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Abstract. A new algorithm is presented for the automatic segmenta-
tion of Multiple Sclerosis (MS) lesions in 3D MR images. It builds on the
discriminative random decision forest framework to provide a voxel-wise
probabilistic classification of the volume. Our method uses multi-channel
MR intensities (T1, T2, Flair), spatial prior and long-range comparisons
with 3D regions to discriminate lesions. A symmetry feature is intro-
duced accounting for the fact that some MS lesions tend to develop in
an asymmetric way. Quantitative evaluation of the data is carried out on
publicly available labeled cases from the MS Lesion Segmentation Chal-
lenge 2008 dataset and demonstrates improved results over the state of
the art.

1 Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory and demyelinating disease
that primarily affects the white matter of the central nervous system. Auto-
matic detection and segmentation of MS lesions can help diagnosis and patient
follow-up. It offers an attractive alternative to manual segmentation which re-
mains a time-consuming task and suffers from intra- and inter-expert variability.
MS lesions, however, show high appearance variability which makes automatic
segmentation a challenging task. Indeed, MS lesions lack common intensity and
texture characteristics, their shapes are variable and their location within the
white matter varies across patients.

A variety of methods have been proposed for the automatic segmentation
of MS lesions. Generative methods were proposed consisting in a tissue clas-
sification by means of an expectation maximization (EM) algorithm. The EM
algorithm can be modified to be robust against lesion affected regions, its out-
come is then parsed in order to detect outliers which, in this case, coincide with
MS lesions [1]. Another approach consists in adding to the EM a partial vol-
ume effect model between tissue classes and combining it with a Mahalanobis
thresholding which highlights the lesions [2]. Morphological postprocessing on
resulting regions of interest was shown to improve the classification performance
[3]. In [4], a constrained Gaussian mixture model is proposed, with no spatial
prior, to capture the tissue spatial layout. MS lesions are detected as outliers



and then grouped in an additional tissue class. Final delineation is performed
using probability-based curve evolution. Multi-scale segmentation can be com-
bined with discriminative classification to take into account regional properties
[5]. Beyond the information introduced via the spatial prior atlases, these meth-
ods are limited in their ability to take advantage of long-range spatial context
in the classification task.

To overcome this shortcoming, we propose the use of an ensemble of dis-
criminative classifiers. It builds on the random decision forest framework which
has multiple applications in bioinformatics [6], but more recently also in the
image processing community [7]. Adding spatial and multi-channel features to
this classifier proved effective in object recognition [8], brain tissue segmenta-
tion in MR images [9], myocardium delineation in 3D echocardiography [10] and
organ localization in CT volumes [11]. Applying multi-channel and context-rich
random forest classification to the MS lesion segmentation problem is novel, to
our knowledge. The presented classifier also exploits a specific discriminative
symmetry feature assuming that the healthy brain is approximately symmetric
with respect to the mid-sagittal plane and that MS lesions tend to develop in
asymmetric ways.

2 Materials and methods

This section describes our adaptation of the random decision forests to the seg-
mentation of MS lesions and illustrates the visual features employed.

2.1 Dataset

Our dataset contains 20 labeled cases which are publicly available from the
MS Lesion Segmentation Challenge 2008 website [12]. For each case, three MR
channels are made available T1- ,T2-weighted and Flair.

After being sub-sampled and cropped, all the images have the same size,
159× 207× 79 voxels, and the same resolution, 1× 1× 2 mm3. RF acquisition
field inhomogeneities are corrected [13] and inter-subject intensity variations
are normalized [14]. The images are then aligned on the mid-sagittal plane [15].
Spatial prior is added by registering the MNI atlas [16] to the anatomical images,
each voxel of the atlas providing the probability of belonging to the white matter
(WM), the grey matter (GM) and the cerebro-spinal fluid (CSF) (cf. Fig. 1).

We will adhere to the following notation: the data consists of a collection
of voxel samples v = (x,C), each characterized by a position x = (x, y, z)
and associated with a list of signal channels C. Signal channels C = (I,P) in-
clude multi-sequence MR images I = (IT1, IT2, IFlair) and spatial priors P =
(PWM , PGM , PCSF ). Anatomical images and spatial priors, although having dif-
ferent semantics, can be treated under the unified term “signal channel”. We
account for noise in MR images by averaging values over a 33 voxels box cen-
tered on x, such an average is noted Cc(x), e.g. Cc = IFlair or PGM .



Fig. 1. Data. From left to right: preprocessed T1-weighted, T2-weighted and Flair
MR images, the associated ground truth and the registered white matter atlas.

2.2 Context-rich decision forest

Our detection and segmentation problem can be formalized as a binary classi-
fication of voxel samples into either background or lesions. This classification
problem is addressed by a supervised method: discriminative random decision
forest, an ensemble learner using decision trees as base learners. Decision trees
are discriminative classifiers which are known to suffer from over-fitting. A ran-
dom decision forest [17] achieves better generalization by growing an ensemble
of many independent decision trees on a random subset of the training data and
by randomizing the features made available to each node during training [18].

Forest training. The forest has T components with t indexing each tree. The
training data consists in a set of labeled voxels T = {vk, Y (vk)} where the label
Y (vk) is given by an expert. When asked to classify a new image, the classifier
aims to assign every voxel v in the volume a label y(v). In our case, y(v) ∈ {0, 1},
1 for lesion and 0 for background.

During training, all observations vk are pushed through each of the trees.
Each internal node applies a binary test [8–11] as follows:

tτlow,τup,θ(vk) =
{

true, if τlow ≤ θ(vk) < τup

false, otherwise
where θ is a function identifying the visual feature extracted at position xk.

There are several ways of defining θ, either as a local intensity-based average,
local spatial prior or context-rich cue. These are investigated in more detail in the
next section. The value of the extracted visual feature is thresholded by τlow and
τup. The voxel vk is then sent to one of the two child nodes based on the outcome
of this test. Training the classifier means selecting the most discriminative binary
test for each node by optimizing over (τlow, τup, θ) in order to maximize the
information gain on the input data partition [19], noted Tp, defined as follows:
IGτlow,τup,θ(Tp) = H(Tp) −H(Tp|{tτlow,τup,θ(vk)}) where Tp ⊂ T , H stands for
the entropy.

Only a randomly sampled subset Θ of the feature space is available for inter-
nal node optimization, while the threshold space is uniformly discretized. The
optimal (τ∗low, τ∗up, θ

∗) is selected by exhaustive search jointly over the feature
and threshold space. Random sampling of the features leads to increased inter-



node and inter-tree variability which improves generalization. Nodes are grown
to a maximum depth D. Another stopping criterion is to stop growing a node
when too few training points reach it, i.e. when the information gain is below a
minimal value IGmin.

As a result of the training process, each leaf node l of every tree t receives a
partition Tlt of the training data. The following empirical posterior probability
is then stored at the leaf plt(Y (v) = b) = |{(v, Y (v)) ∈ Tlt |Y (v) = b}|/|Tlt |
where b ∈ {0, 1} denotes the background or lesion class, respectively.

Prediction. When applied to a new test data Ttest = {vk}, each voxel vk

is propagated through all the trees by successive application of the relevant
binary tests. When reaching the leaf node lt in all trees t ∈ [1..T ], posteriors
plt(Y (v) = b) are gathered in order to compute the final posterior probability
defined as follows: p(y(v) = b) = 1

T

∑T
t=1 plt(Y (v) = b). This probability may

be thresholded at a fixed value Tposterior if a binary segmentation is required.

2.3 Visual features

In this section, two kinds of visual features are computed: 1) local features:
θloc

c (v) = Cc(x) where c indexes an intensity or a prior channel; 2) context-rich
features comparing the voxel of interest with distant regions . The first context-
rich feature looks for relevant 3D boxes R1 and R2 to compare within an extended
neighborhood: θcont

c1,c2,R1,R2
(v) = Cc1(x) − 1

vol(R1∪R2)

∑
x′∈R1∪R2

Cc2(x
′) where

c1 and c2 are two signal channels. The regions R1 and R2 are sampled randomly
in a large neighborhood of the voxel v (cf. Fig. 2). The sum over these regions
is efficiently computed using integral volume processing [8]. The second context-
rich feature compares the voxel of interest at x with its symmetric counterpart
with respect to the mid-sagittal plane, noted S(x): θsym

c (v) = Cc(x)−Cc ◦S(x)
where c is an intensity channel. Instead of comparing with the exact symmetric
S(x) of the voxel, we consider, respectively, its 6, 26 and 32 neighbors in a sphere
S (cf. Fig. 2), centered on S(x). We obtain a softer version of the symmetric
feature which reads: θsym

c,S (v) = minx′∈S{Cc(x)− Cc(x′)}.

3 Results

In our experiments, forest parameters are fixed to the following values; number
of random regions |Θ| ' 950, number of trees T = 30, tree depth D = 20, lower
bound for the information gain IGmin = 10−5, posterior threshold Tposterior =
0.5. These values were chosen based on prior parameter optimization on synthetic
data and worked well for real data too.

For quantitative evaluation, the 20 available cases are classified and compared
to one of the state of the art methods [3]. A three-fold cross-validation is carried
out on this dataset: the forest is trained on 2

3 of the cases and tested on the
other 1

3 , this operation is repeated three times in order to collect test errors for
each case. Note that the random forest is trained on the preprocessed data.



Fig. 2. 2D view of context-
rich features. (a) A context-rich
feature depicting two regions R1

and R2 with constant offset rel-
atively to x. (b-d) Three exam-
ples of randomly sampled features
in an extended neighborhood. (e)
The symmetric feature with respect
to the mid-sagittal plane. (f) The
hard symmetric constraint. (g-i)
The soft symmetry feature consid-
ering neighboring voxels in a sphere
of increasing radius. See text for de-
tails.

The binary classification is evaluated using two measures, true positive rate
(TPR) and positive predictive value (PPV), both equal 1 for perfect segmenta-
tion. Formally, TPR = TP

TP+FN and PPV = TP
TP+FP where TP counts the num-

ber of true positive voxels in the classification compared to the ground truth,
FP the false positives, FN the false negatives.

Random forest based segmentations are compared with an aligned and sub-
sampled version of the ground truth (cf. Fig. 3), whereas segmentations from the
winner algorithm were compared with original and sub-sampled segmentations
for similar results. Our segmentation compares favorably to one of the state of
the art algorithms (cf. Table 1) for both TPR and PPV .

The Grand Challenge 2008 website carried out a complementary and inde-
pendent evaluation of the algorithm on their private dataset [12]. The results
confirm a significant improvement over the winner algorithm of the challenge
[3]. The presented spatial random forest achieves, in average, slightly larger true
positive (TPR), which is beneficial, and comparable false positive (FPR) rates
but significantly lower volume difference (VD), and surface distance (SD) values.

3.1 Discussion

Influence of preprocessing. Data normalization is critical. Indeed, features
selected during training should be applied exactly in the same way to new data.
For instance, context-rich features, θcont, are sensitive to rotation and thus re-
quire aligned images. Moreover, intensity based features require inter-image nor-
malization to ensure consistency of threshold values in binary tests. This limi-
tation is merely due to our supervised approach. On the contrary, image sub-
sampling does not affect feature evaluation much as we are considering averages
over rectangular regions.

Analysis of feature relevance. Decision trees are interesting because of ease
of interpretability which is highly relevant in classification algorithms consider-
ing a large number of input features [6]. We exploit this to analyze the selected



Table 1. Comparison of context-rich random forests with a state of the art
method. In bold we indicate were we do better than the winner algorithm of the MS
Segmentation Challenge 2008.

Ch. winner [3] Context-rich RF Ch. winner [3] Context-rich RF

Patient TPR PPV TPR PPV Patient TPR PPV TPR PPV

CHB01 0.22 0.41 0.49 0.64 UNC01 0.01 0.01 0.02 0.01
CHB02 0.18 0.29 0.44 0.63 UNC02 0.37 0.39 0.48 0.36
CHB03 0.17 0.21 0.22 0.57 UNC03 0.12 0.16 0.24 0.35
CHB04 0.12 0.55 0.31 0.78 UNC04 0.38 0.54 0.54 0.38
CHB05 0.22 0.42 0.40 0.52 UNC05 0.38 0.08 0.56 0.19
CHB06 0.13 0.46 0.32 0.52 UNC06 0.09 0.09 0.15 0.08
CHB07 0.13 0.39 0.40 0.54 UNC07 0.57 0.18 0.76 0.16
CHB08 0.13 0.55 0.46 0.65 UNC08 0.27 0.20 0.52 0.32
CHB09 0.03 0.18 0.23 0.28 UNC09 0.16 0.43 0.67 0.36
CHB10 0.05 0.18 0.23 0.39 UNC10 0.22 0.28 0.53 0.34

features and understand what are the most discriminative channels for MS lesion
segmentation. For this analysis, we consider one of the random forest classifiers
which generated the results in Table 1. For every tree in the forest, the root
node always applies a test on the Flair sequence (θloc

F lair). It means that out of
all available features, containing local, context-rich and symmetry multi-channel
features, θloc

F lair was found to be the most discriminative. This automated guess
coincides with the first step in [3]. At the second level of the tree, a context-rich
feature on prior information (θcont

WM,GM ) appears to be the most discriminative
over all trees in the forest. The associated test discards all voxels which do not
belong to the white matter. Again, our algorithm automatically reproduced the
second step in [3]. In deeper levels of the tree, local, context-rich and symmetry
features adjust the segmentation by combining spatial and multi-channel infor-
mation. Contribution of each feature to the forest can be quantified by counting
the nodes in which they were selected. This indicates a feature discrimination
power for the task of MS lesion classification. Local features were selected in 24%
of the nodes, context-rich features were selected in 71% of the nodes whereas
symmetry features were selected in only 5%. Successive decisions based on lo-
cal features may learn a non-parametric multi-channel appearance model with
spatial prior. Context-rich features exhibit high variability (900 of them are ran-
domly sampled at every node). This variability combined with their ability to
highlight regions which differ from their neighborhood explains the high selec-
tion frequency. In addition, this kind of features may learn a spatial layout for
lesion patterns in peri-ventricular regions (cf. second row in Fig. 3). Symmetry
features are under-represented in the forest and thus prove to be the least dis-
criminative ones. Nevertheless, they appear in top levels of the tree (up to third
level) which indicates that, they provide an alternative to local and context-rich
features when these two fail.



Fig. 3. Segmentation results on a multi-channel 3D MR image. Rows: Axial
slices. Columns (from left to right): T1, T2, Flair MR images, ground truth and the
output posterior after thresholding.

4 Conclusion

We introduce a new algorithm for the segmentation of MS lesions in multi-
channel MR images. We present three kinds of 3D features based on multi-
channel intensity, prior and context-rich information. Those features are part of
a spatial random decision forest classifier which demonstrates improved results
on one of the state of the art algorithms on the public MS challenge dataset.
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2. Dugas-Phocion, G., Ballester, M.Á.G., Malandain, G., Ayache, N., Lebrun, C.,
Chanalet, S., Bensa, C.: Hierarchical segmentation of multiple sclerosis lesions in
multi-sequence MRI. In: ISBI, IEEE (2004) 157–160

3. Souplet, J.C., Lebrun, C., Ayache, N., Malandain, G.: An automatic segmentation
of T2-FLAIR multiple sclerosis lesions. In: The MIDAS Journal - MS Lesion
Segmentation (MICCAI 2008 Workshop).

4. Freifeld, O., Greenspan, H., Goldberger, J.: Multiple sclerosis lesion detection using
constrained GMM and curve evolution. J. of Biomed. Imaging 2009 (2009) 1–13

5. Akselrod-Ballin, A., Galun, M., Basri, R., Brandt, A., Gomori, M.J., Filippi, M.,
Valsasina, P.: An integrated segmentation and classification approach applied to
multiple sclerosis analysis. In: CVPR ’06: IEEE. (2006) 1122–1129

6. Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Petrich, W., Hamprecht,
F.A.: A comparison of random forest and its Gini importance with standard
chemometric methods for the feature selection and classification of spectral data.
BMC Bioinformatics 10 (2009) 213
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14. Rey, D.: Détection et quantification de processus évolutifs dans des images
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