parcel can be set to
control the false detection rate.

Multiple comparison problem Images contain a large number of voxels so
that the risk of false positive across voxels will not be controlled if the statistical
threshold is set as if only one test was performed: this is the so-called multiple
comparison problem and is an important issue when comparing results provided
by voxelwise (SPM) and parcelwise analyses. Multiple comparison correction
depends on both the number of tests performed and their statistical dependence.

First, with a parcel based analysis, we may assume in a first approximation
that signals are independent because, by construction, parcels signals are aver-
aged over an important number of almost independent voxels. We can therefore
apply a “Bonferroni” correction procedure that consists in adjusting the signifi-
cance level α (type one error, usually 5%) for the number of tests n :

αcorrected = 1− (1− α)1/n ' α

n

Second, in a standard voxel-based analysis, the non independence of voxel
intensities is obvious, due to both the initial resolution of images and to post
processing smoothing. A Bonferroni correction would therefore be much too
severe. A well-established correction proposed by Worsley [13] uses Random
Field Theory to provide strong control over the type one error. An estimate of
the field smoothness is computed, and the stringency of the correction depends
on this measure and on the size of the volume analyzed. Smoothness based
correction can be seen as the computation of the number of tests normalized for
the global smoothness of the statistical field.

2.4 Comparing voxel and parcel based techniques

We investigated three different ways to perform such a comparison. Our goal is
to provide a comparison of the detection with an equivalent spatial resolution.
Given the very different natures of the two techniques, there are several ways of
achieving such an equivalence. We briefly present three possible solutions:

• C1: First, the number of parcels can be set such that it corresponds to the
volume analyzed divided by a measure of the resolution of the filtered data



used in the voxel based technique. The most natural measure in this instance
is to consider the Full Width at Half Maximum of the point spread function
(PSF) of the data. This corresponds to the applied filter combined with the
intrinsic spatial dependency of the original images. When the former is large
enough, the resulting number is close to the one imposed by the spatial filter.
The number of parcels is set to the volume analyzed divided by the volume
of the PSF at its half maximum.

• C2: Second, the point spread function can be measured not on the original
filtered volumes but on volumes corrected for the signal predicted by the
model and normalized by their residual variance. This solution better re-
flects the statistical aspect of the problem. This corresponds to the notion of
RESELS (Resolution Elements) in the work of K. Worsley [13]. The number
of parcels is set as the effective degrees of freedom [15].

• C3: Lastly, we can use the (corrected) p-value threshold proposed by the
random field theory, compute the corresponding number of independent tests
(NB) and set the number of parcels to NB .

We have investigated these three solutions and compared results obtained on
the data described in the next section.

2.5 Application: Task and paradigm design

We compared detection results obtained in voxel and parcel based analyses on
a cognitive paradigm that investigates the brain network involved in a motor
(grasping) task [12]. The experimental protocol consisted of three activation
epochs separated by three control periods (26 s. each), preceded by a 4-seconds
instruction period. The subject performed this sequence twice. Repetition time
(duration of one functional image acquisition) was 2 seconds for a total of 186
scans. Functional image matrix was 64 × 64 × 18 with 3.75 × 3.75 × 3.8 mm3

voxel size. A T1-weighted anatomical scan was acquired at the same time with
a resolution of 0.94 × 0.94 × 1.5 mm3 (256 × 256 × 124 matrix).

Activations are investigated by setting a contrast between the control con-
dition and the grasping one. The model X used for detection consists in one
function per condition (instruction, control, and task) modeled by a box-car
regressor convolved with a canonical haemodynamic response function.

3 Results and Discussion

We applied several Gaussian filters (FWHM of 8, 12 and 16 mm) on the raw
functional images and computed the corresponding numbers of parcels for each
comparison criterion C1, C2 and C3. Results are similar for all filters and we
therefore only present those corresponding to the 8 mm filtered data. Figure 2
shows results obtained with the SPM approach (top left) and the comparison
with the parcel based approach with the 3 equivalent resolutions (1700 with
criterion C1, 340 with C2 and 4900 with C3).

We can observe a large increase in sensitivity for 340 and 1700 parcels. For in-
stance, t-maps global maxima are respectively of 28.18 and 30.19 compared with



Fig. 2. Axial T1-weighted MRI with detected activations superimposed (pc < 0.05).
SPM t-map with 8 mm smoothing (top left). Parcel-based t-map with 4900 parcels
(top right), 1700 parcels (bottom left) and 340 parcels (bottom right).

23.25 using SPM, while the spatial localization does not seem to be degraded
by the parcelling technique. With 4900 parcels, we obtain about the same sen-
sitivity as SPM (global maxima is 22.5). However, in this case, the anatomical
localization seems to be more precise with the parcel based approach. Indeed, 3D
smoothing leads to the averaging of signals coming from different structures and
to a poor localization of brain activity (look at the locus pointed by the cross in
each image). We can maintain that the sensitivity increase is a consequence of the
anatomically informed spatial smoothing performed by the parcelling technique
(cortex structure taken into account), as opposed to 3D smoothing. Lastly, ac-
cording to the results presented here, the criterion C1 for the equivalent number
of parcels (1700 parcels in this case) seems to be the most relevant.

4 Conclusion

This work is close in spirit with the methodology developed by Andrade [1]
or Kiebel [8] performing a surface-oriented fMRI data analysis confined to the
cortex since both techniques aim at incorporating anatomical information to
the statistical analysis of functional time courses. The work [1] also reported



increased sensitivity, but less pronounced than here. Furthermore we propose
here a flexible method working at a voxel level that can be generalized to other
structures than cortex, is more robust to misregistrations between functional and
anatomical images and will eventually incorporate a priori information (anatom-
ical and functional) in the parcellation definition.
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