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ABSTRACT
In this paper we propose a methodology for brain parcel-
lation with anatomical and functional constraints dedicated
to fMRI data analysis. The aim is to provide a represen-
tation of fMRI data at any intermediate dimensionality be-
tween voxel and region of interest. In order to fill in the
gap between these two approaches we developed an au-
tomatic parcellation of the 3D cortex with an adjustable
resolution. The algorithm relies on an adaptation of the
K-means clustering in a non convex domain with geodesic
distances. Fine anatomical or functional constraints can be
embedded through the use of weighted geodesic distances.
The applications of such a method are principally connec-
tivity studies, multivariate analyses and fusion with other
modalities.

1. INTRODUCTION

We introduce this work by first giving some rationales for
our application domains namely the functional brain imag-
ing and cognitive neuroscience. We then briefly give a first
idea on the image analysis tools used in the proposed method.

Functional Magnetic Resonance Imaging (fMRI) is a re-
cent technique that allows the study of the relation between
function and anatomy in the human brain. fMRI measures
in vivo a physiological parameter related to the concentra-
tion of deoxyhemoglobin (Blood Oxygen Level Dependent
- BOLD contrast) with a spatial resolution of a few millime-
ters and a temporal resolution of a few seconds, while a sub-
ject is performing a task or presented with stimuli. Series of
functional images are typically acquired for 5-15 minutes
leading to series of several hundreds of 3D scans. Dur-
ing the same MR session, a T�-weighted image with high
resolution (around 1 mm) informing on the anatomy of the
brain is also acquired and, if necessary, coregistered with
the functional images.

Two main approaches have been designed in the past for
the analysis of these data. The most common approach is to
treat each (functional) voxel separately and test for correla-
tion between time series at each and every voxel with the

predicted response given by the experimental paradigm and
localize the “activated” voxels on the anatomical image [1].
The second approach consists in defining regions of interest
using either functional or anatomical a priori information
and test for the activation signal within these regions [2].

The former approach is limited in several ways. First,
the dimensionality of the data is very high while the reso-
lution needed to understand the brain function may not re-
quire such a number of locations. In other words, it might
be enough in some situations to have a coarser resolution
when analyzing cognitive processes. This coarser resolu-
tion is often reached through spatial filtering. Second, the
resolution of the voxel may not be adapted when functional
images have to be put in correspondence with other modal-
ities used in the neuroimaging field such as EEG (typically,
the number of dipoles that can be reconstructed from the
signal measured on the scalp is limited) [3]. Third, when
investigating the relations between brain regions (connec-
tivity), one would like to be able to construct a region per
region correlation matrix, for which the voxel resolution is
much too high [4, 5]. Lastly, since there are many more
voxels than measures in the time domain, the use of some
multivariate techniques that require the inversion of a (here
rank deficient) matrix is precluded [6, 7].

On the other hand, regions-of-interest-based techniques
are in practice difficult to implement for two main reasons.
First they are difficult to define a priori, because the auto-
matic labeling of many sulci is still an open problem. Sec-
ond, tools for defining 3D volumes on the cortex are difficult
to use (a manual parcellation can take many hours or days)
and require an important expertise. Generally, only a lim-
ited number of large regions are delineated (for instance re-
gions corresponding to lobes are defined) and therefore the
relation between anatomy and function is addressed with a
very rough resolution.

We therefore propose a method to automatically parcel
the brain volume at any specified resolution. This parcel-
lation can take into account not only anatomical informa-
tion such as the position of sulci but also any other infor-
mation that could influence the definitions of the parcels (or
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region of interest). For instance, parcels position may be
influenced by functional information.

The method relies on the definition of geodesic distances
over the cortical ribbon embedded in a spatial K-means clus-
tering algorithm. For instance, 3D discrete geodesic Voronoı̈
diagrams are used to define such parcels. Anatomo-func-
tional constraints can be included via weighted geodesic
distances in order to favor or penalize specific areas.

2. A GENERAL DESCRIPTION OF THE
PARCELLATION METHOD

In this section, we describe the desired features of the brain
parcellation in the context we just settled in the introduction.

Firstly, the parcellation has to be defined at an anatomi-
cal resolution to tackle the rough spatial resolution of fMRI
and to be able to take into account fine anatomical details
such as sulci. The parcels are then defined as connected
clusters of anatomical voxels.

A second desired feature is to obtain an “homogeneous”
parcellation where parcels regularly pave the volume of in-
terest. This means that parcels should have similar volumes,
but should also be somehow similarly compact.

Lastly, the parcellation must be generic enough to al-
low the inclusion of additional constraints. For instance, the
crossing of a sulcus should be penalized in order to obtain
parcels well localized on each side. Similarly one may want
to impose a parcel centered on a specific locus such as a
local maximum of a t-map resulting from a previous func-
tional analysis or provided by the literature.

To meet these goals, we propose a fully automatic method
where the number of parcels is provided by the user (de-
pending on the particular application for which the parcel-
lation is dedicated). The main steps of the algorithm are:

1. Define the global volume of interest (e.g. the gray
matter), and the required parcellation resolution (in-
put of the user).

2. Find a first solution yielding “homogeneous” parcels
within the (non-convex) volume of interest.

3. Improve this first parcellation by adding the constraints
coming from anatomy or function.

3. ALGORITHMS

We provide here a more detailed description of each step of
the algorithm presented in the previous section.

3.1. Definition of the volume of interest

The first step of our algorithm is to define what is the do-
main to parcel, i.e. the global volume of interest. For in-
stance, we want to confine in this article the functional data

analysis to the cortical ribbon. Such an anatomical repre-
sentation of the cortex can be obtained from segmented T �-
weighted images [8]. To overcome the artifacts and distor-
tions problems in the fMRI sequence, this segmentation of
the cortex is combined (logical and) with a functional mask
of the whole brain performed in the averaged fMRI image
(thresholding of a Gaussian fit of the histogram). The re-
sulting volume of interest is a set of voxels at the anatomical
resolution corresponding to the part of the cortex that can be
analyzed in functional images.

(a) (b) (c)

Fig. 1. (a) Axial T�-weighted MRI and its cortex segmenta-
tion (b). (c) Brain mask of functional images.

3.2. Parcellation of a convex domain: K-means

To define “homogeneous” parcels, one could rely on a vol-
ume criterion. However, this would not prevent the algo-
rithm from finding very elongated or complex cells, and
there can be multiple solutions (e.g. two cells in a square).
A more interesting idea is to try to minimize the inertia of
each cell, which introduces an idea of compactness com-
bined with the volume (the disc minimizes the inertia of a
cell at a fixed volume). This corresponds to the minimiza-
tion of the intra-class variance in the classification context,
efficiently solved using the K-means algorithm [9].

In our case, the data ���� to classify are the 3D coordi-
nates of the voxels defining the volume of interest and the
cells are defined by their positions ��� . The problem is then
to find simultaneously a partition of the voxels �� �� into �

classes �� and the cell positions ��� minimizing the intra-
class variance:

������ �
��

���

�
����

�� ���� ���

In this context, the resolution of our parcellation is naturally
parameterized by the number � of classes used.

If the volume of interest is convex, the distance � is the
standard Euclidean distance, and the criterion is solved us-
ing an alternated minimization of ������ over:

1. The partition of the data (given cell positions): each
voxel �� is assigned to the class �� that minimizes
the distance to its position ��� . This is usually realized
through a Voronoı̈ diagram.

2. The cell positions (given a data partition): the posi-
tion ��� minimizing the variance of the ��’s assigned
to this class is simply their barycenter.

908



Fig. 2. Example of a 2D geodesic Voronoı̈ diagram with 50 seeds (black dots). Left: random initialization. Right: after
convergence of the K-means algorithm.

The K-means algorithm simply consists in an iterated
loop of these two estimations until convergence, i.e. when
assignments are the same at two consecutive steps. To ini-
tialize the algorithm, we simply randomly select � distinct
voxels in the volume of interest as the initial cell positions.
Notice that the number of classes �, which is usually very
difficult to optimize, is in our case a user input defining the
resolution of the parcellation.

In the general Euclidean case, minimizing the intra-class
variance turns out to maximizing the inter-class variance
������ �

��

��	�� �
� ��� � �	� because the total variance is

constant (thanks to Huygens theorem). Thus, the optimized
criterion can be interpreted as providing a low within-class
variance (compactness) and a high distance between class
centers (isolation), which were desired features.

3.3. A modified K-means for the geodesic distance

In our case, the volume of interest is not convex, and the
choice of the distance � is a crucial issue. In order to be
more compliant with the highly convoluted structure of the
cortex, the geodesic 3D distance [10] (the shortest path en-
tirely within the volume of interest) is more suitable than
the Euclidean distance. Indeed two points on opposite sides
of a sulcus are close together in Euclidean terms but may be
geodesically far apart.

The main difference with the Euclidean case is that we
do not have any more the strict equivalence with the max-
imization of the inter-class variance. However, the conver-
gence is still ensured for a compact and connected domain
since we are minimizing a positive function.

The algorithm is thus modified as follows: the initial �
seeds are distributed to the different connected components
(according to their volume ratio). Then, the two steps of the
K-means algorithm become:

Step 1 (partition): the class assignment is now realized us-
ing a 3D discrete Voronoı̈ diagram with geodesic distances.
A fast implementation using region growing and hierarchi-
cal queues is described in [11]. A more accurate implemen-
tation could be realized using Fast Marching [12].

Step 2 (cell positions): there is no closed-form solution for
the “geodesic barycenter”, but we may compute it by a gra-
dient descent on the intra-class variance. In practice, most

of the cells are still convex (even within a highly non convex
domain) and the standard barycenter is a good approxima-
tion. In our implementation, we use the Euclidean barycen-
ter as far as it stays within the cell, and a gradient descent
otherwise.

3.4. Incorporating constraints

After a first unconstrained parcellation (in order to obtain an
homogeneous repartition of the cells), additional constraints
can be enforced through the use of weighted geodesic dis-
tances. By defining the cost required to move to each voxel
(the local metric), we may penalize or favor specific con-
nections between neighboring voxels. Such an information
can be embedded in a weight map (a 3D image) for which
each value is a multiplicative factor that must be applied
over classical geodesic distances during the region growing
process (step 1 of the K-means algorithm).

One interesting anatomical constraint is to penalize the
crossing of sulci. To do so, sulci are first automatically ex-
tracted from a T�-weighted MRI [8] then labeled by a neu-
ral network as explained in [13]. Sulci of interest are se-
lected and the resulting binary map is smoothed to allow a
small uncertainty in their position. This map is then used to
weight geodesic distances in a K-means algorithm initial-
ized by an unconstrained parcellation.

Another constraint is to impose a parcel centered on a
specific locus such as a local maximum of a t-map resulting
from a previous functional analysis or provided by the liter-
ature. This can be easily realized by constraining the posi-
tion of the current cell containing this position to the desired
value, and adapting neighboring cell positions accordingly.

4. RESULTS

The theoretical convergence is owed to the minimization of
the same distance in the two steps of the K-means algorithm.
In our case, the geodesic distances and the barycenters are
approximated via discrete transformations so that the con-
vergence is not guaranteed. In practice, we observed that
the algorithm always converges in a reasonably low number
of iterations (a few dozen). Thus, thanks to the efficient im-
plementation of geodesic Voronoı̈ diagram, we obtain very
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low computation times (typically a few minutes). This is
indeed an important issue for our application domains.

The well-known sensitivity of the K-means clustering
to the initial conditions leads in our case to different but
always satisfying parcellations: Fig. 3 presents the results
of two parcellations with anatomical constraints and 50 to
500 seeds. One can see that the cells are well distributed and
correctly respect the geometric sulcal constraints depending
on the required resolution.

Fig. 3. Axial slice of a 3D parcellation of the cortex: origi-
nal �� MR slice (left) and parcellation with 50 (middle) and
500 parcels per hemisphere (right).

5. DISCUSSION

This work is a first important step toward a generic and auto-
mated parcellation of brain images for fMRI data analysis at
a user defined resolution, between voxel and region of inter-
est. It currently incorporates anatomical constraints such as
the penalization of sulci crossings and anatomo-functional
constraints such as centering a cell on a predefined location.

The next step will focus on how to interpolate the func-
tional signal on each cell. The first idea is indeed to average
the time courses of all functional voxels of each cell, over-
sampled at the anatomical resolution. This is based on the
hypothesis of a spatially consistent signal within the par-
cel. In this context, one important improvement could be
the use of more functional constraints for the definition of
the parcels via the definition of a distance depending on the
temporal correlation between functional signals.

Although this approach was not designed in the first
place with this goal in mind, it will be interesting to evalu-
ate it for the detection of fMRI activations in order to exhibit
the effect of the anatomical constraints.

The adjustable representation of fMRI data provided by
a parcellation allows for the application of numerous tech-
niques that were difficult or impossible to implement on the
whole brain, due to the large dimensionality of the data.
The main research tracks opened by this work are of course
connectivity studies, multivariate analyses (e.g. CVA) and
fusion with other modalities (such as MEG/EEG, diffusion
MRI), which will be investigated.

Another very interesting future work will deal with the
intersubject problem and how to define homologous cells
across subjects.
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