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Abstract: Modeling and understanding the variability of brain structures is a fundamental
problem in the neurosciences. Improved mathematical representations of structural brain
variation are needed to help detect and understand genetic or disease related sources of
abnormality, as well as to understand and improve statistical power when integrating func-
tional brain mapping data across subjects. In this paper, we develop a new mathematical
model of normal brain variation based on a large set of cortical sulcal landmarks (72 per
brain) delineated in each of 98 healthy human subjects scanned with 3D MRI (age: 51.8
+/- 6.2 years). We propose an original method to compute an average representation of
the sulcal curves, which constitutes the mean anatomy in this context. After global (a�ne)
alignment of the individual data across subjects, the second order moment distribution of
the sulcal position is modeled as a sparse �eld of covariance tensors. (symmetric, positive
de�nite matrices). To extrapolate this information to the full brain, one has to overcome
the limitations of the standard Euclidean matrix calculus. We propose an a�ne-invariant
Riemannian framework to perform computations with tensors. In particular, we generalize
radial basis function (RBF) interpolation and harmonic di�usion partial di�erential equa-
tions (PDEs) to tensor �elds. As a result, we obtain a dense 3D variability map which agrees
well with prior results on smaller samples of subjects. Moreover, "leave one (sulcus) out"
tests show that our model is globally able to recover the missing information on brain vari-
ation when there is a consistent neighboring pattern of variability. Finally, we propose an
innovative method to analyze the asymmetry of brain variability. As expected, the greatest
asymmetries are found in regions that includes the primary language areas. Interestingly,
any such asymmetries in anatomical variance, if it remains after anatomical normalization,
could explain why there may be greater power to detect group activation in one hemisphere
versus the other in fMRI studies. Future applications of this work include the detection of
genetic and demographic factors that contribute to brain structure variance, abnormality
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detection in individuals and groups, and improved nonlinear registration techniques that
draw on tensor-valued statistical information regarding brain variation.
Key-words: tensor, variability, brain, Log-Euclidean, computational anatomy

INRIA



Mesure de la Variabilité du Cerveau par l'Extrapolation
de Champs de Tenseurs Epars Mesurés sur les Lignes

Sulcales.
Résumé : La modélisation et la compréhension de la variabilité des structures du cer-
veau est un problème fondamental en neurosciences. Des représentations mathématiques
élaborées des variations de ces structures sont nécessaires a�n d'aider à la détection et la
compréhension des sources génétiques ou pathologiques d'anormalités, ainsi que de com-
prendre et d'améliorer le pouvoir de détection lors de la fusion des données obtenues en
IRM fonctionnelle (IRMf) en provenance de plusieurs sujets. Dans cet article, nous déve-
loppons un nouveau modèle mathématique des variations du cerveau, en se basant sur un
grand nombre de repères sulcaux corticaux (72 par cerveau) délinéés dans chacune des 98
IRMs 3D de sujets humains normaux (age: 51.8 +/-6.2 ans). Nous proposons une méthode
originale pour calculer une représentation moyenne de ces lignes sulcales, ce qui constitue
l'anatomie moyenne dans ce contexte. Après un alignement global (a�ne) de chaque donnée
individuelle, la distribution du moment du 2nd ordre des positions sulcales est modélisée par
un champ de tenseurs de covariance (matrices symétriques dé�nies positives) épars. Pour
extrapoler cette information à tout le cerveau, il est nécessaire d'outrepasser les limitations
du calcul Euclidien standard sur les matrices. Nous proposons un cadre Riemannien a�ne-
invariant pour manipuler les tenseurs. En particulier, nous généralisons l'interpolation par
fonction de bases radiales (FRB) et une équation aux dérivées partielles (EDP) de di�usion
harmonique aux champs de tenseurs. En résultat, nous obtenons une carte 3D dense de
la variabilité qui concorde bien avec des résultats précédemment obtenus sur un plus faible
nombre de sujets. De plus, les tests du �leave one (sillon) out� montrent que notre modèle
est globalement capable de recouvrer l'information de variabilité cérébrale manquante dans
les endroits où les schémas de variations sont consistants avec le voisinage. Finallement,
nous proposons une méthode innovante pour analyser l'asymétrie de la variabilité du cer-
veau. Comme attendu, les plus grandes asymétries sont situées dans des régions comprenant
les aires primaires du langage. De manière intéressante, une telle asymétrie de la variance
anatomique, si elle demeure après normalisation, pourrait expliquer pourquoi il y a un plus
grand pouvoir de détection des activations de groupe dans un hémisphère que dans l'autre
dans les études en IRMf. Les applications futures de ce travail comprennent la détection
des facteurs génétiques et démographiques qui contribuent à faire varier les structures cé-
rébrales, la détection d'anormalités chez les individus et dans les groupes, et l'amélioration
des techniques de recalage non-linéaire en se basant sur des informations statistiques.
Mots-clés : tenseur, variabilité, cerveau, log-euclidien, anatomie computationelle
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Measuring Brain Variability on Sulcal Lines 5

1 Introduction
Brain structures di�er greatly in shape and size even among normal subjects, and these
variations make it di�cult to identify abnormal di�erences due to disease. Understanding the
degree and quality of brain variation is vital for distinguishing signs of disease from normal
variations. Geometric variability of anatomy also makes the automated segmentation and
labeling of brain structures di�cult. Statistical information on brain variability would make
this task easier [1, 2, 3], and could be used in Bayesian approaches for nonlinear registration
[4]
[5, 3] as well (which adjust for anatomical variations across subjects prior to group analysis
of brain function or metabolism). Finally, neuroscientists are interested in identifying the
causes of brain variability at a genetic or environmental level. An e�cient, parsimonous
model of the complex patterns of brain variation would help in identifying factors that
contribute to it. Measuring brain asymmetry (i.e. di�erences between hemispheres) is
of special interest as it sheds light on how the functions of the two hemispheres become
specialized [6]. Improved modeling of the range of variations in brain structure could make
it easier to isolate speci�c e�ects of genetic polymorphisms on these normal variations and
asymmetries [7, 8, 9].

A major class of anatomical variations can be thought of as arising from the smooth de-
formation of a reference anatomy, where the deformation is represented as a 3D displacement
�eld, after a�ne di�erences are factored out. Ideally, one could model the joint variability
of all pairs of points to see how the displacement of one any point in a speci�c subject with
respect to the reference anatomy covaries with the displacement of neighboring or distant
points in the brain (e.g. symmetric ones in the opposite hemisphere). In this article, we
simply model the variability of each anatomical point independently. Assuming that the
mean deformation of the reference anatomy is null, the �rst moment of the 3D displacement
distribution is its covariance matrix, which will be called a variability tensor. Thus, our goal
is to compute the �eld of variability tensors within the brain from information that may be
sparsely distributed. The reason that tensor representations are used, rather than simple
scalar �elds, is that variation may not be the same in all directions there is some evidence
that structural variation is greatest along certain preferred directions [10, 11].

However, working with tensors is not so easy as manipulating scalar �elds, as the un-
derlying space is a manifold that is not a standard Euclidean space. As tensors constitute a
convex half-cone in the vector space of matrices, many operations (like computing the mean)
are stable. Nonetheless, the Euclidean framework is not satisfactory as one can easily reach
the boundary of the space (singular symmetric matrices) with a classical gradient descent.
Moreover, the arithmetic mean of a tensor and its inverse is not the identity matrix. This
lack of symmetry is unsatisfactory: in many cases, one would like the mean to be geometric
[12].

In section 2 we present a consistent Riemannian framework to compute with tensors.
Then, we show how to extend these tools to implement harmonic di�usion partial di�eren-
tial equations (PDEs) and extrapolate tensors that are sparsely distributed in space. Solving
these PDEs is computer intensive, so we provide a practical but e�cient initialization by

RR n° 5887
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extending the radial basis functions (RBF) concept to tensors. In section 3, we consider
low dimensional but anatomically readily de�ned and delineated features (sulcal landmark
curves) as a way to obtain meaningful brain variability tensors. We show how to compute
the mean sulcal curve and its correspondence with the sulcal instances of each subject. To
extract only the relevant information and minimize the number of parameters, we �t a para-
metric tensor model to these data. Then, we come back to our original goal by extrapolating
this sparse tensor model to the whole brain, and the validity of our extrapolated model is
analyzed. Finally, in section 4, we generalize our statistical model to examine the correlation
and asymmetry of the observed variations at symmetric points in the two brain hemispheres.

2 A Mathematical Framework to Extrapolate Tensors
Most of the literature addresses tensor computing problems in the context of di�usion tensor
image (DTI) regularization. In these articles, the spectral decomposition of the tensors is
exploited. For instance, [13] anisotropically restore the principal direction of the tensors,
while
[14] independently restore the eigenvalues and eigenvectors. This last approach requires an
additional step to perform re-orientation of the eigenvectors due to the non-uniqueness of
the decomposition.

More recently, di�erential geometry approaches have been developed to generalize prin-
cipal components analysis (PCA) to tensor-valued data
[15], for statistical segmentation of tensor images
[16], for computing a geometric mean and an intrinsic anisotropy index [17], for preliminary
results on brain variability modeling [18], or as the basis for a full framework for Riemannian
tensor calculus [19]. In [19], we endowed the space of tensors with an a�ne-invariant Rie-
mannian metric to obtain results that are independent of the choice of the spatial coordinate
system. In fact, this metric had already been proposed in statistics [20], and turns out to be
the basis of all the previous di�erential geometric approaches. Other Riemannian strategies
are possible, like Log-Euclidean metrics [21].

2.1 A Riemannian Framework for Tensor Calculus
The invariant metric provides a new framework to overcome the limitations of Euclidean
calculus: it endows the tensor space with a highly regular structure, in which matrices
with null or negative eigenvalues are at an in�nite distance from any positive de�nite ma-
trix. Moreover, the geodesic path between any two tensors is uniquely de�ned, leading to
interesting properties such as the existence and uniqueness of the (geometric) mean [19].

On Riemannian manifolds, geodesics realize a local di�eomorphism, called the exponen-
tial map, from the tangent space at a given point to the manifold itself. This allows us to
(locally) identify points of the manifold with tangent vectors. With the invariant metric on
tensors, the geodesic starting at Σ and with tangent vector W can be expressed simply with
the classical matrix exponential and the (Riemannian) exponential map realizes a global

INRIA
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di�eomorphism [19]:

expΣ(W ) = Σ
1
2 exp

(
Σ−

1
2 WΣ−

1
2

)
Σ

1
2 and logΣ(Λ) = Σ

1
2 log

(
Σ−

1
2 ΛΣ−

1
2

)
Σ

1
2 .

These two di�eomorphisms are the key to the numerical implementation and generalization
to manifolds of numerous algorithms that work on a vector space. For instance, the �di�er-
ence vector� between two tensors Σ1 and Σ2 may be expressed in the tangent space at the
identity as:

Z = Σ−1/2
1 logΣ1

(Σ2)Σ
−1/2
1 = log(Σ−1/2

1 Σ2Σ
−1/2
1 ). (1)

Note that Z is a symmetric but not necessarily positive matrix. The distance between the
two tensors is simply given by:

dist2(Σ1,Σ2) = ‖Z‖22 = trace
(

log
(
Σ−1/2

1 Σ2Σ
−1/2
1

)2
)

. (2)

Likewise, the Euclidean gradient descent scheme Σt+1 = Σt − ε∇C(Σt), which could easily
lead to a non-positive matrix, is advantageously replaced by the geodesic marching scheme
Σt+1 = expΣt

(−ε∇C(Σt)).

2.2 Dense Extrapolation of Sparse Tensors
Let us consider a set of N measures Σi of a tensor �eld Σ(x) at spatial positions xi ∈ Rd.
To access the value of the tensor �eld at any point, one could think of interpolating or
approximating these measures. We proposed in [19] a least-squares attachment term to the
sparsely distributed tensors, combined with a regularization term to perform an estimation
of the extrapolated tensor: C(Σ) = Sim(Σ) + Reg(Σ). In a continuous setting, the data
attachment term is:

Sim (Σ) = 1
2

∑N
i=1 dist

2 (Σ (xi) ,Σi) = 1
2

∫
Ω

∑N
i=1 dist

2 (Σ (x) ,Σi) δ (x− xi) dx.

The Dirac distributions δ(x− xi) are problematic when numerically di�erentiating the cri-
terion. To regularize the problem, we consider them as the limit of a Gaussian function Gσ

when σ goes to zero. Practically, σ has to be of the order of the spatial resolution of the grid
on which Σ(x) is estimated, so that each measure in�uences its immediate neighborhood.
After di�erentiating the criterion, one obtains: ∇Simσ (x) = −∑

i Gσ (x− xi) logΣ(x)(Σi).
Basically, the attachment term prevents the tensor �eld from deviating too much from

the measures at the points xi. In between these points, we need to add a regularization term
that ensures a smooth, relatively homogeneous interpolation. The simplest criterion is the
harmonic regularization: Reg(Σ) = 1

2

∫
Ω
‖∇Σ(x)‖2Σ. We showed in [19] that the gradient

of this criterion is ∇Reg (Σ) (x) = −∆Σ(x), and we provided a practical implementation of
this Laplace-Beltrami operator on a tensor �eld. Using the geodesic marching scheme, we
compute at each point x of our estimation grid the following intrinsic gradient descent:

Σt+1(x) = expΣt(x) (−ε∇Sim(x)− ε∇Reg(x)) . (3)

RR n° 5887
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Finally, we can evaluate the extrapolated �eld Σ at any point x by tri-linear interpolation
of the values at the grid nodes.

However, due to the large number of tensors and the large domain of di�usion used here
(see next section), this algorithm converges slowly, even with a multi-resolution implementa-
tion. To improve the initialization and enable faster convergence, in this article we develop
an RBF interpolation.

2.3 Extending RBFs to Extrapolate Tensors
RBFs provide a family of methods to extrapolate sparsely de�ned observations [22]. The
extrapolated �eld is expressed as a linear combination of translated versions of a single radial
function (the basis). Thus, if (yi) is a set of scalar measures of the �eld y(x) at points xi,
we �nd a set of scalar coe�cients (λi) such that y(x) =

∑
i λih(x − xi). To interpolate

the data, the coe�cients need to yield y(xi) = yi, i.e. be solutions of the linear system
∀j : yj =

∑
i λih(xj −xi). There is a unique solution for any set of measurements at any set

of spatial positions if the symmetric matrix [H]i,j = h(xi − xj) is always positive de�nite.
Scalar RBF extrapolation can be extended to vectors by simply running the extrapolation

on each component independently. To apply this method to tensors, we map all tensors into
the tangent space TΣM of a reference tensor Σ. We then run the RBF extrapolation on the
vectors logΣ(Σi) and map the resulting values back into tensor space by the inverse mapping
expΣ. Among the many possible choices for a common reference tensor, we chose the mean
Σ̄ of all tensor measurements. Also, rather than letting the extrapolated values explode at
in�nity as with Thin Plate Splines, we use an interpolating function that decreases toward
zero at in�nity, namely from the family h(x) = 1/

(
1 + (‖x‖2/α2)γ

)
. The asymptotic value

for the interpolation will be the reference tensor Σ̄.

2.4 A Log-Euclidean Framework for Tensor Calculus
Major advances have been made recently in tensor calculus. Log-Euclidean (LE) metrics [21]
are a novel family of Riemannian metrics, which combine the bene�ts of the a�ne-invariant
property with the lower computational cost of the Euclidean calculus. The price to pay for
that is rather cheap: LE metrics are only similitude-invariant (i.e. invariant under rigid
body transforms, including translations and rotations). They work on the tensor logarithm,
which turns the tensor space into a vector space. The expression of the L2 LE metric is
simply:

dist2 (Σ1,Σ2) = trace
(
(log (Σ1)− log (Σ2))

2
)

.

Surprisingly, results with this metric are very similar to the a�ne-invariant family [21]. We
adapted our di�usion PDE and the RBF concept to LE metrics and found no signi�cant
di�erence. However, we chose to keep the a�ne-invariant family of Riemannian metrics in
this work, to generate results that are as invariant as possible.

INRIA
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3 Modeling Brain Variability from Sulcal Lines
One initial idea for how to measure inter-subject brain variability might be to gather statis-
tics on 3D displacement �elds computed between a reference anatomy and many individu-
als. Such data could be obtained using an inter-subject registration algorithm. However, we
would need to estimate the in�uence of the chosen registration method. Moreover, the image
intensity only gives one constraint at each point for recovering 3 displacement components.
To provide information that is completely independent of volumetric image registration al-
gorithms, we chose in this work to rely on lower dimensional structures, such as cortical
landmarks identi�ed by expert neuroscientists following a formalized protocol, with known
inter- and intra-rater reliability. We could have taken surfaces, e.g. the hippocampus, corpus
callosum, or even the whole cortex as in [23]. However, even for surface-based deformations,
we would still face the problem of �nding appropriate correspondences between the surfaces
(this is currently an active area of research [24],
[25]). Moreover, these surfaces may be di�cult to extract accurately. Thus, we chose to
focus on anatomically well de�ned 3D curves that could be manually delineated by neu-
roanatomists and considered as ground truth data. This choice naturally led us to the
primary anatomical landmarks on the cortex: the sulci. A A large number of of sulcal land-
marks consistently appear in all normal individuals and allow a consistent subdivision of the
cortex into major lobes and gyri [26]. In the absence of individual functional imaging data,
sulci also provide an approximate guide to the functional subdivisions of the cortex, for all
of the lobes. They are also used to guide intersubject functional activations registration [27].

We use a dataset of sulcal lines manually delineated in 98 subjects by expert neu-
roanatomists according to a precise protocol1 (an example of tracing is shown in Fig. 1).
The dataset consisted of 47 men and 53 women (age: 51.8 +/- 6.2 years), all normal controls.
The lines are traced in 3D on the cortical surface, using an interface that allows curves to
be traced interactively on surfaces. In the following, we abusively call these sulcal lines sulci
to simplify the description. We included the maximal subset of all sulcal curves that consis-
tently appear in all normal subjects, 72 in total, with formal rules governing the handling
of branching patterns, breaks in sulci, and doubling of speci�c sulci (e.g., the cingulate).
The sulcal tracing protocol has been used in around 20 papers from our laboratory (see e.g.,
[28]). By repeated training on test sets of brain images, the maximum allowed inter- and
intra-rater error (reliability) was ensured to be better than 2mm everywhere, in terms of
r.m.s. distance, and in most regions less than 1mm, far less than the intersubject anatomi-
cal variance. Delineations were made in 3D on cortical surfaces extracted from MR images
linearly aligned to the ICBM stereotactic space [29], thus providing a common coordinate
system for all traced curves. Next, we determined the mean curve for each sulcal line by
modeling samples as deformations of a single average curve. Based on the mean sulcal line,
for each sulcus, and the mapping from this curve to its instance in each subject image, we
can easily compute the local covariance matrix to create our second order statistical model
of the sulcal line. Other works related to the statistics of sulcal lines include [30] and [31].

1http://www.loni.ucla.edu/∼khayashi/Public/medial_surface/
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10 P. Fillard et al.

Figure 1: Example of sulcal lines drawn on the cortical surface.

3.1 Learning Local Variability from a Sulcal Lines Dataset
Statistical models have frequently been constructed for objects such as open or closed curves
and surfaces [32, 33]
[34]. In each of these examples, the aperture problem occurs: as we do not have point
landmarks, the point-to-point correspondences between instances of a surface or a curve
cannot be recovered exactly. For instance, the correspondences of two instances of a sulcus
are intrinsically subject to error, with greater tangential than normal uncertainty. Here, we
propose a one-to-one correspondence mapping that minimizes the in�uence of this error.

First, we denoise the sample lines by approximating them with B-splines: the manual
sampling of 3-dimensional curves is only precise up to the voxel size (about 1mm3), which
is lower than the inter-rater variability of 2mm. In this continuous setting, the number of
degrees of freedom can be adjusted to increase robustness to noise while avoiding resampling
problems [35]. Typically, we reduce the number of control points to one third of the original
sampling points, with a mean distance of 0.25mm and a maximum error of 2.7mm.

Many criteria have been proposed in the literature to evaluate the mean curve for a set
of curves and to assess the appropriateness of one-to-one correspondences between geomet-
ric objects. They usually invoke local di�erential characteristics such as the tangent space,
curvature, the local Frenet frame for a curve on a surface
[36, 37], regional shape information [24]. In our case, the variability is so large (see Fig.
2), that using such re�ned measures is di�cult. In general, sulcal curves do not have inter-
nal geometric features, along their length, that occur consistently from subject to subject.

INRIA
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Therefore, we simply use the total variance of curve models as a criterion:

C(z) =
1

N − 1

N∑

k=1

∫ 1

0

‖yk(φk(s))− z(s)‖2‖z′(s)‖ds, (4)

where yk is the given sulcus of subject k, z the mean sulcus and φk the correspondence
function between the subject's curve and the mean curve and s the curve length.

Minimizing this variance greatly reduces the variability due to inadequate correspon-
dences. Practically, we alternately improve the correspondences between the mean curve
and each sample by dynamic programming and optimize the average curve position by a
�rst-order gradient descent with an adaptive step. This optimization strategy converges
toward the mean curve after a few iterations (dashed curve in Fig. 3).

For each of the 72 sulci, we end up with the mean curve z(s), and one-to-one mappings
φk(s) that give the corresponding position yk(φk(s)) in each subject k. The variability
tensor Σ(s) is given by:

Σ(s) =
1

N − 1

N∑

k=1

[
yk

(
φk(s)

)− z(s)
] [

yk
(
φk(s)

)− z(s)
]>

. (5)

Results of covariance tensors estimated along the 72 sulci are shown in Fig. 2. Variability
is greater at the extremities of the curves. These points are landmarks identi�ed by neuro-
anatomists. However, we suspect that the main part of their variability is due to a bias
when estimating the position of the end points of the mean curve. To remain consistent, we
chose in this paper to remove the variability information at the extremities of the sulci from
our model, and focus only on the inner parts of the sulci.

3.2 Estimation of the A�ne Transform from Correspondences
Initially, images were a�nely registered onto a common reference image (in our case the
ICBM305 space). Overall di�erences in orientations and size were consequently zeroed out.
However, to further reduce the variability, one can rely for each subject on the established
correspondences between its sulci and the mean curves to re�ne the a�ne transform.

Let (Ak, tk) be the a�ne transform of subject k. Let us assume that the mean curves
and the mappings between each subject's curve and the mean are known. We are looking
for the optimal a�ne transform (Ak

(opt), t
k
(opt)) in the least-squares sense, i.e. the one that

minimizes the sum of the squared di�erences between the transformed sulci and the mean
curves:

C(Ak, tk) =
N∑

i=1

∫ 1

0

‖Akyk
i

(
φk

i (s)
)

+ tk − zi(s)‖2ds (6)

To optimize this energy, we �rst �x Ak and look for the optimal translation. We �nd that
the minimum value is reached for:

tk(opt) = z̄ −Akȳk, (7)

RR n° 5887
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Figure 2: Sulcal variability. Top: The sulcal lines alone. Mean curves are shown in red,
and traces from 98 healthy normal individuals are displayed in green and yellow. Bottom:
Covariance matrices (ellipsoids at one σ) are overlapped at regularly sampled spatial posi-
tions along the mean sulci. The color codes for the trace: Note that tensors close to the
sulci extremities are larger.

where z̄ = 1/N
∑N

i=1

∫ 1

0
zi(s)ds and ȳk = 1/N

∑N
i=1

∫ 1

0
yk

i (φk
i (s))ds.

Second, one introduces tk(opt) back into Eq. 6. Calling ỹk
i = yk

i − ȳk and z̃i = zi− z̄, one can
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rewrite Eq. 6 as:

C(Ak) =
N∑

i=1

∫ 1

0

‖Akỹk
i (s)− z̃i(s)‖2ds

=
N∑

i=1

∫ 1

0

Trace
[(

Akỹk
i (s)− z̃i(s)

) (
Akỹk

i (s)− z̃i(s)
)>]

ds

Using the property that Trace(AB) = Trace(BA), we �nd that:

Ak
(opt) =

(
N∑

i=1

∫ 1

0

z̃i(s)ỹk
i (s)>ds

) (
N∑

i=1

∫ 1

0

ỹk
i (s)ỹk

i (s)>ds

)−1

. (8)

The overall framework now consists in alternating the positioning of the mean curve, the
computation of the correspondence functions, and the evaluation of the optimal a�ne trans-
form for each subject using Eq. 7 and 8. Curves in Fig. 3 represent the energy 4 averaged
over the 72 sulci and for each iteration. The optimization of mean curves and correspon-
dences reduces the amount of variability to 70% of the initial value. Reestimating the a�ne
transform further reduces the amount of variability to 60% of its initial value.

Figure 4 shows the resulting variability tensors computed using Eq. 5 and overlapped
along the mean sulcus. One notices that the correspondence optimization greatly reduces
the tangential components of the variability, thus minimizing the aperture problem. The
a�ne correction reduces the variability more globally.

3.3 Model Simpli�cation using Tensor Interpolation
In the interior part of the sulci, the tensors are highly regular in size and shape. Some
of this information is therefore redundant and could be simpli�ed by selecting only a few
tensors at speci�c points along the mean sulcus, and interpolating in between them. We
use geodesic interpolation to interpolate between successive tensors, because it preserves the
monotone (i.e., consistently increasing or decreasing) evolution of the determinant. This is
crucial when interpolating two probability densities and is not possible in general with direct
interpolation. For e�ciency reasons, we also selected the tensor values among the observed
data rather than optimizing them as free parameters. This operation has been automated
in an algorithm called tensor picking.

Let (Σi)1≤i≤N be a set of N variability tensors de�ned at abscissa si along a mean sul-
cus. The geodesic interpolation between 2 successive tensors is given by: Σ̃(s) = expΣi

[(s−
si)/(si+1 − si) logΣi

(Σi+1)] for si ≤ s < si+1. As we are working only on the interior of
the sulcus, s takes its values between s2 and sN − 1 (we remove the extremities), so that
the interpolated variability Σ̃(s) is always de�ned. The tensor picking operation consists of
�nding the optimal set (Σi) such that the least-square error between the observed and inter-
polated variability tensors is minimized: C (Σ1, . . . , ΣN ) = (

∫ sN−1

s2
dist2

(
Σ(s), Σ̃(s)

)
ds)1/2.

RR n° 5887



14 P. Fillard et al.

Figure 3: Mean curves calculation: Energy vs. iterations. Dashed curve: Without
a�ne re�nement. Solid curve: With a�ne re�nement every 10 iterations. Note that the
process has converged after 40 iterations.

To minimize this energy, we �rst set N equal to 2. Then, an exhaustive search for the
optimal set of N tensors is done. If the energy obtained is below a threshold t (0.2 in our
experiments), the tensors are picked. Otherwise the number N is increased and the search
is reiterated.

Results of this operation are presented in Fig. 5 (middle panel): by choosing tensors at
adequate positions, one can qualitatively reconstruct the full variability of each sulcus using
4 to 10 covariance matrices, depending on its length and shape. Results of the quanti�cation
of such reconstruction for 3 major sulci are presented in Table 1 (interpolation line). The
variability of all the major sulci can be adequately represented by 366 variability tensors
out of 2000 initially.
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Figure 4: Variability tensors for the Sylvian Fissure. Top: Without correspondence
optimization. Middle: After correspondence optimization. Bottom: After correspondence
optimization and a�ne transform optimization. Note that the curves get slightly more
concentrated around the mean, showing less variability. This is re�ected by the reduction
of covariance matrices in the direction orthogonal to the mean curve. The reduction of
variation in the tangential direction is mainly due to the optimization of correspondences
between curves.

RR n° 5887



16 P. Fillard et al.

3.4 Extrapolating the Variability to the Full Brain
The next step consists of extrapolating these selected tensors to the full brain, using the
framework developed in Sec. 2.2. There are some assumptions if this is done necessarily
we have chosen certain consistent cortical features to model variability, and if a greater
number of structures were chosen (including subcortical structures such as the ventricles),
the variation may be greater, and the spatial correlation in the variations may be slightly
reduced. However, a comprehensive set of sulci were chosen, perhaps including all those
that consistently occur in normal subjects. Fig. 5 presents the result extrapolating our 366
tensors on a discrete grid of size 91 × 109× 91 and with a spacing of 2×2×2mm3 (ICBM
305 space). We used the parameter values α = 20 and γ = 0.95 for the RBF interpolation
and σ = 2 for the discretization of the data attachment term in the extrapolation (Eq. (3)).
We derived 2 scalar measures from the extrapolation. The �rst one (Fig. 6 left column)
is a variability map given by the 3D root mean square (r.m.s.) of each covariance matrix:
rms =

√
trace(Σ(x)). One can see highly variable regions (such as the parietal cortex and

Broca's area) with hot colors, and more stable areas (such as the primary sensorimotor
cortex) with cold colors. The second map shows the principal direction of each tensor
(i.e., the eigenvector associated to the largest eigenvalue), whose coordinates are mapped on
the RGB sphere, as presented in Fig. 6 right column. This map con�rms the anatomical
intuition that there are sets of sulci in certain cortical sectors that tend to vary in a consistent
way in the top view, the principal direction of variation is lateral-to-medial for the superior
frontal and parietal sulci, but the central and precentral sulci tend to vary more along an
anterior-posterior direction. The temporal lobe sulci also tend to be consistent in varying
with the same principal direction.

The spatial pattern of variability agrees with established neuroanatomical data. For
instance, [23] computed the variability of the cortex surface in an independent normal sam-
ple (15 controls) using a non-linear surface registration algorithm. Fig. 7 compares his
variability map with ours. Our model of variability presents the same high values in the
temporo-parietal cortex (red and purple area, marked �A� in Fig. 7) and low values in the
superior frontal gyrus (marked �B� in Fig. 7), Broca's area, and the lower limits of the pri-
mary sensorimotor cortices in the central and precentral gyri. Phylogenetically older areas
(e.g. orbitofrontal cortex), and primary cortices that myelinate earliest during development
(e.g., primary somatosensory and auditory cortex) exhibit least variability. The planum
parietale (marked �A� in Fig. 7) consistently shows the highest variance of any cortical area,
consistent with the complex pattern of secondary �ssures surrounding the supramarginal
and angular gyri (the perisylvian language cortex). It is also reasonable that the temporo-
parietal areas around the Sylvian �ssures are the most variable: they specialize and develop
in di�erent ways in each hemisphere, and are also the most asymmetric in terms of gyral
patterning and volumes [6].
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Figure 5: Accessing the full map of cortical surface variability step by step. Top:
Covariance matrices calculated along mean sulci. Middle: Matrices selected by the tensor
picking operation. Bottom: Result of the extrapolation.
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18 P. Fillard et al.

Figure 6: Left column: Variability map derived from the dense variability tensor
�eld obtained by extrapolation. The color codes for the 3D rms variability (mm). Hot
colors mean high variations among subjects. Right column: Maps showing the main
direction of variability. The color codes for the main direction of the variability tensor
at each point. Red: left-right oriented tensor, Green: posterior-anterior oriented, Blue:
inferior-superior oriented.

INRIA



Measuring Brain Variability on Sulcal Lines 19

Figure 7: Comparison of two independent models of brain variability. The scalar
value mapped on the mean cortex is the trace of the tensors (the variance). Left: Cortical
variability map from [23]. Right: Extrapolation of our simpli�ed sulci variability model to
the full brain. Note the similarity in the temporo-parietal cortex [shown in red colors (A)]
and the superior frontal gyrus (B).

3.5 Evaluation of the Variability Model
Evaluating our extrapolated variability model is a tough issue. Obviously, using the infor-
mation given by the sulci is not enough to infer the variability of the full brain, particularly
within the brain (e.g. in the white matter, ventricles and deep gray matter nuclei). More-
over, we have no ground truth in these areas to validate the predicted variability. Thus,
we restrict the evaluation of the predictive power of our model to the places where we have
enough data: on the cortex. The �rst idea is to see how well our interpolation and ex-
trapolation models �t the observed variability along each sulcus. This yields a root mean
square error (RMSe) assessing the �delity of the approximation. Then, we can perform a
�leave one sulcus out� test to see if a group of sulci can correctly predict the variability of
another sulcus in their neighborhood. This would mean that the model could e�ectively
�nd missing data (i.e., the measures are dependent) and somehow predict the variability of
missing structures in our datasets.

Intra-Sulcus Variability Recovery At each sampling point x, we computed the �dif-
ference� or error vector (Eq. 1) between the observed variability tensor (the reference)
and the reconstructed one, either with our interpolation or with our extrapolation method.
For both strategies, we found that the mean error was not signi�cantly di�erent from zero
(p-value of 0.25 with Hotelling's test). Second, we found a standard deviation σref =√

1/N
∑N

i=1 trace(Z2
i ) of 0.15 for the interpolation error. This value gives us a lower bound

on the range of the reconstruction errors. The slightly higher value of 0.21 for the extrapola-
tion error could be attributed to the aperture problem: in regions with orthogonal sulci, the
normal component of one tensor in�uences the tangential part of its perpendicular neigh-
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bors and vice versa. One could think of solving the aperture problem in these regions by
retrieving the tangential component of the variability from the normal one of surrounding
sulci. However, in this study, we chose to consider such variability tensors as outliers and
to remove them. As a consequence of this removal, the error distribution after interpolation
and extrapolation are comparable.

To further illustrate the prediction power of our extrapolation method, we compared the
results of the extrapolation using 2000, 1000, 366 and 144 tensors, respectively. The �rst
value corresponds to retaining all tensors. The second value is obtained by taking every
other tensor, i.e. one tensor out of every two. The third value is the number of tensors
retained by the tensor picking operation. The last value is the minimum number of tensors
that the tensor picking operation can produce (2 measures for each of the 72 sulci, i.e. 144
tensors). Indeed, at least two tensor values per sulcus are required to be able to perform a
linear interpolation between them. Figure 8 summarizes the experience results. One notices
that even with very the few tensors (366 compared to 2000 initially), the model is able to
recover a correct estimation of the variability in almost all areas. Local errors arise when the
correlation of variability between neighboring sulci is too low (see regions with hot colors in
Fig. 8, right column).

To evaluate further our model, we now perform the "leave one sulcus out" test.

Leave One Sulcus Out This test removes one sulcus and its variability tensors from
the model and extrapolates the rest of the data to the full brain. Then, the prediction
error made on this speci�c sulcus is compared to the interpolation and extrapolation errors.
As the measures are independent, an error below 3 σref is not signi�cant and shows that
our extrapolation model recovers the missing variability information up to the intrinsic
reconstruction uncertainty. However, a RMSe larger than 3σref means that we do not
recover a comparable variability in at least one direction. We know that an uncertainty in
the tangent of the mean sulcus could be induced by the aperture problem. To remove this
e�ect, we �project� the error vector onto the plane perpendicular to the tangent of the mean
sulcus. Thus, the error component in this direction is zeroed out. We will call this error the
�partial error�.

This test is performed on 3 sulci: the Sylvian Fissure, the Superior Temporal Sulcus
and the Inferior Temporal Sulcus. Fig. 9 displays the variability of the reconstructed sulci
after extrapolation with and without their tensors, while Table 1 summarizes the global
RMSe statistics. The prediction error with missing sulci is globally 2 to 3 times larger than
that incurred by interpolating or extrapolating the full model, but the di�erence is not high
enough to be signi�cant. However, errors are locally signi�cant. In some places, like for
the Sylvian Fissure, the prediction errors occur primarily in the tangential direction to the
mean sulcus. Indeed, three main sulci (the Pre-Central, Central and Post-Central Sulcus),
are orthogonally adjacent to the horizontal component of the Sylvian Fissure (Fig. 10), even
though they do not actually merge with it, thus in�uencing the estimates of the tangential
component of the variability as discussed in Sec. 3.5. Such behavior is con�rmed by the
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2000 Tensors

1000 Tensors

366 Tensors - retained model

144 Tensors

Figure 8: Decreasing the number of picked tensors. Left: Tensors retained for
the model. Middle: Results of the extrapolation. Right: Error (Riemannian distance)
between the extrapolated and initial covariance matrices �eld.

�partial� error that is much lower than the standard one. By contrast, the variability of some
sulci like the Central Sulcus (Fig. 10) cannot be correctly recovered from neighboring sulci:
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Figure 9: Results of the �leave one sulcus out� test. Top: Positions of the 3 tested
sulci in the ICBM305 space. Bottom left: variability of each sulcus after extrapolation
of the complete model (from top to bottom: the Sylvian Fissure, the Superior Temporal
Sulcus, the Inferior Temporal Sulcus). The color bar is the same as in Fig. 7. Bottom
right: extrapolated variability from the neighboring sulci only.

the error is not only due to the aperture problem but spatial correlations between adjacent
sulci may be lower in some brain regions, making variations more di�cult to predict.

In conclusion, our model is able to recover intra-sulcus variability from the selected
tensors, and to predict the variability in regions that are locally correlated. Nevertheless,
our evaluation method is limited for two reasons. First, the aperture problem will cause an
underestimation of the variability along the direction of the mean curve, and this feature
is in fact observed in regions with orthogonal sulci. However, there are not so many such
regions, so this e�ect remains largely unnoticed. Second, the variability of some sulci is
not correlated with that of their neighbors (this is the case for the Central Sulcus). These
sulci carry some independent variability information, and should de�nitely be part of any
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Figure 10: Illustration of orthogonal sulci. The Central, Pre-Central and Post-Central
sulci have an orientation that is somewhat orthogonal to the Sylvian Fissure. This causes
a di�culty in predicting the variability of the Sylvian Fissure from the other 3 somewhat
orthogonal sulci. Another di�culty (less critical) is the prediction of the Central Sulcus
from Post- and Pre-central sulci, because the Central Sulcus has a rather low variability
compared to its immediate neighbors. Thus, the prediction will be di�cult due to the lack
of correlation in this region.

Sulcus Sylvian Fiss. Sup. Temporal Inf. Temporal.
Interpolation 0.17 - 0.15∗ 0.17 - 0.15∗ 0.17 - 0.14∗

Extrapolation 0.19 - 0.16∗ 0.21 - 0.19∗ 0.20 - 0.17∗

Extrapolation w/o sulcus 0.56 - 0.34∗ 0.42 - 0.32∗ 0.38 - 0.32∗

Table 1: RMSe of reconstruction of 3 sulci with the interpolation, extrapolation and leave
one-sulcus out extrapolation methods. * indicates the �partial error� (Sec. 3.5).

brain variability model. One could consider including features as constraints for nonlinear
registration of brain data when they contribute the greatest information on anatomical
variation, i.e. information that cannot readily be predicted or interpolated from information
on adjacent structures.

RR n° 5887



24 P. Fillard et al.

4 Analysis of the Asymmetry of Brain Variability
The study of asymmetry of brain variability is of great interest for neuroscience [6], and mea-
sures of structural and functional lateralization are of interest in mapping brain development,
and disorders such as dyslexia, epilepsy, and schizophrenia. The two brain hemispheres de-
velop according to slightly di�erent genetic programs, and the right hemisphere is torqued
forward relative to the left, with greatest volume asymmetries in the planum temporale and
language cortex surrounding the Sylvian �ssures (typically larger in the left hemisphere).
If the types of variation in the two hemispheres could be di�erentiated, their genetic basis
would be easier to investigate. It could also help understand whether there is an asymmetry
in the power to detect consistent task-related or group-speci�c activation patterns in func-
tional brain imaging studies, due to structural variance asymmetries.

We measured the symmetry/asymmetry of brain variability using our extrapolation
model. The principle is to compute the distance between the variability tensor at one
point and the (symmetrized) tensor at the symmetric point in the brain with Eq. 2. To
de�ne the symmetric point, a �rst geometric method is to simply use the 3D position that
is symmetric with respect to the mid-sagittal plane in the stereotaxic space (mid-sagittal
symmetry). In that case, we compute a dense asymmetry map from the extrapolated tensor
values at each 3D point of a hemisphere (Fig. 11, left).

Another anatomical possibility is to measure brain asymmetry on sulcal lines, and ex-
trapolate those measures to the whole brain (sulcal symmetry). First, all curves are mapped
into a common hemisphere (e.g. the left hemisphere). Then, for each sulcus, a global mean
is computed, as well as the left and right means (obtained by taking only the left (or respec-
tively, the right) instances). Second, we compute the correspondences between this global
mean and the left and right means. Thus, we de�ne a common reference curve, the global
mean, to compare left and right variability tensors. This prevents us from introducing a
bias in the results, such as might happen if we had chosen either the left or right mean as
the reference curve. Finally, di�erence vectors (Eq. 2) between left and right tensors are
measured along the reference curve and extrapolated to the full brain using our framework.
We end up with another dense asymmetry map, whose color is proportional to the distance
between left-right tensors (Fig. 11 right).

A very interesting feature is that the regions with greatest asymmetries in variability
include the one of main language areas, Broca's speech area (labeled A in Fig. 11) as well
as the parietal cortex, which exhibits the greatest gross anatomical variation of any cortical
area (labeled B in Fig. 11). As expected, these areas are more structurally variable in
the left hemisphere which is typically dominant for language in normal right-handers. One
surprise is that the tips of the Syvian �ssures do not show the greatest di�erence in variability
between the hemispheres, as these are regions with highly variably branching patterns that
have been studied extensively in the language and dyslexia literature. Also as expected, the
primary sensorimotor areas (central and pre-central gyri) are relatively symmetric in their
variance, as the absolute variability is lower, as is their degree of hemispheric specialization
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(i.e. they perform analogous functions in each hemisphere, but innervate opposite sides of
the body).

Figure 11: Maps of brain variability asymmetry. Left: The mid-sagittal symmetry.
Right: The sulcal symmetry.

5 Discussion
This article presents an original methodology to model the pro�le of structural variability
in cortical landmarks. First, we began with a dataset of 72 expertly delineated sulcal lines
in 98 subjects, and proposed an original mean sulcal landmark computation strategy. The
approach consisted of alternately optimizing the position of the mean curve, computing the
correspondences by dynamic programming and re�ning each subject's a�ne transform based
on the obtained matching. Then, variability tensors are measured along sulcal lines. Second,
we applied a powerful Riemannian framework for tensor computing to extrapolate sparsely
distributed tensors. We extend a RBF extrapolation method combined with di�usion PDEs.
While the RBF provides a good initialization, the di�usion with attachment to the measures
results in a smooth tensor �eld that stays close to the observed measures and converges in a
few iterations. This agrees with the notion that there is a natural hierarchy of variability in
the brain, with the variations of structures within a lobe or set of gyri being predictable from
their immediate neighbors with relatively high accuracy. The resulting framework is very
�exible in a sense that other sources of information can be easily incorporated to improve
the accuracy of the variability model.

The results are also interesting neuroscienti�cally. The amplitude and asymmetry of
variability are greatest in the most phyogenetically recent developments in the cortex: the
frontal lobe, the dorsolateral prefrontal cortex, and in the more dorsal areas of the pari-
etal association cortices. The language areas, in particular, have fundamentally di�erent
developmental programs in each brain hemisphere, leading to volumetric and functional
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asymmetries (e.g. left hemisphere language dominance). This variance asymmetry is seen
in Broca's area, which is specialized in the left hemisphere for producing speech, but is
less commonly associated with structural asymmetries. Lower variance was seen in cortical
regions subserving primary brain functions (e.g., touch, motor function, hearing) and these
areas are the earliest to mature in utero. It would be interesting to hypothesize that the
areas of the brain that emerged most recently in human evolution are the same ones that
have greatest di�erences in variation patterns between the hemispheres, re�ecting the drive
towards hemispheric specialization of function in higher primates and man. The modeling of
variance is practically valuable for understanding and discovering genetic and disease related
factors that a�ect brain structure, which are currently hard to identify given the extremely
complex patterns of variation in normal anatomy. For example, many neurodevelopmental
disorders are associated with subtle variations in the patterning of the cortex, and new com-
putational anatomy techniques are making these features easier to identify (e.g., increased
cortical complexity in Williams syndrome [38]).

When modeling variability, the main weakness is the unknown variability along the di-
rection tangent to the mean sulci (aperture problem). We intend to tackle this point by �rst
improving our sulcal matching algorithm to safely use the landmark information at the ends
of sulci, and second by removing the data attachment term in the direction of the sulcal
tangent. Doing this, the neighboring information could di�use freely in that direction and
hopefully reconstruct a globally coherent variability. Other approaches to this problem in-
clude the use of data from other imaging modalities, such as functional MRI and MEG, which
further guide the matching of anatomy across subjects, for purpose of detecting systematic
activation patterns or group or task-related di�erences. For the model validation, we need
to compare to other sources of information, like sulcal ribbons [26], variability obtained from
the matching of surfaces (e.g., ventricles or basal ganglia), �ber pathways mapped from DTI,
or of full 3D images. As these sources of information are also subject to an aperture problem
(we mainly retrieve the deformation in the direction of the gradient of the image), we ex-
pect to observe a good agreement in some areas, and complementary measures in other areas.
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