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Abstract. In this paper, we present a novel framework to carry out
computations on tensors, i.e. symmetric positive definite matrices. We
endow the space of tensors with an affine-invariant Riemannian metric,
which leads to strong theoretical properties: The space of positive definite
symmetric matrices is replaced by a regular and geodesically complete
manifold without boundaries. Thus, tensors with non-positive eigenval-
ues are at an infinite distance of any positive definite matrix. Moreover,
the tools of differential geometry apply and we generalize to tensors nu-
merous algorithms that were reserved to vector spaces. The application
of this framework to the processing of diffusion tensor images shows
very promising results. We apply this framework to the processing of
structure tensor images and show that it could help to extract low-level
features thanks to the affine-invariance of our metric. However, the same
affine-invariance causes the whole framework to be noise sensitive and
we believe that the choice of a more adapted metric could significantly
improve the robustness of the result.

1 Introduction

Symmetric positive definite matrices, or tensors, are widely used in image pro-
cessing. They can either characterize the diffusion of water molecules as in dif-
fusion tensor imaging (DTI) [1], or reveal structural information of an image
(structure tensor) [2, 3]. In this last application, tensors are used to detect sin-
gularities such as edges or corners in images. The structure tensor is classically
obtained by a Gaussian smoothing of the tensor product of the gradient, or with
a non-linear filtering as in [4], thus being naturally robust to noise. However,
noisy images require a large amount of regularization to obtain a smooth struc-
ture tensor field in order to avoid being overwhelmed by outliers in features
detection. By contrast, too much smoothing would completely wipe out small
structures in images. To address this problem, one would prefer to preserve small
structures in images by estimating structure tensors with a little smoothing and
to regularize the noisy tensor field itself. This implies to be able to filter tensor
images, and more generally to carry out computations with tensors.



Working with tensors is arduous since the underlying space is a manifold
that is not a vector space. While convex operations remain stable on the tensor
space (e.g. the mean of a set of tensors is a tensor), one can quickly go out of
the Euclidean boundaries with non-convex operations like a gradient descent.
A critical consequence is that matrices with null or negative eigenvalues may
appear and are problematic for most applications.

In this paper, we propose to apply a recently proposed Riemannian framework
for tensors to the processing of structure tensor images. The limitations of the
standard Euclidean calculus are completely overcome and the tensor space is
replaced by a manifold with a regular structure. We show that it leads to very
strong theoretical properties, such as the existence and uniqueness of the mean,
and that most of the statistical tools as well as the algorithms that were until
now reserved to vector space can be extended to tensors. The rest of the paper
is organized as follows. In Sec. 2 we summarize the Riemannian framework for
tensors. In Sec. 3, we extend the computations of classical image processing
operators to tensors as well as more complex operations and we provide intrinsic
numerical schemes for their implementation. In Sec. 4, we apply these tools on a
structure tensor image. In particular, we perform an anisotropic smoothing and
discuss about the potentiality of the method on this type of tensors.

2 A Riemannian Framework for Tensor Calculus

Much of the literature addresses tensor computing problems in the context of
DTI regularization. In DTI, the Brownian motion of water is estimated by a MRI
scanner at each position of the brain. This stochastic motion is characterized by
its covariance matrix, which is called a diffusion tensor. Depending on the amount
and direction of water diffusion, the tensor can be either cigar-shaped (region
where the diffusion is restricted by oriented tissues ), or a sphere (regions with
free diffusion). As the MRI signal is corrupted with noise during acquisition, the
resulting tensor field has to be filtered. To do so, the spectral decomposition of
tensors is often exploited: [5] only processes the major eigenvector (eigenvector
corresponding to the largest eigenvalue), leading to simple computations but a
dramatical loss of information, while [6] independently regularizes the orthogonal
matrices of eigenvectors and the eigenvalues. As the spectral decomposition is not
unique, a preprocess step, where the eigenvectors are reoriented, is needed and is
not trivial. More recently, differential geometric approaches have been developed
to generalize the PCA to tensor data [7], for statistical segmentation of tensor
images [8], for computing a geometric mean and an intrinsic anisotropy index [9],
or as the basis of a full framework for Riemannian tensor calculus [10]. In this last
work, we endow the space of tensors with an affine-invariant Riemannian metric
to obtain results that are independent of the choice of the spatial coordinate
system. Differential geometry tools allow to manipulate tensors while insuring
the positive definiteness of the result. In this section, we present an overview of
the affine-invariant metric for tensors.



2.1 An Affine-Invariant Riemannian Metric

We showed in [11] that choosing a Riemannian metric provides a powerful frame-
work to generalize statistics and other operations to manifolds. We applied this
concept to tensors and showed in [10] that it leads to interesting properties such
as the existence and uniqueness of the (geometric) mean or the existence and
uniqueness of the geodesic between two tensors. A complete description of the
features of this framework can be found in [10] and is summarized below.

Let Σ be a point of the tensor space Sym∗
+(n). The action of the linear group

GLn on Sym∗
+(n) is:

∀A ∈ GLn, A ? Σ = AΣAT

Let us consider the standard matrix scalar product at the tangent space at
identity TId

M :

〈W1|W2〉Id

def
= Tr

(
W1W

T
2

)
,

where W1 and W2 are elements of TId
M . As tangent spaces are vectorial spaces,

W1 and W2 are called tangent vectors. They are simple symmetric matrix since
the tensor space is a manifold included in the space of symmetric matrices
Sym(n).
An affine-invariant metric must verify: < W1|W2 >Σ=< A ? W1|A ? W2 >A?Σ

for all A ∈ GLn. This is verified in particular for A = Σ−1/2, which allows us to
write the scalar product at any point Σ from the product at TId

M :

〈W1|W2〉Σ =
〈
Σ− 1

2 ? W1|Σ− 1
2 ? W2

〉
Id

(1)

= Tr
(
Σ− 1

2 W1Σ
−1W2Σ

− 1
2

)
(2)

Eq. 1 is an affine-invariant Riemannian metric. Actually, we only need the
invariance by the linear group to obtain an affine-invariance since the translation
is not taken into account in our applications (tensors are independent of their
position on a grid).

As a general property on Riemannian manifolds, geodesics realize a local
diffeomorphism, called the exponential map, from the tangent space at any point
Σ to the manifold itself. This allows us to locally identify points of the manifold
with tangent vectors. With the invariant metric of Eq. 1, we can show that
this diffeomorphism is moreover global and is simply expressed with the matrix
exponential:

∀W ∈ TΣM, expΣ(W ) = Σ
1
2 exp

(
Σ− 1

2 WΣ− 1
2

)
Σ

1
2 (3)

expΣ(W ) can be seen as the point of the manifold reached by the geodesic
starting at Σ, with tangent vector W in a unit time step. Conversely, we can
uniquely define the inverse mapping, the logarithmic map:

logΣ(Λ) = Σ
1
2 log

(
Σ− 1

2 ΛΣ− 1
2

)
Σ

1
2 . (4)



Fig. 1. Development of the geodesic γ linking Σ to Λ onto the tangent space
TΣM . The geodesics starting at Σ are straight lines in TΣM and the distance along
them is conserved.

These diffeomorphisms turn any two points Σ and Λ of the manifold into the
tangent vector

−→
ΣΛ such that the geodesic starting at Σ and with tangent vector−→

ΣΛ reaches the point Λ in a unit step (Fig. 1).
These two diffeomorphisms are the key to the numerical implementation and

generalization to manifolds of numerous algorithms that work on a vector space.
Table 1 summarizes the basic operations of vector spaces and their Riemannian
counterparts.

Geodesic marching: An important operator for solving partial differential
equations (PDEs) is the gradient descent. It consists in following the opposite
direction of the gradient of a criterion C we want to minimize for a short time step
ε. In the tensor case, the Euclidean gradient descent scheme Σt+1 = Σt − ε∇C
could easily lead out of the boundaries of the space and non-positive matrices
may appear. The Euclidean scheme is advantageously replaced by the geodesic
marching scheme: we follow the geodesic starting at Σt, with tangent vector
−∇C for a short time step: Σt+1 = expΣt

(−ε∇C). The exponential map in-
sures that we always stay on the manifold: the result is guaranteed to be positive
definite.

Operation Vector space Riemannian manifold

Subtraction
−→
ΣΛ = Λ−Σ

−→
ΣΛ = logΣ(Λ)

Addition Λ = Σ +
−→
ΣΛ Λ = expΣ(

−→
ΣΛ)

Distance dist(Σ, Λ) = ‖
−→
ΣΛ‖ dist(Σ, Λ) = ‖

−→
ΣΛ‖Σ

Mean value
P

i

−−→
Σ̄Σi = 0

P
i logΣ̄(Σi) = 0

Gradient descent Σt+ε = Σt − ε∇C(Σt) Σt+ε = expΣt
(−ε∇C(Σt))

Linear (geodesic) interpolation Σ(t) = Σ1 + t
−−−→
Σ1Σ2 Σ(t) = expΣ1

(t
−−−→
Σ1Σ2)

Table 1. Re-interpretation of the basic operations of vector spaces to Riemannian
manifolds.



In conclusion, the Riemannian framework gives a powerful alternative to the
standard Euclidean calculus: classical operators are easily translated to tensors
thanks to the combination of the logarithm and exponential maps and complex
algorithms can be rewritten using these two diffeomorphisms. In the next sec-
tion, we show that the classical image processing operators like gradient and
Laplacian can be adapted to the Riemannian framework without much effort.
More interestingly, we are able to achieve complex operations like anisotropic
filtering directly on tensors, which was not possible with the standard Euclidean
calculus.

3 Applications

In this section, we reinterpret various image processing operators in the Rie-
mannian framework. First, we rewrite two classical operators of image processing
(gradient and Laplacian) to tensor images, and second we describe more complex
operations like multi-linear interpolation and anisotropic filtering.

3.1 Classical Image Processing Operators

In the following, we show that the gradient and Laplacian of a tensor field are
easily expressed in our exponential chart, and we provide a practical numerical
implementation of both operators.

Spatial Gradient of a Tensor Field Basically, for a n-dimensional vector
field F (x) defined over Rd, the spatial gradient in an orthonormal basis is:
∇F = [∂x1F, . . . , ∂xd

F ]T , where ∂xi
F is the directional derivative of F in the

direction xi. It can be approximated using a finite difference scheme: ∂xi
F (x) =

(F (x + xi)− F (x− xi)) /(2‖xi‖).
For a tensor-valued image Σ(x), we can proceed similarly except that the di-
rectional derivatives ∂xiΣ are now tangent vectors of TΣ(x)M . They can be
approximated like above using finite differences in our exponential chart:

∂xi
Σ(x) '

(−−−−−−−−−−→
Σ(x)Σ(x + xi)−

−−−−−−−−−−→
Σ(x)Σ(x− xi)

)
/(2‖xi‖)

=
(
logΣ(x) (Σ(x + xi))− logΣ(x) (Σ(x− xi))

)
/(2‖xi‖).

One must be careful to take the metric at point Σ(x) into account when com-
puting the norm of the gradient: ‖∇Σ(x)‖2

Σ(x) =
∑d

i=1 ‖∂xi
Σ(x)‖2

Σ(x). Fig. 2
shows the difference between the Euclidean and Riemannian gradients. The Eu-
clidean gradient (Fig. 2 middle) gives much more importance to tensors with
large coefficients, and consequently its norm has higher values along the bound-
aries with the ventricles (a region characterized by large tensors), and lower
values elsewhere. By contrast, the affine-invariant metric (Fig. 2 right) gives as
much importance to variations of small tensors as to variations of large matrices.
Consequently, the norm the Riemannian gradient is more regular.



Fig. 2. Comparison of the norm of the Euclidean and Riemannian gradients of a tensor
image. Left: A slice of a DTI tensor image. The color codes for the major eigenvectors
of tensors: Red: left-right oriented tensor, blue: inferior-superior oriented tensor,
green: posterior-anterior oriented tensor. Middle: Norm of the Euclidean gradient.
Right: Norm of the Riemannian gradient. Remark how the Riemannian norm is more
regular than the Euclidean norm.

Laplacian of a Tensor Field For the numerical implementation of the Lapla-
cian, one needs the second order derivatives. As for the gradient, we use the
finite difference scheme to approximate the 2nd order derivative on a discrete
grid: ∂2

xi
F (x) ' (F (x + xi)− 2F (x) + F (x− xi)/‖xi‖2.

We proved in [10] that :

∂2
xi

Σ(x) =
(−−−−−−−−−−→
Σ(x)Σ(x + xi) +

−−−−−−−−−−→
Σ(x)Σ(x− xi)

)
/‖xi‖2

is a forth order approximation of the 2nd order directional derivative of Σ(x) in
the direction xi. Finally, the manifold Laplacian (Laplace-Beltrami operator) of
a tensor field is simply: ∆Σ(x) =

∑d
i=1 ∂2

xi
Σ(x).

3.2 Interpolation and Filtering of Tensor Fields

Interpolation Interpolation is one of the most important task in image pro-
cessing. A simple operation is the interpolation between two tensors Σ1 and Σ2.
The classical Euclidean calculus gives us the formulation: Σ(t) = (1−t)Σ1+tΣ2.
With our Riemannian framework, it consists in following the geodesic joining the
two tensors: Σ(t) = expΣ1

(t
−−−−→
Σ1Σ2).

For multi-linear interpolation, e.g. bi or trilinear interpolation on a regular 2D
or 3D grid, the formulation is not trivial. One has to go through the computation
of a weighted mean with classical bi- or trilinear coefficients calculated on a grid.
With the standard Euclidean framework, the weighted mean of a set of tensors
is: Σ = (

∑N
i=1 ωiΣi)/

∑N
i=1 ωi. In our Riemannian framework, one needs to go



back to the Frechet definition of the mean, i.e. the minimum (if it exists) of the
square distance to each tensor:

Σ̄ = min
Σ

N∑
i=1

dist2 (Σ, Σi)

In the case of the tensor space provided with the affine-invariant metric, the
manifold has a non-positive curvature, so that the mean exists and is unique.
However, because of the curvature, the Frechet formulation does not have an
explicit solution. Instead, one has to minimize it through a Newton gradient
descent and the estimation of the mean at time t + 1 is given by:

Σ̄t+1 = expΣ̄t

(∑N
i=1 ωi logΣ̄t

(Σi)∑N
i=1 ωi

)

which consists in expressing each tensor in the tangent space at the current
estimation of the mean with the logarithmic map, then going back to the mani-
fold with the exponential map, and to reiterate the process. The existence and
uniqueness of the mean guarantees the process to converge. In practice, the con-
vergence of the iterative process is geometric and the mean value is reached
after 5 to 10 iterations. In [10], we propose an extension of several statistical
operations to tensors.

Anisotropic Filtering In practice, we would like to filter a tensor image within
homogeneous regions but not across the boundaries. The basic idea introduced
by [12] is to penalize the smoothing in the directions where the magnitude of
the gradient is high. This can be achieved through the minimization of the φ-
functional:

C(Σ) =
1
2

∫
Ω

φ
(
‖∇Σ(x)‖Σ(x)

)
dx. (5)

By choosing an adequate φ-function, one can give to the regularization an
isotropic or anisotropic behavior [13]. In our experiments, we use φ(s) = 2

√
1 + s2/κ2−

2, as proposed in [5]. The main difference with a classical Euclidean calculation
is that we have to take the curvature into account by using the Laplace-Beltrami
operator, and by expressing directional derivatives in the correct tangent space.
After differentiation of Eq. 5, one obtains :

∇C(Σ) = −
φ(‖∇Σ‖Σ(x))
‖∇Σ‖Σ(x)

∆Σ −
d∑

i=1

∂xi
φ(‖∇Σ‖Σ(x))∂xi

Σ

Thanks to the numerical scheme of the gradient and Laplacian operators (Sec.
3.1 ) combined with the geodesic marching, we are able to perform a gradient
descent to minimize criterion (5):

Σt+1(x) = expΣt(x) (−ε∇C (Σt(x))) (6)



Fig. 3. Anisotropic regularization of a slice of DTI. Parameters: κ = 0.05,
ε = 0.1, iterations: 100 (diffusion time = 10). Left: Raw data. Right: Anisotropic
filtering in the Riemannian framework. The boundary of the ventricles (region with
large tensors) is well preserved. Remark that the left-right oriented tensors (in red)
that are delineating a fiber tract are also conserved. The color code is the same as in
Fig. 2.

Fig. 3 shows the effect of the anisotropic regularization on a slice of DTI. The
parameters for the regularization are: κ = 0.05, ε = 0.1 and 100 iterations (total
diffusion time: 10). The boundaries with the ventricles are conserved while the
interior is correctly regularized. Moreover, at the top of the ventricles lies a fiber
tract delimited with cigar-shaped tensors, which are also very well preserved.

4 Applications to Structure Tensor Images

The structure tensor has become a useful tool for the analysis of features in
images. It is used in edges and corners detection [2], texture analysis [14, 15],
filtering [16], and even medical image registration [17]. We show in this section
how to apply our previously presented Riemannian framework to process struc-
ture tensor-valued images. In particular, we perform an anisotropic smoothing
of the structure tensor field to enhance it, which could improve the quality of
features detection.

4.1 The Structure Tensor

Let I be an image defined on a domain of Rd. The structure tensor is based
on the gradient of I: ∇I = (∂1I, . . . , ∂d)

T , where each directional derivative ∂iI
can be computed with a finite difference scheme or by filtering with a first order
derivative of a Gaussian. The structure tensor Sσ can be defined as:

Sσ = Gσ ∗
(
∇I∇IT

)



with Gσ being a Gaussian of standard deviation σ. The variance σ controls the
smoothness of the resulting tensor field. The noisier the image is, the higher σ
must be to obtain a smooth field, but small structures may be wiped out. By
contrast, smaller values of σ can help to extract low level features in images, but
the resulting structure tensor image may be noisy. Consequently, one would like
to perform an anisotropic filtering of the structure tensor field obtained with a
low σ, in order to regularize homogeneous regions while preserving the bound-
aries with low-level features. In the following, we first compute the Riemannian
gradient of a structure tensor image and compare it to the classical Euclidean
gradient. Then, we perform an anisotropic filtering and discuss about the results.

4.2 Gradient of a Structure Tensor Image

Following the numerical scheme of Sec. 3.1, we computed the gradient norm of
a structure tensor image obtained with a σ of 1.0 (Fig. 4 left is the original
image). Then, we compared it to the Euclidean gradient. We also added noise
in the original image to evaluate the robustness of both gradients. Results of
comparisons are shown in Fig. 4.

First, we can notice that with the affine-invariant metric, outliers appear
in the image background (Fig. 4 top right). This is intensified when adding
noise (Fig. 4 bottom right): we see that the background is made with artefacts
due to variations of small tensors that result from noise. Indeed, small tensors
have as much importance as large ones because of the affine-invariance of the
metric. Consequently, the Riemannian gradient of a variation of small tensors
or large tensors will be identical. By contrast, the Euclidean gradient remains
much less sensitive to tensors with small coefficients, and consequently only the
main features are revealed (Fig. 4 bottom right and left).

Second, details that are not present in the Euclidean norm appear in the
Riemannian gradient: this is the case, for example, of low-contrasted edges in
the original image. This also results from the affine-invariance of the metric.

To conclude, the Riemannian framework can reveal lower structural informa-
tion such as low contrasted edges but is highly sensitive to small variation in the
tensor image, and thus suffers from a lack of robustness.

Let us now investigate how the anisotropic filtering scheme can restore the
noisy structure tensor image.

4.3 Anisotropic Filtering of a Structure Tensor Image

We applied the anisotropic filtering scheme of Sec. 3.2 on the noisy structure
tensor image of Fig. 4 bottom left. We used the following parameters: κ = 0.02,
ε = 0.1 and 500 iterations (total diffusion time: 50). Results are presented in
Fig. 5.

The affine-invariance causes the variations of small tensors to be highly con-
trasted in the norm of the Riemannian gradient and thus to be preserved during
the filtering process. Figures 5 bottom illustrate this behavior: the top of the



Fig. 4. Euclidean gradient versus Riemannian gradient. Top row: Original
image (left), norm of the Euclidean (middle) and Riemannian (right) gradients. Bot-
tom row: Noisy image (a Gaussian noise of variance 0.01 was added) (left), norm of
the Euclidean (middle) and Riemannian (right) gradients.

original noisy image (middle image) is filled with artefacts that were preserved
during the smoothing (right image). Taking the Euclidean norm (Fig. 5 top
right) removes the artefacts in the image background. Homogeneous regions are
smoother while edges are correctly conserved. However, some artefacts in the
background that were expected to disappear are still present and the strength
of most of the relevant edges is lower than in the affine-invariant case.

In conclusion, the affine-invariant metric that is well suited for DTI, or more
generally for covariance matrices, seems not to be applicable directly to structure
tensor images. The affine-invariance gives an identical role to small tensors versus
large ones. Thus, while it allows to extract low-level features, it suffers from a
lack of robustness.

However, the Riemannian framework we present in this paper is ”parame-
terized” by the metric. The choice of the metric is crucial and determines the
properties of the framework. The affine-invariance does not seem to be the best
choice for structure tensor images, but a more adapted metric could significantly
improve the results.



Fig. 5. Anisotropic filtering of a noisy structure tensor image. Diffusion pa-
rameters: κ = 0.02, ε = 0.1 and 500 iterations. Top row: From left to right: Original
Euclidean gradient, Euclidean gradient with noise, Euclidean gradient after regulariza-
tion. Bottom row: From left to right: Original Riemannian gradient, Riemannian
gradient with noise, Riemannian gradient after regularization.

5 Discussion

We present in this paper a full Riemannian framework with an affine-invariant
metric that allows to perform computations on tensors while insuring the re-
sult to be positive definite, which is often a critical issue as in DTI. While this
framework is perfectly adapted to the processing of tensors representing covari-
ance matrices, the affine-invariant metric does not appear to be the best suited
choice for the processing of structure tensor images. In this case, the limitation
comes from the affine-invariance which gives an identical influence to small and
large tensors. Thus, an anisotropic smoothing will preserve the artefacts that are
caused by variations of small tensors composing homogeneous regions. Beyond
this limitation, the goal of this paper is to show that the choice of a Riemannian
metric leads to a powerful framework which allows to extend classical vector
space algorithms to manifolds thanks to the tools of differential geometry. One
interesting track would be to specify what are the basic axioms that the structure
tensor needs to satisfy and to derive the corresponding metric.
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