
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L'INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Nice - Sophia Antipolis
Specialty : Control, Signal and Image Processing

Defended by
Ezequiel Geremia

Spatial Random Forests for

Brain Lesions Segmentation in MRIs
and Model-based Tumor Cell Extrapolation

Thesis Advisor: Nicholas Ayache

prepared at Inria Sophia Antipolis, Asclepios Team

defended on January 30th, 2013

Jury :

Reviewers : Guido Gerig - University of Utah
Koen Van Leemput - Technical University of Denmark

Advisor : Nicholas Ayache - INRIA
Co-Advisor : Hervé Delingette - INRIA
President : Gábor Székely - ETH Zürich
Examinators : Antonio Criminisi - Microsoft Research Cambridge
Invited : Björn Menze - ETH Zürich





Financial support

This work was carried out thanks to the support of the MedYMA advanced grant
291080 funded by the European Research Council (ERC).





iii

Aknowledgements

I would like to warmly thank Nicholas Ayache for giving me the opportunity to work
with him. Thank you for all your support and patience throughout these four years.

I thank Olivier Clatz, Hervé Delingette and Ender Konukoglu for their inspiring
company. Your enthusiasm and precious advices have been a great asset for �nding
my way in the medical image community. Many thanks to Antonio Criminisi who
received me at Microsoft Research. Thanks for enlightening the path with your
didactic tricks and for making me feel at home in a foreign land. A huge thanks
to Bjoern Menze for investing untold time and energy at my side. I am in�nitely
grateful for your constant e�ort in pushing my work forward even in times I doubted
it. I also thank Marc-André Weber and Bram Stieltjes from the German Cancer
Research Center (DKFZ) for sharing their databases.

I express my gratitude to the members of the jury committee for attending my
PhD defence and the very interesting discussion we had after. Thank you Guido
Gerig and Koen Van Leemput for accepting to be the reviewers of this thesis. Thank
you for the time and attention you have devoted to this thesis and also for your
valuable comments. I would also like to thank Gábor Székely for accepting to
preside the jury, for his interest and for his encouraging comments.

Isabelle Strobant, thank you for all your help, support and friendly chats.

During my thesis, I had the chance to collaborate with exceptional people: Erin
Stretton, Islem Rekik and Ján Margeta. Thanks for your friendship and all the
transcendental things I learnt at your side. Adityo, it has been an honor sharing
your o�ce. Thanks for being there, my dear friend.

Thanks to all my comrades at Asclepios and MSR with whom I shared great
moments and happy times. Thanks to the soccer team for the playful matches.
Thanks to my solitary companions in the forest.

A huge hug to all my friends for the countless adventures. I kindly thank all
my family in Argentina and cherish that invisible link that binds us. Thanks to
my close family, Silvia, Roberto, Luciano, Giuliano and Carla for your love and for
being a constant inspiration in my life. I tenderly thank you, Tamara, for �ll my
life with happiness.

All the best in your lives!





Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Spatial Decision Forests for Lesion Segmentation

in Multi-Channel MRIs of the Brain 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 MICCAI Grand Challenge 2008 dataset . . . . . . . . . . . . 7

2.2.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Context-rich decision forest . . . . . . . . . . . . . . . . . . . 10

2.3.2 Visual features . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Results on the public Grand Challenge dataset . . . . . . . . 15

2.4.2 Results on the private Grand Challenge dataset . . . . . . . . 15

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Interpreting segmentation results . . . . . . . . . . . . . . . . 16

2.5.2 In�uence of preprocessing . . . . . . . . . . . . . . . . . . . . 17

2.5.3 In�uence of forest parameters . . . . . . . . . . . . . . . . . . 17

2.5.4 Analysis of feature relevance . . . . . . . . . . . . . . . . . . . 21

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Brain tumor cell density estimation from multi-modal MR images

based on a synthetic tumor growth model 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Learning to estimate tissue cell density from synthetic training data 39

3.2.1 Generative tumor simulation model . . . . . . . . . . . . . . . 39

3.2.2 Regression forests for estimating tissue cell density . . . . . . 41

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Experiment 1: Estimating cell density in synthetic cases . . . 43

3.3.2 Experiment 2: Segmenting tumors in clinical images . . . . . 44

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



vi Contents

4 Spatially Adaptive Random Forests for Classi�cation Problems in

Medical Imaging 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Multi-scale image tree . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Visual features . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Ground truth . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Spatially adaptive random forest . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Decision node representation . . . . . . . . . . . . . . . . . . 67
4.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusions and Perspectives 71

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A List of Publications 75

B Layered spatio-temporal forests for left ventricle segmentation from

4D cardiac MRI data 77

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.2 Layered spatio-temporal decision forests . . . . . . . . . . . . . . . . 78

B.2.1 Strategy to learn from spatio-temporal data . . . . . . . . . . 79
B.2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 81

B.3 First layer: Decision forests for image intensity standardization and
position normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.3.1 Intensity standardization . . . . . . . . . . . . . . . . . . . . . 82
B.3.2 Orientation normalization . . . . . . . . . . . . . . . . . . . . 82

B.4 Second layer: Learning to segment with the shape . . . . . . . . . . . 83
B.4.1 Using voxel coordinates . . . . . . . . . . . . . . . . . . . . . 83
B.4.2 Transforming the volumes back . . . . . . . . . . . . . . . . . 84

B.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C Predicting the Location of Glioma Recurrence After a Resection

Surgery 87

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.2 Materials and Method . . . . . . . . . . . . . . . . . . . . . . . . . . 88
C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
C.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 96



Contents vii

C.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97





Chapter 1

Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context

How to make the most out of medical images to support diagnosis in the best
possible way ? Clinicians are confronted to this question every time they analyse an
X-Ray, or browse a volumetric computed tomography (CT) or magnetic resonance
(MR) scans. Current clinical protocols rely on extensive imaging modalities to drive
the diagnosis. Because of the large size of acquired images, clinicians spend a long
time parsing them before reaching the region of interest. Computer scientists and
clinicians are collaborating to develop ergonomic tools that automatically extract
the valuable information out of the image. This thesis is a humble contribution
towards this goal.

The focus is set on the segmentation of brain lesions in multi-sequence MR im-
ages (MRIs). More speci�cally, we will focus on multiple sclerosis (MS) lesions,
low and high grade gliomas. For these pathologies, however, visual assessment has
important limitations. In general, this result from the fact that the underlying
bio-physiological mechanisms, and its mapping to MR intensities, are not fully un-
derstood. However, MRIs play a critical role to localize lesions and monitor their
evolution during treatment.

In clinical datasets, lesions are often delineated by clinicians for these reasons.
However, annotating brain lesions is a tedious task which sometimes requires to
make arbitrary decisions, even when using semi-automatic methods. Unfortunately,
resulting segmentations are reliable but contain an unsuitable expert-driven bias. In
the last years, the merged e�orts of computer science and medical imaging commu-
nities opened the way to a novel approach for segmentation: supervised methods.
Supervised methods make use of already exhaustive expert-annotated datasets to
train classi�ers to automatically solve task-speci�c segmentation problems. In this
work, we focus on random decision forests.

Random forests are discriminative classi�ers. They generate a hierarchical rep-
resentation of the training data which is optimized for testing. Additionally, they
provide the huge advantage of being highly parallelizable which lead to number of
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real-time applications. Unlike state-of-the-art classi�ers, such as SVMs, the hierar-
chical compression of the training data is easy to interpret and provides the user
with informative uncertainty measures on the segmentation results.

1.2 Contributions

In this thesis, we investigate three di�erent problems related to brain lesions segmen-
tation in MRIs using the powerful random forest framework. They are developed in
chapters 2, 3 and 4, respectively:

• Spatial random forests for MS lesions segmentation [Geremia 2010,

Geremia 2011]. First, we focus on segmentation of brain lesions which is
an essential task to diagnosis, prognosis and therapy planning. A context-
aware random forest is designed for the automatic multi-class segmentation
of MS lesions in MR images. It uses multi-channel MRIs, prior knowledge
on tissue classes, symmetrical and long-range spatial context to discriminate
lesions from background. Quantitative evaluation was carried out on publicly
available labelled datasets from the MICCAI 2008 MS Lesion Segmentation
Challenge. It demonstrated state-of-the-art performance.

• Multi-variate regression forests for glioma cell density extrapolation

[Geremia 2012b]. Then, we investigate the promising perspective of esti-
mating the brain tumor cell density from MRIs. A generative-discriminative
framework is presented to learn the latent and clinically unavailable tumor cell
density from model-based estimations associated with synthetic MRIs. The
generative model is a state-of-the-art publicly available biophysiological tumor
growth simulator. The discriminative model builds on multi-variate regression
random forests to estimate the voxel-wise distribution of the tumor cell density
from input MRIs. The method was evaluated on a large dataset of synthetic
cases and a reduced set of clinical cases from the German Center for Cancer
Research (DKFZ) with promising results.

• Spatially Adaptive Random Forests for Classi�cation Problems in

Medical Imaging. Finally, we present the �Spatially Adaptive Random For-
est� (SARF) which merges the bene�ts of multi-scale and random forest meth-
ods. Thanks to multi-scale data representation, the computation e�ort focuses
on challenging regions of large medical volumes rather than uniformly pro-
cessing the whole image. SARF is demonstrated in the context of multi-class
gliomas segmentation in multi-modal MR images. Quantitative evaluation
was carried out on publicly available labelled datasets from the MICCAI 2012
BRATS Challenge and demonstrated top segmentation results.

Recently, two articles inspired on the spatial random forest approach were pub-
lished as part of the MICCAI 2012 Workshop on Multimodal Brain Tumor Seg-
mentation Challenge [Menze 2012, Geremia 2012a]. This work lead to co-write a
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chapter with Darko Zikic on MS lesions and glioma segmentation [Criminisi 2013].
Chapter 4 was submitted for review to the ISBI conference [Geremia 2013b].

In the appendices, we present additional fruitful collaborations carried out during
the time of the PhD but which go beyond the scope of this thesis. Appendice B
reports a work by Ján Margeta et al. [Margeta 2011] on an adaptation of the spatial
random forests for the segmentation of the left ventricle of the heart in 4D MRIs.
Appendice C presents another work by Erin Stretton et al. [Stretton 2012] on how
to predict glioma recurrence after resection surgery.

1.3 Related work

The motivation of this work arises from an inspirational bibliography which is
overviewed here.

A large variety of methods were proposed for MS lesion. Generative methods
were proposed consisting in a tissue classi�cation by means of an expectation maxi-
mization (EM) algorithm. The EM algorithm can be modi�ed to be robust against
lesion a�ected regions, its outcome is then parsed in order to detect outliers which, in
this case, coincide with MS lesions [Van Leemput 2001]. Another approach consists
in adding to the EM a partial volume model between tissue classes and combining it
with a Mahalanobis thresholding which highlights the lesions [Dugas-Phocion 2004].
Morphological postprocessing on resulting regions of interest was shown to improve
the classi�cation performance [Souplet 2008]. For multi-class glioma segmentation,
a segmentation framework based on outlier detection was proposed to discriminate
the tumor core from the edema, only using the T2-weighted MRI [Prastawa 2004].
More recently, segmentation approaches based on supervised random forests were
applied to brain tissue segmentation in MRIs [Yi 2009], and delineation of the my-
ocardium in real-time 3D echocardiography [Lempitsky 2009].

In the case of gliomas, segmentation results, however, give limited insight into
the underlying bio-physiological tumor growth process. Indeed, it is widely accepted
in the oncological community that tumor cells di�use in the brain tissue. The long
tails of the tumor cell density is invisible in MRIs. Clinicians speculate on this when
they delineate radiotherapy margins 2 cm beyond the visible margins of MRIs. A
recent method presented a way of modelling the invisible tumor cell distribution
from a segmentation of the the edema surrounding the glioma [Konukoglu 2010b].
In parallel, a generative model was proposed to brain tumor appearance in MRIs
from simulated tumor cell distributions [Prastawa 2009]. This approach provides
useful training data to learn the tumor cell density distribution directly from the
MRIs. This was made possible by the rise of multi-variate random forests which
were also being applied to organ localization in CT scans [Criminisi 2009].

Many works described the random forest framework from a more methodologi-
cal perspective [Criminisi 2011b]. These highlight the ability of the random forests
to partition the feature space with respect to a task-speci�c optimality criterium.
A similar partition can be driven directly from the image by using e�cient ag-
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gregation algorithms [Corso 2008] or supervoxel formulations [Achanta 2012]. The
spatial partition of the MRIs can then be used to feed a multi-scale discriminative
classi�er [Akselrod-Ballin 2006]. This type of approach demonstrated signi�cant
improvement over the state of the art [dos Santos 2012].
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Chapter 2 focuses on segmentation which is an essential task to diagnosis, prog-
nosis and therapy planning of brain lesions. A general and e�cient framework for
automatic segmentation is presented with applications to MS lesions, low grade and
high grade gliomas in MR images. It builds on supervised learning of discriminative
random decision forests to provide a voxel-wise probabilistic classi�cation of image
volumes. Interestingly, a ranking of the most discriminative features used during
classi�cation can be derived. The method uses multi-channel MR intensities (T1,
T1C, T2, Flair), knowledge on tissue classes and long-range spatial context to dis-
criminate lesions from background. A symmetry feature is introduced accounting
for the fact that some lesions tend to develop in an asymmetric way. Quantitative
evaluation of the proposed method carried out on publicly available labeled datasets
demonstrates state of the art performance.
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2.1 Introduction

Multiple Sclerosis (MS) is a chronic, in�ammatory and demyelinating disease that
primarily a�ects the white matter of the central nervous system. Automatic de-
tection and segmentation of MS lesions can help diagnosis and patient follow-up.
It o�ers an attractive alternative to manual segmentation which remains a time-
consuming task and su�ers from intra- and inter-expert variability. MS lesions,
however, show a high variability in appearance and shape which makes automatic
segmentation a challenging task. MS lesions lack common intensity and texture
characteristics, their shapes are variable and their location within the white matter
varies across patients.

A variety of methods have been proposed for the automatic segmentation of MS
lesions. For instance, in [Anbeek 2004] and [Admiraal-Behloul 2005], the authors
propose to segment white matter signal abnormalities by using an intensity-based
k-nearest neighbors method with spatial prior and a fuzzy inference system, re-
spectively. A similar classi�er combined with a template-driven segmentation was
proposed in [Wu 2006] to segment MS lesions into three di�erent subtypes (enhanc-
ing lesions, T1 black holes, T2 hyperintense lesions). A false positive reduction based
on a rule-based method, a level set method and a support vector machine classi-
�er is presented in [Yamamoto 2010] along with a multiple-gray level thresholding
technique.

Generative methods were proposed consisting in a tissue classi�cation by means
of an expectation maximization (EM) algorithm. For instance, the method pre-
sented in [Datta 2006] aims at segmenting and quantifying black holes among MS
lesions. The EM algorithm can be modi�ed to be robust against lesion a�ected
regions, its outcome is then parsed in order to detect outliers which, in this case,
coincide with MS lesions [Van Leemput 2001]. Another approach consists in adding
to the EM a partial volume model between tissue classes and combining it with a
Mahalanobis thresholding which highlights the lesions [Dugas-Phocion 2004]. Mor-
phological postprocessing on resulting regions of interest was shown to improve the
classi�cation performance [Souplet 2008]. In [Freifeld 2009], a constrained Gaussian
mixture model is proposed, with no spatial prior, to capture the tissue spatial layout.
MS lesions are detected as outliers and then grouped in an additional tissue class.
Final delineation is performed using probability-based curve evolution. Multi-scale
segmentation can be combined with discriminative classi�cation to take into account
regional properties [Akselrod-Ballin 2006]. Beyond the information introduced via
the spatial prior atlases, these methods are limited in their ability to take advantage
of long-range spatial context in the classi�cation task.

To overcome this shortcoming, we propose the use of an ensemble of discrimi-
native classi�ers. Our algorithm builds on the random decision forest framework
which has multiple applications in bioinformatics [Menze 2009], and, for exam-
ple, more recently also in the image processing community [Andres 2008, Yi 2009,
Criminisi 2010b]. Adding spatial and multi-channel features to this classi�er proved
e�ective in object recognition [Shotton 2009], brain tissue segmentation in MR im-
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ages [Yi 2009], myocardium delineation in 3D echocardiography [Lempitsky 2009]
and organ localization in CT volumes [Criminisi 2010b].

Applying multi-channel and context-rich random forest classi�cation to the MS
lesion segmentation problem is novel, to our knowledge. The presented classi�er also
exploits a speci�c discriminative symmetry feature which stems from the assumption
that the healthy brain is approximately symmetric with respect to the mid-sagittal
plane and that MS lesions tend to develop in asymmetric ways. We then show
how the forest combines the most discriminative channels for the task of MS lesion
segmentation.

2.2 Materials

This section describes the data, algorithms and notations which are referred to in
the rest of the article.

2.2.1 MICCAI Grand Challenge 2008 dataset

The results in this article rely on a strong evaluation e�ort. This section presents
the MICCAI1 Grand Challenge 2008 datasets, which is the largest dataset publicly
available, and explains the way our method is compared against the winner of the
challenge [Souplet 2008].

2.2.1.1 Presentation

The MICCAI Grand Challenge 2008 [Styner 2008] aims at evaluating and compar-
ing algorithms in an independent and standardized way for the task of MS lesion
segmentation. The organizers make publicly available two datasets through their
website. A dataset of labeled MR images which can be used to train a segmenta-
tion algorithm, and an unlabeled dataset on which the algorithm should be tested.
The website o�ers to quantitatively evaluate the segmentation results on the unla-
beled dataset using the associated private ground truth database, and to publish
the resulting scores. This project is an original initiative to provide an unbiased
comparison between MS lesions segmentation algorithms. In the rest of the arti-
cle, the dataset for which labels are publicly available will be referred to as public
dataset, whereas the dataset for which data is not available will be referred to as
private dataset.

2.2.1.2 Data

The public dataset contains 20 cases, 10 from the Children's Hospital in Boston
(CHB) and 10 from the University of North Carolina (UNC), which are labeled by a
CHB expert rater. The private dataset contains 25 cases, 15 from CHB and 10 from

1MICCAI is the annual international conference on Medical Image Computing and Computer

Assisted Intervention.
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Name De�nition Unit Best Worse

TNR
TN

FP + TN
% 100 0

TPR
TP

TP + FN
% 100 0

FPR
FP

FP + TN
% 0 100

PPV
TP

TP + FP
% 100 0

V O
V ol(Seg ∩GT )

V ol(Seg ∪GT )
% 0 100

V D
V ol(Seg)− V ol(GT )

V ol(GT )
% 0 <∞

SD

X
v∈∂(Seg)

min
u∈∂(GT )

d(u, v) +
X

v∈∂(GT )

min
u∈∂(Seg)

d(u, v)

card(Seg ∪GT )
mm 0 <∞

Table 2.1: The evaluation metrics true negative rate (TNR), true positive rate (TPR),
false positive rate (FPR) and positive predictive value (PPV ) are de�ned using the fol-

lowing notations: true positives (TP ), true negatives (TN), false positives (FP ) and false

negatives (FN). The volume overlap (V O) and the relative absolute volume di�erence

(V D) evaluates the di�erences between the segmentation (Seg) and the ground truth (GT )

by computing their volume (V ol). The average symmetric surface distance (SD) measures

how close the segmentation and the ground truth are from each other using the Euclidean

distance d on the set of boundary voxels noted ∂. The best, respectively worse, column

contains the metric score of the perfect segmentation, respectively of a completely-o� seg-

mentation.

UNC. The private dataset was annotated by a single expert rater at CHB and jointly
by 2 expert raters UNC. For each case, the centers provided 3 MR volumes: a T1-
weighted image, a T2-weighted image and a Flair image. These were co-registered
and sampled to �t the isotropic 0.5× 0.5× 0.5 mm3 resolution.

2.2.1.3 Evaluation

Quantitative evaluation is carried out on the private dataset using a set of known
metrics de�ned in [Styner 2008] and summed up in Table 2.1. The two full sets of
expert segmentations were used as reference for method comparison.

2.2.1.4 Top-ranked methods

The challenge results highlight three top-ranked methods re�ecting three di�erent
approaches to the task of MS lesion segmentation. A k-nearest neighbor classi�-
cation of brain tissue relying on spatial location and intensity value was proposed
in [Anbeek 2008]. This method provides a voxel-wise probabilistic classi�cation of
MS lesions. Alternatively, the iterative method proposed in [Shiee 2008, Shiee 2010]
jointly performs brain tissue classi�cation and MS lesion segmentation by combin-
ing statistical and topological atlases. Finally, in [Souplet 2008], the authors show
that a global threshold on the Flair MR sequence, infered using an EM brain tissue
classi�cation, su�ces to detect most MS lesions. The �nal segmentation is then
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constrained to appear in the white matter by applying morphological operations.

The method proposed in [Souplet 2008] won the MICCAI MS Segmentation
Challenge 2008. It will be referred to as winner method in the rest of the article.
The segmentation results on public and private datasets were made available by the
authors and will be used as reference.

2.2.2 Data preprocessing

We sub-sample and crop the images so that they all have the same size, 159×207×79
voxels, and the same resolution, 1× 1× 2 mm3. Sub-sampling and cropping intend
to reduce the time spent learning the classi�er. RF acquisition �eld inhomogeneities
are corrected [Prima 2001] and inter-subject intensity variations are normalized
[Rey 2002]. The images are then aligned on the mid-sagittal plane [Prima 2002].
Spatial prior is added by registering the MNI atlas [Evans 1993] to the anatom-
ical images, each voxel of the atlas providing the probability of belonging to the
white matter (WM), the grey matter (GM) and the cerebro-spinal �uid (CSF) (cf.
Figure 2.1).
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Figure 2.1: Case CHB07 from the public Grand Challenge dataset. From top to

bottom: three axial slices of the same patient. From left to right: preprocessed T1-weighted

(IT1), T2-weighted (IT2) and Flair MR images (IFlair), the associated ground truth GT

and the registered white matter atlas (PWM ).
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2.2.3 Notations

The multi-channel aspect of the method presented in this article requires to carefully
de�ne and name each channel. MR images from the Grand Challenge dataset will be
noted Is where the index s ∈ {T1, T2, F lair} stands for an MR sequence. Registered
spatial priors will be noted Pt where the index t ∈ {WM,GM,CSF} stands for a
brain tissue class.

Although having di�erent semantics, anatomical images and spatial pri-
ors will be treated under the uni�ed term signal channel and denoted C ∈
{IT1, IT2, IFlair, PWM , PGM , PCSF }.

The data consists of a collection of voxel samples v = (x,C) where x = (x, y, z)
is the spatial position of the voxel and where

C = (IT1, IT2, IFlair, PWM , PGM , PCSF )

is the multi-channel image the voxel belongs to.

2.3 Methods

This section describes our adaptation of the random decision forests to the segmen-
tation of MS lesions and illustrates the visual features employed.

2.3.1 Context-rich decision forest

Our detection and segmentation problem can be formalized as a binary classi�ca-
tion of voxel samples into either background or lesions. This classi�cation problem is
addressed by a supervised method: discriminative random decision forest, an ensem-
ble classi�er using decision trees as base classi�ers. Decision trees are discriminative
classi�ers which are known to su�er from over-�tting. A random decision forest
[Amit 1997] achieves better generalization by growing an ensemble of many inde-
pendent decision trees on a random subset of the training data and by randomizing
the features made available to each node during training [Breiman 2001].

2.3.1.1 Forest training

The training data consists of a set of labeled voxels T = {vk, Y (vk)} where the label
Y (vk) is given by an expert. When asked to classify a new image, the classi�er aims
to assign every voxel v in the volume a label y(v). In our case, y(v) ∈ {0, 1}, 1 for
lesion and 0 for background.

The forest has T components with t indexing each tree. During training, all
observations (voxels) vk are pushed through each of the trees. Each internal node
applies a binary test [Shotton 2009, Yi 2009, Lempitsky 2009, Criminisi 2010b] as
follows:

tτlow,τup,θ(vk) =
{
true, if τlow ≤ θ(vk) < τup
false, otherwise
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where θ is a function identifying the visual feature extracted at position xk.
There are several ways of de�ning θ, either as a local intensity-based average, local
spatial prior or context-rich cue. These are investigated in more detail in the next
section. The value of the extracted visual feature is thresholded by τlow and τup.
The voxel vk is then sent to one of the two child nodes based on the outcome of this
test.

During training, each node p is optimized using the partition of the training data
Tp it receives as input. At the end of the training process, each node p is assigned
to the optimal binary test tλ

∗
p , where λ∗p = (τ∗low, τ

∗
up, θ

∗)p. The optimality criterion
is the information gain, denoted IG, as de�ned in [Quinlan 1993]

IG(λ, Tp) = H(Tp)−H(Tp|(tλ(vk))k)

where Tp ⊂ T and where H denotes the entropy. More precisely, the term
H(Tp|(tλ(vk))k) measures the error made when approximating the expert label-
ing Y by the binary test tλ. The optimal parameter λ∗p maximizes the information
gain

λ∗p = arg max
λ

IG(λ, Tp)

for node p. As a result, the optimal binary test is the test discriminating lesion from
background voxels such as maximizing the information gain.

Only a randomly sampled subset Θ of the feature space is available at each
node for optimization, while the threshold space is uniformly discretized. The op-
timal λ∗ = (τ∗low, τ

∗
up, θ

∗) is found by exhaustive search jointly over the feature and
threshold space. Random sampling of the features leads to increased inter-node and
inter-tree variability which improves generalization [Breiman 2001].

Trees are grown to a maximum depth D. At the node level, a leaf node is
generated when the information gain is below a minimal value IGmin.

As a result of the training process, each leaf node lt of every tree t receives a
partition Tlt of the training data. The partition Tlt can be divided into two sets
respectively containing background and lesion voxels and de�ned as

T blt = {(v, Y (v)) ∈ Tlt |Y (v) = b}

where b ∈ {0, 1} stands for the background and lesion class, respectively. Subse-
quently, the following empirical posterior probability is de�ned

plt(Y (v) = b) =
|T blt |
|Tlt |

and stored at the leaf node.

Figure 2.2 illustrates how the decision trees partition the data in the feature
space and how resulting probabilities are stored in leaf nodes.
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Figure 2.2: Decision trees encode feature space partitions. (a) A decision tree of

depth D = 2 is considered in this example. Decision node 1 and leaf nodes 5 and 6 are

colored to track the partitions of the training data in the feature space. The black cross

stands for an unseen sample (voxel) which is classi�ed while propagated down the tree.

(b) A zoom on node 2 shows that its binary test, denoted by tτlow,2,τup,2,θ2 , is optimized

over a partition of the training data, denoted by T2 = {vk,2, Y (vk,2)}. The leaf node 6
encloses the class distribution of the set of voxels reaching it during training. Two classes

are considered background and lesion. (c) The dots stand for the training voxels and are

colored according to their class. The black cross denotes a voxel from an unseen volume

considered for prediction. Every decision node in the forest applies an axis-aligned feature

test. Here we focus on decision nodes 0 and 2 using features θ0 and θ2, respectively.

2.3.1.2 Prediction

When applied to a new test volume Ttest = {vk}, each voxel vk is propagated
through all the trees by successive application of the relevant binary tests. When
reaching the leaf node lt in all trees t ∈ [1..T ], posteriors plt(Y (v) = b) are gathered
in order to compute the �nal posterior probability de�ned as follows:

p(y(v) = b) =
1
T

T∑
t=1

plt(Y (v) = b)

which is a mean over all the trees in the forest. This probability may be thresholded
at a �xed value τposterior if a binary segmentation is required.

A posterior map Pb is obtained by applying the same prediction procedure to
all voxels. Thus for every voxel v, Pb(v) = p(y(v) = b) is the posterior probability
of belonging to the class b. This probability map can be thresholded at a �xed
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Figure 2.3: Posterior maps learned from two distinct synthetic training sets. In

both cases, the training data consists of two classes, green and red, and is used to learn a

large forest, here T = 350. The posterior map is obtained by classifying a dense grid in the

feature space and is then overlayed with the associated training data (shown as points).

Larger opacities indicate larger probability of a pixel belonging to a class while uncertain

regions are indicated by less saturated colours. The white line plots the locus of points for

which p(y(v) = green) = p(y(v) = red). We observe that 1) forest posteriors mimic the

maximum-margin behaviour, 2) uncertainty increases when moving away from the training

data.

value to obtain a segmentation. Choosing τposterior = 0.5 is equivalent to looking
for b∗ = argmax

b
Pb(v).

Probability maps learned by random forests exhibit a maximum-margin like be-
havior, which is known to be a property of support vector machines (cf. Figure 2.3).
In addition random forests provide a con�dence measure for a voxel to belong to a
given class. Along with their ability to rank the most discriminative features (cf.
Section 2.5.4), these properties motivate the use of random forests for the task of
MS lesion segmentation.

2.3.2 Visual features

Two kinds of visual features are computed:

1) local features:

θlocC (v) = C(x)

where C is an intensity or a prior channel;

2) context-rich features comparing the voxel of interest with distant regions.

The �rst context-rich feature compares the local voxel value in channel C1 with
the mean value in channel C2 over two 3D boxes R1 and R2 within an extended
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neighborhood:

θcontC1,C2,R1,R2
(v) = C1(x)− 1

V ol(R1)

∑
x′∈R1

C2(x′)− 1
V ol(R2)

∑
x′∈R2

C2(x′)

where C1 and C2 are both intensity or prior channels. The regions R1 and R2

are sampled randomly in a large neighborhood of the voxel v (cf. Figure 2.4).
The sum over these regions is e�ciently computed using integral volume processing
[Shotton 2009].

The second context-rich feature compares the voxel of interest at x with its
symmetric counterpart with respect to the mid-sagittal plane, noted S(x):

θsymC (v) = C(x)− C ◦ S(x)

where C is an intensity channel. Instead of comparing with the exact symmetric
S(x) of the voxel, we consider, respectively, its 6, 26 and 32 neighbors in a sphere
S (cf. Figure 2.4), centered on S(x). We obtain a softer version of the symmetric
feature which reads:

θsymC,S (v) = min
x′∈S
{C(x)− C(x′)}

which loosens the hard symmetric constrain.
When encoded in additional channels, new precomputed visual features can be

taken into account in a straightforward way [Yi 2009].

a e
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d

f
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i

R1

R2
x

S(x)

Figure 2.4: 2D view of context-rich features. (a) A context-rich feature depicting two

regions R1 and R2 with constant o�set relatively to x. (b-d) Three examples of randomly

sampled features in an extended neighborhood. (e) The symmetric feature with respect to

the mid-sagittal plane. (f) The hard symmetric constraint. (g-i) The soft symmetry feature

considering neighboring voxels in a sphere of increasing radius. See text for details.

2.4 Experiments and results

Results presented in this section aim at evaluating the segmentation results
and comparing the context-rich random forest approach to the challenge winner
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[Souplet 2008]. Experiments described here are discussed in Section 2.5.
Exhaustive segmentation results are available for both public and private

datasets under the following url:
ftp://ftp-sop.inria.fr/asclepios/Published-Material/Ezequiel.Geremia/

2.4.1 Results on the public Grand Challenge dataset

For quantitative evaluation, the 20 available cases from the public dataset are
classi�ed and compared to the winner method [Souplet 2008]. A three-fold cross-
validation is carried out on this dataset: the forest is trained on 2

3 of the cases and
tested on the other 1

3 , this operation is repeated 3 times in order to collect test
errors for each case.

The binary classi�cation is evaluated using two measures, true positive rate
(TPR) and positive predictive value (PPV ), both equal 1 for perfect segmentation
(cf. Table 2.1).

Forest parameters are �xed to the following values: number of random regions
|Θ| ' 950, number of trees T = 30, tree depth D = 20, lower bound for the
information gain IGmin = 10−5, posterior threshold τposterior = 0.5. Parameters T
and D are set here to maximum values, Section 2.5.3 explains how these parameters
can be optimized in order to improve segmentation results.

Tables 2.4 and 2.2 reports extensive results allowing comparison on every case
of the Grand Challenge public dataset. It shows that the learned context-rich ran-
dom forest achieves better TPR in all cases, and better PPV in 70% of the cases.
Computed p-values for the pair-sample t-test show that these improvements are
signi�cative for both TPR (p = 1.3 · 10−7) and PPV (p = 0.0041) scores.

Metric [%]
Challenge winner

Context-rich RF RI [%] p-value
[Souplet 2008]

TPR 19.21± 13.68 39.39± 18.40 105 1.3 · 10−7

PPV 29.55± 16.26 39.78± 20.19 35 0.0041

Table 2.2: Comparison of context-rich random forests with the challenge winner

method on the public dataset. Relative improvement over the challenge winner algo-

rithm [Souplet 2008], de�ned as RI = (scoreRF − scorewinner)/scorewinner, are signi�cant
for both TPR (p = 1.3 · 10−7) and PPV (p = 0.0041) scores. Signi�cant improvements

over the challenge winner algorithm are highlighted in bold.

2.4.2 Results on the private Grand Challenge dataset

A context-rich random forest was learned on the whole public dataset from the MS
Lesion Challenge, i.e. 20 labeled cases. Forest parameters are �xed to the following
values: number of random regions |Θ| ' 950, number of trees T = 30, tree depth
D = 20, lower bound for the information gain IGmin = 10−5, posterior threshold
τposterior = 0.5. Considerations that lead to these parameter values are detailed in
Section 2.5.3.
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The Grand Challenge 2008 website carried out a complementary and indepen-
dent evaluation of our algorithm on the previously unseen private dataset. The
results, reported in Tables 2.3 to 2.6, con�rm a signi�cant improvement over the
challenge winner algorithm [Souplet 2008]. The presented spatial random forest
achieves, on average, slightly larger true positive (TPR), which is bene�cial (cf.
Table 2.1), and comparable false positive (FPR) rates but lower volume di�erence
(V D) and surface distance (SD) values (cf. Table 2.3). Pair-sample p-values were
computed for the t-test on the private dataset. Results show signi�cant improve-
ment over the winner method [Souplet 2008] on SD (p = 4.2 · 10−6) for the CHB
rater, and on SD (p = 6.1 · 10−3) for the UNC rater.

Rater Metric [%]
Challenge winner

Context-rich RF RI [%] p-value
[Souplet 2008]

CHB

V D 86.48± 104.9 52.94± 28.63 −38.7 0.094
SD 8.20± 10.89 5.27± 9.54 −35.7 4.2 · 10−6

TPR 57.45± 23.22 58.08± 20.03 +1.0 0.90
FPR 68.97± 19.38 70.01± 16.32 +1.5 0.70

UNC

V D 55.76± 31.81 50.56± 41.41 −9.4 0.66
SD 7.4± 8.28 5.6± 6.67 −24.3 6.1 · 10−3

TPR 49.34± 15.77 51.35± 19.98 +3.9 0.54
FPR 76.18± 17.07 76.81± 11.70 +0.1 0.83

Table 2.3: Average results computed by the Grand Challenge on the private

dataset. The relative improvement on the winner algorithm [Souplet 2008] on the private

dataset is de�ned as follows RI = (scoreRF − scorewinner)/scorewinner. The RI and the

p-values a and is reported on top for each metric of the Grand Challenge, associated p-

values are reported below. Independent quantitative evaluation con�rms improvement on

the winner algorithm [Souplet 2008]. Boldface highlights signi�cant improvements. The

spatial random forest achieves, on average, slightly larger true positive (TPR), which is

bene�cial and comparable false positive (FPR) rates but lower volume di�erence (V D)

and surface distance (SD) values.

2.5 Discussion

2.5.1 Interpreting segmentation results

Quantitative evaluation of segmentation results, for both public (cf. Ta-
bles 2.2 and 2.4) and private (cf. Tables 2.3 to 2.6) datasets, shows signi�cant
improvement on the challenge winner method [Souplet 2008]. Although segmenta-
tion results include most MS lesions delineated by the expert, we observe that some
MS lesions are missing. Missed MS lesions are located in speci�c locations which
are not represented in the training data, e.g. in the corpus callosum (cf. Figure 2.5,
slice 38). This is a limitation of the supervised approach. In this very case, however,
the posterior map highlights the missed lesion in the corpus callosum as belonging to
the lesion class with high uncertainty. Low con�dence (or high uncertainty) re�ects
the incorrect spatial prior inferred from an incomplete training set. Indeed, in the
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training set, there is no example of MS lesions appearing in the corpus callosum.
On the contrary, the random forest is able to detect suspicious regions with

high certainty. Suspicious regions are visually very similar to MS lesions and widely
represented in the training data, but they are not delineated by the expert, e.g.
the left frontal lobe lesion again in Figure 2.5, slice 38. The appearance model and
spatial prior implicitly learned from the training data points out that hyper-intense
regions in the FLAIR MR sequence which lay in the white matter (cf. Section 2.5.4)
can be considered as MS lesions with high con�dence.

Recent histopathological studies have shown that grey matter regions are also
heavily a�ected by the MS disease [Geurts 2008]. In our case, the public dataset
does not show any MS lesion in the grey matter of the brain. Subsequently, the de-
cision forest learns that MS lesions preferably appear in the white matter. Adding
new cases showing grey matter MS lesions in the training set would allow the for-
est to automatically adapt the segmentation to include this kind of lesions. This
observation stresses the necessity of gathering large and heterogeneous datasets for
training purposes.

When focusing on quantitative measures, we observe that cases UNC01 and
UNC06 from the public dataset show surprisingly low scores (cf. Tables 2.2 and 2.4).
The labels by the CHB expert for these two cases are abnormal: the ground truth
is mirrored with respect to the anatomical images. This may be considered as a
label error and explains the low scores for these two speci�c cases. The Grand
Challenge website con�rmed this observation and subsequently corrected the online
database. We also observe that learning on the whole public dataset and testing
on the private dataset (cf. Table 2.3) produces better average results than the
three-fold cross-validation carried out on the public dataset (cf. Tables 2.2 and 2.4).
Again this illustrates the bene�t of learning the classi�er on large enough datasets
capturing better the variability of the data.

2.5.2 In�uence of preprocessing

Data normalization is critical. Spatial normalization a�ects the evaluation of
context-rich features, θcont, which are sensitive to rotation. Moreover, all intensity-
based features require inter-case intensity normalization.

The trees are generated in parallel on 30 nodes and gathered to form the forest.
Cropping and sub-sampling the training images aims at reducing, by a factor larger
than 10, the execution time spent to learn a single tree. On IBM e325 dual-Opterons
246 at a maximum frequency of 2Ghz, learning a tree on 20 sub-sampled images and
with parameters �xed in Section 2.4.2 on a single CPU takes, on average, 8 hours.

2.5.3 In�uence of forest parameters

The number of the trees and their depth, respectively denoted T and D, characterize
the generalization power and the complexity of the non-parametric model learned
by the forest. This section aims at understanding the contribution of each of these
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Figure 2.5: Segmenting Case CHB05 from the public Grand Challenge dataset.

From left to right: preprocessed T1-weighted (IT1) and Flair MR images (IFlair) overlayed

with the associated ground truth GT , the posterior map Posterior = (Plesion(vk))k and

the Flair sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with

τposterior = 0.5). Segmentation results show that most of lesions are detected. Although

some lesions are not detected, e.g. peri-ventricular lesion in slice 38, they appear enhanced

in the posterior map. Moreover the segmentations of slices 38 and 42 show peri-ventricular

regions, visually very similar to MS lesions, but not delineated in the ground truth.
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Figure 2.6: Segmenting case CHB01 from the public Grand Challenge dataset.

From left to right: preprocessed T1-weighted (IT1) and Flair MR images (IFlair) overlayed

with the associated ground truth GT , the posterior map Posterior = (Plesion(vk))k and

the Flair sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with

τposterior = 0.5).
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Figure 2.7: Segmenting case CHB07 from the public Grand Challenge dataset.

From left to right: preprocessed T1-weighted (IT1) and Flair MR images (IFlair) overlayed

with the associated ground truth GT , the posterior map Posterior = (Plesion(vk))k and

the Flair sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with

τposterior = 0.5).
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meta-parameters.
A 3-fold cross-validation on the public dataset is carried out for each parameter

combination. Segmentation results are evaluated for each combination using two
di�erent metrics: the area under the receiver operating characteristic (ROC) curve
and the area under the precision-recall curve. The ROC curve plots TPR vs. FPR
scores computed on the test data for every value of τposterior ∈ [0, 1]. The precision-
recall curve plots PPV vs. TPR scores computed on the test data for every value
of τposterior ∈ [0, 1]. Results are reported in Figure 2.8.

We observe that 1) for a �xed depth, increasing the number of trees leads to
better generalization; 2) for a �xed number of trees, low depth values lead to un-
der�tting while high depth values lead to over�tting; 3) over�tting is reduced by
increasing the number of trees.

This analysis was carried out a posteriori. Tuning the meta-parameters of the
forest on the training data is not a valid practice. Using out-of-bag samples for
forest parametrization is indeed preferable. Due to the fact that little training data
is available for the MS lesion class, available labeled data was exclusively used to
train the forest. From this perspective, the forest parameters were set to arbitrary
but high enough values to avoid under- and over�tting: T = 30 and D = 20.

Forest parameters were indeed selected in a safety-area with respect to under-
and over�tting. The safety-area corresponds to a su�ciently �at region in the evo-
lution of the areas under the ROC and the precision-recall curve. As shown in
Figure 2.9, increasing the number of trees tends to bene�t the generalization power
of the classi�er. We also observe that the performance of the classi�er stabilizes for
large enough forests.

2.5.4 Analysis of feature relevance

During training, features considered for node optimization form a large and het-
erogeneous set (cf. Section 2.3.2). Unlike other classi�ers, random forests provide
an elegant way of ranking these features according to their discriminative power.
In this section, we aim at better understanding which are the most discriminative
channels and visual cues (local, context-rich or symmetric) used in the classi�cation
process.

2.5.4.1 Most discriminative visual features

The �rst approach consists in counting the nodes in which a given feature was
selected. We observe that local features were selected in 24% of the nodes, context-
rich features were selected in 71% of the nodes whereas symmetry features were
selected in 5% of the nodes (cf. Figure 2.10). In this case, no distinction is made as
for the depth at which a given feature was selected.

Context-rich features exhibit high variability (900 of them are randomly sampled
at every node). This variability combined with their ability to highlight regions
which di�er from their neighborhood explains why they were chosen. Together
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Figure 2.8: In�uence of forest parameters on segmentation results. Both
curves were plotted using mean results from a 3-fold cross validation on the public
dataset. Left: the �gure shows the in�uence of forest parameters on the area under
the precision-recall curve. Right: the �gure shows the in�uence of forest parameters
on the area under the ROC curve. The ideal classi�er would ensure area under
the curve to be equal to 1 for both curves. We observe that 1) for a �xed depth,
increasing the number of trees leads to better generalization; 2) for a �xed number
of trees, low depth values lead to under�tting while high values lead to over�tting;
3) over�tting vanishes by increasing the number of trees.

with local features, context-rich features learn a multi-channel appearance model
conditioned by tissue spatial priors. Symmetry features are under-represented in
the forest and thus prove to be the least discriminative ones. This is due to the fact
that a large proportion of peri-ventricular MS lesions tend to develop in a symmetric
way. Nevertheless, symmetric features appear in top levels of the tree (up to third
level) which indicates that they provide an alternative to local and context-rich
features when these two fail.

A �ner estimation of the feature importance consists in weighting the counting
process. For a given feature, instead of only counting the nodes in which it appears,
we also take into account the proportion of lesion voxels it helps discriminating: �the
larger the proportion of lesion voxels it helps to discriminate, the larger the weight
of the feature�. This leads us to de�ne for a �xed depth value d, the importance of
a given feature type, denoted (IFT ), as:

IFT (α) =
1
|T 1|

∑
p

|T 1
p | · χα(θp) α ∈ {loc, cont, sym} (2.1)

where α denotes a feature type, p indices the nodes in layer d, T 1 is the training set
of lesion voxels which partition T 1

p reached node p, and χ is the indicator function
such that:

χα(θp) =
{

1, if θp is of type α
0, otherwise

(2.2)

The feature importance evaluates to 21.1 % for local features, 76.6 % for context-rich
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Figure 2.9: In�uence of the number of trees on segmentation results. Both
curves were plotted using mean results from a 3-fold cross validation on the public
dataset. Top: the �gure shows the in�uence of the number of trees on the area under
the precision-recall curve. Bottom: the �gure shows the in�uence of the number of
trees on the area under the ROC curve. We observe that, for a �xed depth D = 14,
increasing the number of trees improves generalization as stated in [Breiman 2001].
The increase in performance stabilizes around the value T = 30.
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features and 2.3 % for symmetry features. Results are comparable to those obtained
only by counting the features in the forest, but the real advantage of this measure
is to allow us to draw depth-by-depth feature importance analysis in a normalized
way.

The feature importance as a function of the depth of the tree is reported in
Figure 2.11. Presented results are averaged values over a forest containing T = 30
trees. Again, we observe that context-rich features are predominantly selected as
the most discriminative, which con�rms the trend reported in Figure 2.10. However,
as shown in Figure 2.11, the preponderance of context-rich features is not uniform
throughout the tree. Indeed, local features are the most discriminative in layers 0
and 2. A careful analysis of selected channels helps understanding why local features
are selected in the top layers of the tree (cf. Section 2.5.4.2).

The selected context-rich features show high variability. More speci�cally, the
long-range regions are distributed all over the neighborhood. Depth-by-depth anal-
ysis does not show any speci�c pattern in the position of the regions with respect to
the origin voxel. In addition, the volume of the regions also show high variability.
The observed heterogeneity of selected context-rich features aims at coping with the
variability of MS lesions (shape, location and size).

The symmetry feature is under-represented in the forest. Its discriminative
power is thus very low compared to local and context-rich features. This observation
induces two complementary interpretations to explain why symmetry features are
the least signi�cant: 1) most of MS lesions appear in peri-ventricular regions and in
a symmetric way, 2) most of MS lesions can be clearly identi�ed by their signature
across MR sequences and their relative position in the white matter of the brain.
However, in deeper layers of the trees, the symmetry feature is more signi�cant and
tends to classify ambiguous asymmetrical regions. When looking into the selected
features, we also notice that the hard symmetric constraint is preferred over the
loose symmetric constrain (cf. Section 2.3.2). Indeed, the feature importance eval-
uates to 1.6% for the hard symmetric feature, and to 0.7% for the loose symmetric
feature. Moreover, in the rare cases where the loose constrain is selected, the 6-
neighbors version predominates (cf. Section 2.3.2). This observation supports the
idea that considering brain hemispheres as symmetric is an accurate approximation
in our speci�c setting (cf. Sections 2.2 and 2.3).

2.5.4.2 Most discriminative channels

The second approach focuses on the depth at which a given feature was selected.
For every tree in the forest, the root node always applies a test on the FLAIR
sequence (θlocFLAIR). It means that out of all available features, containing local,
context-rich and symmetry multi-channel features, θlocFLAIR was found to be the
most discriminative. At the second level of the tree, a context-rich feature on spatial
priors (θcontWM,GM ) appears to be the most discriminative over all trees in the forest.
It aims at discarding all voxels which do not belong to the white matter.

The optimal decision sequence found while training the context-rich forest can
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Figure 2.10: Ranking features according to the proportion of nodes in

which they appear. Context-rich features are selected in 71% of the nodes, local
features are selected in 24% of the nodes whereas symmetry features are selected in
5% of the nodes.

Figure 2.11: Type of feature selected by layer of the tree. For a �xed depth,
the red circle stands for the importance of the context-rich feature (θcont), while
the green circle stands for the importance of the local feature (θloc). For clarity,
symmetry features (θsym) are omitted as they are under-represented in the forest.
The blue line monitors the proportion of training samples of the lesion class which
do not reside in leaf nodes, for each layer of the tree. We observe that context-rich
features are predominantly selected as the most discriminative ones except in layers
0 and 2.
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Figure 2.12: Combination of features and channels learned by the forest

to discriminate MS lesions. The �rst layer of all trees in the forest performs a
threshold on the FLAIR MR sequence. The second one discards all voxels which
do not belong to the white matter. The posterior map is obtained by using a forest
with trees of depth 2 and thus highlights hyper-intense FLAIR voxels which lie in
peri-ventricular regions.

thus be thought as a threshold on the FLAIR MR sequence followed by an inter-
section with the white matter mask (cf. Figure 2.12). Interestingly, this sequence
matches the �rst and second steps of the pipeline proposed by the challenge winner
method [Souplet 2008]. Note that in our case, it is automatically generated during
the training process. Deeper layers in the trees, then, re�ne the segmentation of MS
lesions by applying more accurate decisions.

The feature importance (cf. Equation 2.1) can be extended in a straightforward
way to be parametrized not only by the type of feature (local, context-rich, sym-
metric) but also by the channel. When globally looking at the selected channels
(cf. Figure 2.13), we notice that their importance varies throughout the tree: �rst
layers, as mentioned before, favor detection of bright spots in the white matter by
successively testing the FLAIR MR sequence, spatial priors on WM and GM tissues
and �nally testing on the T2 MR sequence; deeper layers take into account other
modalities to adjust the segmentation.

2.6 Conclusion

We demonstrated the power of the RF formulation applied to the di�cult task of
MS lesion segmentation in multi-channel MR images. We presented three kinds of
3D features based on multi-channel intensity, prior and context-rich information.
Those features are part of a context-rich random decision forest classi�er which
demonstrated improved results on one of the state of the art algorithms on the public
MS challenge dataset. In addition, the random decision forest framework provided
a means to automatically select the most discriminative features to achieve the best
possible segmentation. Future work could include the use of more sophisticated
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Figure 2.13: Channel importance as a function of the depth of the tree.

Plots draw the channel importance drawn as a function of the depth of the tree
for both local (top) and long-range features (bottom). For a �xed depth, only the
most discriminative channel is depicted. Note how successive layers of the tree test
complementary channels: the �rst layer performs a local test on the FLAIR MR
sequence in order to detect bright spots, the second one discards all voxels which do
not belong to the white matter by using context-rich information over the WM and
GM channels. Note that a large spectrum of available channels is tested throughout
the tree.
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features to reduce even further the preprocessing requirements. One could also
explore the application of our approach to the segmentation of brain tumors in multi-
sequence MR images of the brain. Finally, one could investigate an extension of the
proposed approach to larger multi-class problems in order to try to simultaneously
segment brain tissues (WM, GM, CSF) along with MS lesions.
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Appendix: Exhaustive results on public and private

datasets

In this section, we provides exhaustive quantitative results on the public and private
datasets in Tables 2.4, 2.5 and 2.6. In Figures 2.14, 2.15, 2.16 and 2.17, we also
provide additional visual evidence of the performance of the presented algorithm.

Patient
Ch. winner

Context-rich RF
[Souplet 2008]

(public) TPR PPV TPR PPV

CHB01 21.14 40.79 48.24 63.99

CHB02 17.53 28.71 43.44 62.17

CHB03 16.42 20.71 21.37 56.17

CHB04 11.58 54.74 30.24 77.32

CHB05 21.60 41.97 39.64 51.25

CHB06 12.38 45.76 31.04 50.32

CHB07 12.42 38.06 39.73 53.88

CHB08 12.17 54.45 45.84 64.87

CHB09 2.03 17.49 22.95 27.09

CHB10 4.68 17.02 22.40 38.20

UNC01 0.05 0.03 1.16 1.00

UNC02 36.43 38.65 47.81 35.25

UNC03 11.12 15.90 23.73 34.95

UNC04 37.47 53.05 53.24 37.49

UNC05 37.80 7.61 56.00 18.60

UNC06 8.07 8.81 14.25 7.81

UNC07 56.70 17.26 75.79 15.57

UNC08 26.97 29.82 51.74 31.05

UNC09 15.68 43.00 66.23 35.59

UNC10 22.00 27.24 52.96 33.09

Table 2.4: Quantitative results on the public dataset comparing the challenge winner

[Souplet 2008] to the context-rich random forest we propose. Boldface highlights improve-

ments over the challenge winner.
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CHB rater

Patient Ch. winner ([Souplet 2008]) Context-rich random forests

(private) V D SD TPR FPR V D SD TPR FPR

CHB01 57.6 2.6 83.9 35.3 40.7 2.6 48.4 75.3

CHB02 71.3 2.3 63.2 41.3 59.7 1.5 47.4 45.0

CHB03 75.3 12.2 33.3 90.4 79.1 6.6 46.7 87.2

CHB04 76.1 3.8 72.2 50.0 65.5 2.1 66.7 66.0

CHB05 74.0 3.2 69.6 71.0 53.6 1.6 65.2 68.6

CHB06 68.6 6.6 27.3 90.6 77.3 2.3 27.3 58.2

CHB07 77.3 4.8 55.3 74.0 40.3 1.5 57.9 62.9

CHB08 66.3 2.3 61.8 62.9 31.7 1.0 76.5 61.8

CHB09 63.1 2.6 35.8 55.4 44.5 2.3 24.1 54.9

CHB10 49.4 3.9 79.3 76.4 22.6 1.4 75.9 73.2

CHB01 72.9 3.6 51.7 81.7 43.4 1.2 41.4 76.6

CHB12 86.1 6.8 15.4 77.7 49.7 1.3 46.2 64.1

CHB13 69.3 4.6 76.2 64.6 52.2 1.4 85.7 56.5

CHB15 62.9 1.9 57.4 49.7 35.7 1.3 46.8 49.6

UNC01 36.5 5.3 53.1 69.2 55.6 4.4 56.3 77.6

UNC02 87.8 3.5 40.9 31.9 64.6 2.1 36.4 35.6

UNC03 30.5 1.3 55.9 40.6 41.7 2.7 27.9 54.6

UNC04 85.5 7.1 48.1 86.4 43.8 2.1 66.7 83.1

UNC05 5.3 6.4 78.3 77.9 18.1 2.4 78.3 74.5

UNC06 15.5 19.4 62.5 86.9 30.2 14.1 62.5 88.3

UNC07 26.2 6.4 80.0 71.5 134.3 4.9 76.7 85.6

UNC08 28.9 10.6 94.4 76.1 0.7 4.9 83.3 88.1

UNC09 263.9 53.0 0.0 100.0 75.7 46.7 100.0 98.4

UNC10 525.2 22.5 83.3 93.8 110.1 14.3 50.0 94.5

Table 2.5: Quantitative results computed by the Grand Challenge on the private
dataset using the CHB rater as reference. Boldface highlights improvements over the

challenge winner [Souplet 2008].
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UNC rater

Patient Ch. winner ([Souplet 2008]) Context-rich random forests

(private) V D SD TPR FPR V D SD TPR FPR

CHB01 70.3 3.9 52.0 27.6 58.5 5.1 26.7 74.2

CHB02 32.7 6.2 63.6 84.1 5.5 4.8 50.0 83.8

CHB03 48.9 11.6 50.0 87.7 56.7 3.0 71.4 84.6

CHB04 50.2 5.2 72.7 81.0 28.3 3.8 100.0 84.5

CHB05 36.8 8.8 48.1 92.5 144.7 9.3 48.2 92.7

CHB06 69.9 6.7 16.7 93.0 78.3 2.7 27.8 60.4

CHB07 62.7 5.5 48.3 85.6 1.9 3.1 58.3 77.0

CHB08 49.6 2.1 81.5 74.8 2.0 1.3 92.6 77.9

CHB09 56.3 3.6 34.9 69.6 34.2 4.0 30.9 70.8

CHB10 3.4 7.4 68.4 93.4 58.4 5.1 73.7 87.4

CHB01 16.3 6.0 47.7 91.4 74.9 6.1 38.6 92.8

CHB12 86.0 7.1 12.0 81.7 49.4 1.6 42.2 64.8

CHB13 50.0 5.4 50.0 85.4 22.0 6.3 80.0 87.0

CHB15 71.9 2.6 53.4 44.6 51.2 2.5 45.2 53.6

UNC01 56.6 4.8 51.2 75.7 6.4 4.5 55.8 74.1

UNC02 7.7 4.1 54.4 72.5 168.5 4.1 55.9 79.7

UNC03 46.2 1.5 53.5 49.4 54.9 3.5 26.1 57.9

UNC04 90.6 8.6 34.2 86.4 63.8 2.5 55.3 76.7

UNC05 53.4 6.0 52.4 75.2 63.8 3.5 42.9 66.7

UNC06 81.1 7.0 41.4 71.4 84.4 6.3 41.4 60.6

UNC07 45.6 2.6 55.7 58.3 1.0 3.3 52.5 74.3

UNC08 21.1 3.9 63.8 65.2 38.4 2.9 48.9 79.9

UNC09 157.9 44.0 33.3 96.6 24.5 35.3 33.3 98.4

UNC10 73.0 13.0 45.0 85.2 41.9 9.9 35.0 83.6

Table 2.6: Quantitative results computed by the Grand Challenge on the private
dataset using the UNC rater as reference. Boldface highlights improvements over

the challenge winner [Souplet 2008].
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Figure 2.14: Segmenting case CHB02 from the public Grand Challenge dataset.

From left to right: preprocessed T1-weighted (IT1) and Flair MR images (IFlair) overlayed

with the associated ground truth GT , the posterior map Posterior = (Plesion(vk))k and

the Flair sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with

τposterior = 0.5).
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Figure 2.15: Segmenting case CHB08 from the public Grand Challenge dataset.

From left to right: preprocessed T1-weighted (IT1) and Flair MR images (IFlair) overlayed

with the associated ground truth GT , the posterior map Posterior = (Plesion(vk))k and

the Flair sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with

τposterior = 0.5).
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Figure 2.16: Segmenting case UNC02 from the public Grand Challenge dataset.

From left to right: preprocessed T1-weighted (IT1) and Flair MR images (IFlair) overlayed

with the associated ground truth GT , the posterior map Posterior = (Plesion(vk))k and

the Flair sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with

τposterior = 0.5).
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Figure 2.17: Segmenting case UNC04 from the public Grand Challenge dataset.

From left to right: preprocessed T1-weighted (IT1) and Flair MR images (IFlair) overlayed

with the associated ground truth GT , the posterior map Posterior = (Plesion(vk))k and

the Flair sequence overlayed with the segmentation (Seg = (Posterior > τposterior) with

τposterior = 0.5).
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Chapter 3 investigates the promising perspective of estimating the brain tumor
cell density from MR images. A generative-discriminative framework is presented
to learn model-based estimations of missing cues, such as the tumor cell density
which is very di�cult to obtain. The generative model is a validated and publicly
available biophysiological tumor growth simulator. It outputs synthetic multi-modal
MR images, tissue class annotation and the tumor cell density for which clinical
ground truth is very di�cult to obtain. The discriminative model builds on multi-
variate regression random forests to estimate the voxel-wise distribution of tumor
cell density from input MR images. The random forest is learnt on a large dataset of
500 synthetic cases and their associated ground truth generated by the brain tumor
simulator. On real clinical cases from the low-grade glioma DKFZ dataset, the
method provides realistic tumor cell density estimations closely related to the multi-
modal image information. A binary tumor segmentation is derived from the tumor
cell density distribution and compared against the state of the art as a consistency
check. Quantitative evaluation on the low-grade glioma DKFZ dataset demonstrates
tissue class accuracy comparable with the state of the art with the added bene�t of
providing the latent tumor cell density.

3.1 Introduction

Brain tumors are complex patho-physiological processes representing a series of
pathological changes to brain tissue [Angelini 2012]. Increasing e�ort is invested
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in modelling the underlying biological processes involved in brain tumor growth
[Cristini 2010, Deisboeck 2010]. As brain tumors show a large variety of di�erent
appearances in multi-modal clinical images, the accurate diagnosis and analysis of
these images remains a signi�cant challenge. We show in the example of gliomas,
the most frequent brain tumor [Angelini 2007], how a generative patho-physiological
model of tumor growth can be used in conjunction with a discriminative tumor
recognition algorithm, based on random regression forests. Applied to real data
the random forest is capable of predicting the precise location of the tumor and its
substructures. In addition, our model can also infer the spatial distribution of (un-
observable) latent physiological features such as tumor cell densities, thus avoiding
the need for expensive patho-physiological model inversion [Menze 2011].

Generative probabilistic segmentation models of spatial tissue distribution and
appearance proved to generalize well to previously unseen images [Prastawa 2004,
Zou 2002, Menze 2010, Riklin-Raviv 2010]. In [Prastawa 2004], tumors are mod-
eled as outliers relative to the expected appearance of healthy tissue following
a related approach for MS lesion detection [Van Leemput 2001]. Other methods
[Zou 2002, Menze 2010] provide explicit models for the tumor class. For instance,
[Menze 2010] builds a tumor appearance model for channel speci�c segmentation
of the tumor, combining a tissue appearance model with a latent tumor class prior
from [Riklin-Raviv 2010]. Tumor growth models (e.g. reaction-di�usion models)
have been used repeatedly to improve image registration [Cabezas 2011] and, hence,
atlas-based tissue segmentation [Gooya 2011b]. Similarly, [Zacharaki 2009] relies on
a bio-mechanical tumor growth model to estimate brain tissue loss and displacement.
Generative approaches require a detailed formal description of the image generation
process and may need considerable modi�cations when applied to slightly di�erent
tasks. These approaches also tend to be computationally ine�cient.

In contrast, discriminative techniques focus on modeling the di�erence between
e.g. a lesion and healthy tissues, directly [Lee 2008, Wels 2008, Corso 2008]. A num-
ber of recent techniques based on decision tree ensembles have shown strong gener-
alization capabilities and computational e�ciency, even when applied to large data
sets [Criminisi 2010b, Montillo 2011, Gray 2011]. In [Geremia 2011], for example, a
classi�cation forest is used for segmenting multiple sclerosis lesions using long-range
spatial features. In [Wels 2008], the authors derived a constrained minimization
problem suitable for min-cut optimization that incorporates an observation model
provided by a discriminative Probabilistic Boosting Trees classi�er into the process
of segmentation. For multi-modal brain lesion segmentation, [Corso 2008] propose
a hierarchical segmentation framework by weighted aggregation with generic local
image features. Unfortunately, fully supervised discriminative approaches may re-
quire large expert-annotated training sets. Obtaining such data is often prohibitive
in many clinical applications.

This paper proposes a new way of combining the best of the generative and
discriminative world. We use a generative model of glioma [Prastawa 2009] to syn-
thesize a large set of heterogeneous MR images complete with their ground truth
annotations. Such images are then used to train a multi-variate regression forest
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tumor predictor [Geremia 2011, Criminisi 2011b]. Thus given a previously unseen
image the forest can perform an e�cient, per-voxel estimation of both tumor in�ltra-
tion density and tissue type. The general idea of training a discriminative predictor
(a classi�er or a regressor) on a large collection of synthetic training data is inspired
by the recent success of the Microsoft Kinect for XBox 360 system [Shotton 2011].
This approach has great potential in di�erent domains and especially for medical
applications where obtaining extensive expert-labelled is nearly impossible.

3.2 Learning to estimate tissue cell density from syn-

thetic training data

This section describes the two basic steps of our algorithm: i) synthesizing hetero-
geneous MR images showing tumors, and ii) training a tumor detector which works
on real patient images.

3.2.1 Generative tumor simulation model

The automatic generation of our synthetic training dataset relies on the publicly
available brain tumor simulator presented in [Prastawa 2009]. It builds on an
anisotropic glioma growth model [Clatz 2005b] with extensions to model the in-
duced mass-e�ect and the accumulation of the contrast agents in both blood ves-
sels and active tumor regions. Then, multi-sequence MR images are synthesized
using characteristic image textures for healthy and pathological tissue classes (cf.
Fig. 3.1 and 3.2).

We generate synthetic pathological cases with varying tumor location, tumor
count, levels of tumor expansion and extent of edema. The resulting synthetic cases
successfully reproduce mass-e�ect, contrast enhancement and in�ltration patterns
similar to what observed in the real cases. The synthetic dataset contains 740 syn-
thetic cases. It includes a large variability of brain tumors ranging from very di�usive
tumors, showing a large edema-in�ltration pattern without necrotic core, to bulky
tumors with a large necrotic core surrounded by an enhanced vascularization pat-
tern. For each case, the simulation provides four MR sequences (cf. Fig. 3.1 and 3.2)
which o�er di�erent views of the same underlying tumor density distribution.

This synthetic ground truth provides a diverse view of the pathological process
including mass-e�ect and in�ltration, but also very detailed annotations for the
healthy structures of the brain. The ground truth consists of voxel-wise annotations
on the data that are: white matter (WM), gray matter (GM), cerebrospinal �uid
(CSF), edema, necrotic tumor core, active tumor rim and blood vessels. Unlike
binary annotations which provide a mask for each tissue class, the ground truth
consists of a continuous scalar map for each tissue class. Each scalar map provides,
for every voxel in the volume, the density of every tissue class.
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Figure 3.1: Synthetic MR images. From left to right: T1, T1+Gad, T2, and FLAIR

MR images. They show a bulky tumor characterized by a large necrotic and a surrounding

vascularization pattern.
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Figure 3.2: Synthetic MR images. From left to right: T1, T1+Gad, T2, and FLAIR

MR images. They show a very in�ltrating tumor characterized by the extent of the edema.
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3.2.2 Regression forests for estimating tissue cell density

Problem setting We adapt the regression forest framework similar to the one of
[Criminisi 2010b] to train an estimator of tissue cell densities from visual cues in the
multi-channel MR images. For each voxel v, the ground truth provides the density
Rc(v) ∈ [0, 1] of each tissue class c ∈ C. The density distribution R is normalized
so that it satis�es

∑
c∈C Rc(v) = 1 in every voxel v.

Feature representation To calculate the local image features � both during
training and for predictions � we sub-sample or interpolate all images to 1 × 1 ×
2 mm3 resolution. We perform a skull-stripping and an intensity normalization
[Coltuc 2006] so that real MR images match the intensity distribution of synthetic
MR sequences. Then image features are calculated for each voxel v. Features
include local multi-channel intensity (T1, T1+Gad, T2, Flair) as well as long-range
displaced box features such as in [Geremia 2011]. In addition we also incorporate
symmetry features, calculated after estimating the mid-sagittal plane [Prima 2002].
In total, every voxel is associated with a 213−long vector of feature responses.

Regression forest training The forest consists of T trees indexed by t. During
training observations of all voxels v are pushed through each of the trees. Each
internal node p applies a binary test tp = τlow ≤ θ(v) < τup implementing a double
thresholding (τlow, τup) of the visual feature θ(v) evaluated at voxel v. The voxel v
is then sent to one of the two child nodes based on the outcome of this test. As a
result, each node p receives a partition of the input training data Tp = {v, R(v)}p,
composed of a voxel v and a vector R(v) ∈ [0, 1]|C| storing the cell density value for
each tissue class. We model the resulting distribution via a multi-variate Gaussian
Np(µp,Γp) where µp and Γp are the mean and covariance matrix of all R(v) ∈ Tp,
respectively. During training, the parameters (τlow, τup) of the node test function
and the employed visual feature θ are optimized to maximize the information gain.
We de�ne the information gain IG(tp) to measure the quality of the test func-
tion tp which splits Tp into T leftp and T rightp . The information gain is de�ned as
IG(tp) = −

∑
k∈{left,right} ωklogρk with ω = |T kp |/|Tp| and ρk = max|eig(Γk)| where

eig denotes all matrix eigenvalues. In contrast to the more conventional informa-
tion gain used in [Criminisi 2010b], our formulation gives a robust estimate of the
dispersion. Our de�nition of the information gain focuses on the direction showing
maximum dispersion, i.e. ρk, and is robust against the missing information on tissue
classes.

Indeed, the information gain presented in [Criminisi 2010b] models the disper-
sions as |Γk| which would evaluate to 0 in our case, because

∑
c∈C Rc(v) = 1. A

possibility to solve this problem would be to reduce the dimension of the vector
R(v) so that it only contains independent observations. However, this solution will
still provide a null dispersion measure in the case a tissue class is missing from the
input partition Tp. Our de�nition of the information gain addresses this issue.

At each node p, the optimal test t∗p = arg maxΛ IG(tp) is found by exhaustive
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search over a random subset of the feature space Λ = {τlow, τup, θ}. Maximizing
the information gain encourages minimizing ρp, thus decreasing the prediction error
when approximating Tp with Np. The trees are grown to a maximum depth D, as
long as |Tp| > 100.

After training, the random forest embeds a hierarchical piece-wise Gaussian
model which captures the multi-modality of the training data. In fact, each leaf
node lt of every tree t stores the Gaussian distribution Nlt associated with the
partition of the training data arrived at that leaf Tlt .

Note that the employed Gaussian distributions have an in�nite support which
exceeds the de�nition domain of cell density values [0, 1]. The employed random re-
gression forest approximates the multi-variate distribution R by a piece-wise Gaus-
sian distribution R̂. In the previous description, �Gaussian distribution� should be
seen as a synonym for the conjunction of a mean and a covariance. Indeed, we do
not use any of the Gaussian distribution's properties nor evaluate it during test-
ing. However, we recall that it is possible to re-parametrize the domain [0, 1] to
[− inf,+ inf], e.g. using logit, and thus learn �true� Gaussian distributions without
changing the algorithm.

Regression forest prediction When applied to a previously unseen test volume
Ttest = {v}, each voxel v is propagated through all the trained trees by successive
application of the relevant binary tests. When reaching the leaf node lt in all trees
t ∈ [1..T ], estimated cell densities rt(v) = µlt are averaged together to compute the
forest tissue cell density estimation r(v) = (

∑
t∈[1..T ] rt(v))/T . Note that in each

leaf lt we maintain an estimate of the con�dence Γlt associated to the cell density
estimation µlt .

Active learning and volume subsampling In order to make the training phase
computationally tractable, we subsample the training volumes. We constrain the
sampling to embed a balanced representation of all tissue classes in the training set.
We use active learning to improve the performance of the classi�er by increasing the
sampling frequence in challenging regions.

Previously, we splitted the synthetic dataset in three disjoint subsets: two train-
ing sets, denoted T 1

train and T 2
train, and one test set denoted Ttest. These di�erent

subsets contain |T 1
train| = |T 2

train| = 250 cases and |Ttest| = 240 cases, respectively.
First, we train a forest F1 (T = 80 trees of depth D = 20) on a random, but

balanced, subset of voxels extracted from T 1
train. Then, we use the forest F1 to

predict the tissue cell density at a voxel level for all the cases in the datset T 2
train.

The results show high error margins in regions showing high appearance ambiguities,
e.g. regions around the GM-WM boundary (cf. Fig. 3.3 and 3.4) which strongly
ressembles edema. The forest F1 fails at discriminating the GM-WM boundary
from edema because the bounday regions were sampled in a very sparse way from
T 1
train. In order to address this issue, we propose to use a fully automatic sampling

method based on active learning.
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The sampling method consists of creating a new training set from the regions
in which the forest F1 made signi�cant errors. The error made by the prediction
with respect to the ground truth is computed using the norm of the di�erence
‖R(v)− r(v)‖. A �xed proportion (50%) of the voxels with highest error values in
T 2
train are added to the original random sampling to train a new forest F2 (T = 80

trees of depth D = 20).
Finally, we merge the obtained forests into a larger one F = {F1,F2}, and use

it to predict the tissue cell densities on the synthetic cases from Ttest. Results are
reported in the next section.

3.3 Experiments

We conducted two main experiments. First, as a proof of concept, we tested how
well the learned forest reproduces the tissue cell densities in the synthetic model.
In a second experiment we applied our method to real, previously unseen, clinical
images and measured accuracy by comparing the detected and ground truth tumor
outlines.

We evaluate the predictions for every test case using two complementary metrics:
a segmentation metric and a robust regression metric. The segmentation metric
compares binary versions of the physiological maps, independently normalized for
each tissue class. The binary masks are obtained by thresholding the prediction
and the ground truth at the same value. Then, we evaluate the true postive rate
TPR = TP/(TP + FN), the false positive rate FPR = FP/(FP + TN) and the
positive predictive value PPV = TP/(TP +FP ), where TP , FP , and FN are the
number of true positives, false positives, and false negatives, respectively. Finally,
we compute the area under the ROC and the one precision-recall curves to measure
how well the prediction �ts the ground truth.

The robust regression metric evaluates the estimation error between the pre-
dicted continuous map and the ground truth. For every tissue class c, we compute
the mean over the voxels v of the estimation error, de�ned as Ec(v) = |Rc(v)−rc(v)|.
In order to avoid arti�cial decrease of the mean error, we make this metric robust
by only considering regions of the physiological map showing at least 1 %� signal in
either the prediction or the ground truth.

In both experiments, we used the same forest containing T = 160 trees of depth
D = 20 trained on 500 synthetic cases. The values of these meta-parameters were
tuned by training and testing on a di�erent synthetic set.

3.3.1 Experiment 1: Estimating cell density in synthetic cases

We tested the random forest on a previously unseen synthetic dataset with 240
cases. Results (Fig. 3.3 and 3.4) show a good qualitative match between predicted
and ground truth physiological maps. As a segmentation metric we calculate the
true and false positive rates as well as the positive predictive value for each possible
threshold jointly on r and R and summarize it through ROC and precision-recall
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curves. For every tissue class c, we also compute the mean approximation error,
de�ned as Ec(v) = |Rc(v) − rc(v)| (integrating over voxels with > .001 tumor cell
density for tumor classes). Results in Fig. 3.3, 3.4, 3.5, 3.6 and show excellent
results for WM, GM, CSF. The predicted tumor cell density is in good agreement
with ground truth, although a systematic bias leads to a slightly larger variance in
the error metric (cf. Fig. 3.7). This e�ect is stable over all data sets and we can
correct for it.

The synthetic training and testing tests were generated using a single BrainWeb
phantom. As a result, there is very little anatomical variability in the healthy
regions of the brain (WM, GM, CSF) which is a limitation of the generated synthetic
dataset. However, some variability can be observed in the regions a�ected by the
mass e�ect induced by the tumor growth simulation. Moreover, the image synthesis
step produces di�erent noise mapping and bias �eld for each image resulting in
heterogeneous intensity patterns within the same brain tissue region which makes
segmentation and regression more challenging.

3.3.2 Experiment 2: Segmenting tumors in clinical images

We tested the same random forest on 14 clinical cases showing low and high grade
glioma (cf. Fig. 3.9, Fig. 3.10, 3.11, 3.12) with T1, T1+Gad, T2 and FLAIR
images. None of the clinical cases was used during training. Training was done
exclusively on synthetic images. The manually-obtained ground truth consists of
a binary tumor mask delineating the tumor+edema region. We calculated the
same tumor outline from the predicted continuous physiological masks as done
for the synthetic model [Prastawa 2009]. Segmentation results (Fig. 3.8) are in
excellent agreement with a state-of-the-art unsupervised multimodal brain tumor
segmentation method that also outperformed standard EM segmentation in an
earlier study [Menze 2010]. Note that the method presented in [Menze 2010] sig-
ni�cantly outperformed [Prastawa 2004]. Interestingly, in a qualitative evaluation
(cf. Fig. 3.9 and 3.10), the tumor cell density map shows smooth transition between
the active rim of the tumor (red) and the edema (green).

3.4 Discussion

In Section 3.3.1, we showed that the regression random forest successfully tackles the
multi-regression problem on the synthetic cases. Interestingly, the regression random
forest succeeded in recovering the tumor cell density from the image information.
As a result, we obtained a collection of continuous cell density maps retrieving the
semantics behind the MR images.

In Section 3.3.2, we show that our method achieves state of the art brain tumor
segmentation with the added bene�t of providing a tumor cell estimate which can be
used to initialize and, hence, to speed up more expensive model inversion schemes,
such as [Menze 2011]. We observed that for high grade gliomas the cell densities
associated with the necrotic core and the active rim were mixed. This is due to the
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Figure 3.3: Estimation of tissue cell densities. From left to right: T1+Gadolinium,

FLAIR image, the ground truth provided by the simulator, the estimation of our random

regression forest. Each voxel of the ground truth maps displays the mixed density between

prede�ned tissue classes: WM (dark blue), GM (light blue), CSF (cyan), edema (green),

blood vessels including the active tumor rim (orange), and necrotic core (yellow).
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Figure 3.4: Estimation of tissue cell densities. From left to right: T1+Gadolinium,

FLAIR image, the ground truth provided by the simulator, the estimation of our random

regression forest. Each voxel of the ground truth maps displays the mixed density between

prede�ned tissue classes: WM (dark blue), GM (light blue), CSF (cyan), edema (green),

blood vessels including the active tumor rim (orange), and necrotic core (yellow).
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T1+Gad FLAIR Intensity pro�le
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Figure 3.5: Prediction of the cell densities along a section of the tumor. Top,

from left to right: T1+Gadolinium, FLAIR image, the intensity pro�le along the section

(yellow). Bottom, from left to right: prediction of the cell density for the edema, necrotic

core and active rim, respectively, compared to the ground truth (dotted line).
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T1+Gad FLAIR Intensity pro�le
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Figure 3.6: Prediction of the cell densities along a section of the tumor. Top,

from left to right: T1+Gadolinium, FLAIR image, the intensity pro�le along the section

(yellow). Bottom, from left to right: prediction of the cell density for the edema, necrotic

core and active rim, respectively, compared to the ground truth (dotted line).
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Figure 3.7: Evaluation of the predictions on the synthetic dataset for each cell

density map . Each row represents a tissue class: WM, GM, CSF, edema, necrotic core,

blood vessels including the active tumor rim, respectively. Top, from left to right: area

under the precision-recall curve, and area under the ROC curve. Each point of the ROC

and precision-recall curves is built by thresholding the prediction and the ground truth at

the same value. Bottom, from left to right: estimation of the mean prediction error, and

the dice score. The ground truth and the predcition density maps were thresholded at the

same value, i.e. 0.3.
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Figure 3.8: Evaluation of the predictions on the clinical dataset. Box plots of the

area under the ROC curve (left), under the precision-recall curve (right), and the dice score.

Comparison of the proposed method (G-RF) with the method presented in [Menze 2010].
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Figure 3.9: Segmentation and tumor cell distribution. From left to right: prepro-

cessed Flair MR image, FLAIR MR image overlayed with the segmentation of an expert,

the normalized tumor cell density, and the predicted tumor segmentation (threshold at 0.3).
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Figure 3.10: Segmentation and tumor cell distribution. From left to right: prepro-

cessed Flair MR image, FLAIR MR image overlayed with the segmentation of an expert,

the normalized tumor cell density, and the predicted tumor segmentation (threshold at 0.3).
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T1+Gad FLAIR Intensity pro�le

Edema Necrotic core Active rim

Figure 3.11: Prediction of the cell densities along a section of the tumor. Top,

from left to right: T1+Gadolinium, FLAIR image, the intensity pro�le along the section

(yellow). Bottom, from left to right: prediction of the cell density for the edema, necrotic

core and active rim, respectively.
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Figure 3.12: Prediction of the cell densities along a section of the tumor. Top,

from left to right: T1+Gadolinium, FLAIR image, the intensity pro�le along the section

(yellow). Bottom, from left to right: prediction of the cell density for the edema, necrotic

core and active rim, respectively.
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fact that the intensity normalization step only partially matches the appearance of
real tumors to the appearance of synthetic tumors. We expect that updating the
simulator to generate images that match a speci�c scanner and scanner protocol
would signi�cantly improve the results of our method.

3.5 Conclusions

In this chapter, we presented a new generative-discriminative algorithm for the
automatic detection of glioma tumors in multi-modal MR brain images. A regression
forest model was trained on multiple synthetically-generated labelled images. Then
the system demonstrated to work accurately on previously unseen synthetic cases. It
showed promising results on real patient images which led to state of the art tumor
segmentation results. Our algorithm can estimate continuous tissue cell densities
both for healthy tissues (WM, GM, CSF) as well as tumoral ones.

In the future, the employed generative-discriminative model can be extended to
include other imaging modalities such as DTI and MR Spectroscopic (MRS) images.
MRS images give a complementary macroscopic view on the biological processes
underlying tumor growth. It is of great interest at the time of predicting the tumor
cell density tails invisible from MR images.

The idea of combining complex image synthesis models with data-driven infer-
ence is of a general nature and can be extended to other diseases where obtaining
expert labels is laborious or expensive or even impossible.

Appendix: Additional qualitative results on synthetic and

real cases

In this section, we illustrate obtained results with a serie of additional synthetic (cf.
Fig. 3.13, 3.14 and 3.15) and real cases (cf. Fig. 3.16, 3.17 and 3.18).
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Figure 3.13: Estimation of tissue cell densities. From left to right: T1+Gadolinium,

FLAIR image, the ground truth provided by the simulator, the estimation of our random

regression forest. Each voxel of the ground truth maps displays the mixed density between

prede�ned tissue classes: WM (dark blue), GM (light blue), CSF (cyan), edema (green),

blood vessels including the active tumor rim (orange), and necrotic core (yellow).
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Figure 3.14: Estimation of tissue cell densities. From left to right: T1+Gadolinium,

FLAIR image, the ground truth provided by the simulator, the estimation of our random

regression forest. Each voxel of the ground truth maps displays the mixed density between

prede�ned tissue classes: WM (dark blue), GM (light blue), CSF (cyan), edema (green),

blood vessels including the active tumor rim (orange), and necrotic core (yellow).
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Figure 3.15: Estimation of tissue cell densities. From left to right: T1+Gadolinium,

FLAIR image, the ground truth provided by the simulator, the estimation of our random

regression forest. Each voxel of the ground truth maps displays the mixed density between

prede�ned tissue classes: WM (dark blue), GM (light blue), CSF (cyan), edema (green),

blood vessels including the active tumor rim (orange), and necrotic core (yellow).
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Figure 3.16: Segmentation and tumor cell distribution. From left to right: prepro-

cessed Flair MR image, FLAIR MR image overlayed with the segmentation of an expert,

the normalized tumor cell density, and the predicted tumor segmentation (threshold at 0.3).
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Figure 3.17: Segmentation and tumor cell distribution. From left to right: prepro-

cessed Flair MR image, FLAIR MR image overlayed with the segmentation of an expert,

the normalized tumor cell density, and the predicted tumor segmentation (threshold at 0.3).
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Figure 3.18: Segmentation and tumor cell distribution. From left to right: prepro-

cessed Flair MR image, FLAIR MR image overlayed with the segmentation of an expert,

the normalized tumor cell density, and the predicted tumor segmentation (threshold at 0.3).
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Chapter 4 shows how multi-scale image parsing can bene�t previously presented
classi�cation and regression methods. A general and e�cient supervised discrimi-
native algorithm is presented to merge the bene�ts of multi-scale approaches and
random forest methods. �Spatially Adaptive Random Forests� (SARF) �nd the op-
timal image sampling associated to a given classi�cation or regression task. Thanks
to multi-scale data representation, the computation e�ort focuses on challenging
regions rather than uniformly processing the whole image. SARF is applied to
multi-class glioma segmentation from multi-modal MR images. The experiments
show state of the art results on the publicly available MICCAI 2012 BRATS dataset.
Unlike competing methods, SARF �nds the optimal observation scale using a coarse-
to-�ne strategy, and hence avoids time consuming parsing of the image at the voxel
level which is often unnecessary.

4.1 Introduction

Medical imaging protocols produce large amounts of multi-modal volumetric images.
The large size of the datasets contributes to the success of supervised discrimina-
tive methods for semantic label extraction. Automatic classi�cation of semantically
relevant structures in medical images is challenging due to (a) the large size of data
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volumes, and (b) the severe class overlap in the feature space. Our study focuses on
multi-scale segmentation methods which address these issues.

Using multi-scale image representations, relying for example on spectral repre-
sentations [Cour 2005], helps speeding up segmentation algorithms and apply them
to data sets that were previously considered to be of prohibitive size. Interestingly,
adaptive multi-resolution hierarchies have also been shown to e�ciently encode im-
age information for compression and rendering [Lefebvre 2007]. In medical appli-
cations, recent work focused on learning hierarchical anatomical representations
explicitly from expert annotations. Alternatively, a generative model can be learnt
from expert labelled ground truth and incorporated to a multi-level a�nity-based
segmentation [Corso 2008]. The approach in [Wolz 2012] builds on a hierarchical reg-
istration and weighting scheme to retrieve organ-speci�c atlases at di�erent scales.
Although, these methods can be adapted to take into account additional image
channels, they exclude the use of high dimensional features.

Hierarchical representations can be integrated into discriminative supervised
learning algorithms. For instance, boosting weak classi�ers that are hierar-
chically trained on di�erent scales showed to signi�cantly reduce training time
[dos Santos 2012]. A similar approach was proposed for the segmentation of multiple
sclerosis lesions in multi-channel MRIs using random forests [Akselrod-Ballin 2009].
In the latter, segmentations from multiple scales are merged to increase the robust-
ness of the algorithm. In both methods, the image is relabelled at coarse scales to
discard regions containing heterogeneous label distributions. As a result, the clas-
si�ers miss critical coarse-scale cues which penalizes the performance of the �nal
segmentation. Other supervised approaches build on context-rich random forests
for segmentation of brain lesions in MRIs [Geremia 2011, Zikic 2012]. Still, their
excellent performance requires a careful tuning of class weights during training, and
is highly sensitive to the spatial sub-sampling of the training data for the di�erent
classes.

We present the novel �Spatially Adaptive Random Forest� (SARF) to address
these shortcomings. SARF is a supervised learning algorithm which aims at auto-
matic semantic label extraction in multi-modal medical images. It builds on dis-
criminative random forests, an e�cient multi-scale 3D image representation, and
structured labelling. SARF learns the optimal image sampling associated to the
segmentation task from the training data. The ground truth, which is provided
at the voxel level, is extrapolated to coarse levels by using label histograms. Dur-
ing both training and testing, the algorithm quickly handles background regions of
the image, and focuses on more challenging ones to re�ne the segmentation. This is
made possible by adding a scale transition condition to the random forest algorithm.

We demonstrate SARF in the context of multi-class glioma segmentation in
multi-modal MR images. SARF ranked in the top three when applied to the publicly
available MICCAI 2012 BRATS Challenge dataset.
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4.2 Data representation

We derive a hierarchical data representation to e�ciently browse the image, and its
associated ground truth, at di�erent scales. Fig. 4.1 illustrates the visual results
obtained for a representative case in the BRATS glioma dataset.

4.2.1 Multi-scale image tree

A multi-scale hierarchical tree is presented for encoding multi-channel volumetric
images. It builds on the volumetric counterpart of SLIC superpixels [Achanta 2012]
to iteratively generate a compressed representation of the image at di�erent scales.
Previous SLIC implementations aimed at 2D RGB images and 3D mono-channel
volumes. In this work, the SLIC algorithm was adapted to multi-channel 3D vol-
umes. It takes into account intensity information from all available channels to
extract connected and homogeneous supervoxels. Similarly to spatial trees pre-
sented in [Siskind 2007], each layer of the �nal tree embeds a di�erent scale of
the image. The generation of the multi-scale data representation is fast and does
not require any parameter tuning. It inherits the strengths of the SLIC algorithm
which showed outstanding performance compared to the state-of-the-art. For in-
stance in [Achanta 2012], the authors report the segmentation of a 2D image of size
2048× 1536 in 14.94s on an Intel Dual Core 2.26 GHz processor with 2 GB RAM.
In our case, using a sequential Matlab implementation, a volume of size 81×98×83
is segmented in 1min on an IBM e325, dual-Opterons 246 at a maximum frequency
of 2Ghz, using a single CPU.

Multi-channel images are de�ned as the vectorial map I : Ω ⊂ R3 → R|Γ| where
Γ is the set of image channels. Thus, every voxel is associated a spatial position
x ∈ Ω and a multi-channel intensity vector I(x). A spatial partition is a set of
disjoint supervoxels Pk

I
= {vkn} ⊂ P(Ω) partitioning the image domain Ω at scale

k. As presented in [Achanta 2012], the generation of Pk
I
is exclusively based on

the image information I. At the �nest scale, P1
I
is the set of singletons formed by

the individual image voxels. We adapt the SLIC algorithm to recursively cluster
supervoxels from Pk

I
into a coarser partition noted Pk+1

I
. In practice, a scalar value

sk controls the maximum size of supervoxels at scale k.
This procedure is repeated for an increasing sequence of supervoxel sizes {sk}k6K

until the whole image is contained in a single supervoxel. In the rest of the article,
we set K = 7 and {sk}k67 to a �xed set of scalars. The resulting sequence {Pk

I
}

is encoded in the layers of a multi-resolution tree noted MI = {Mk
I
}. At layer

k > 1, Mk
I
maps every supervoxel v ∈ Pk

I
to a set of disjoint �ner supervoxels

Mk
I
(v) = {wi} ⊂ Pk−1

I
satisfying v =

⋃
iwi. Inter-scale relationships are illustrated

in Fig. 4.2.

4.2.2 Visual features

Supervoxels provide a convenient primitive from which to compute local image
features. A visual feature at scale k is a map de�ned by θk : Pk

I
→ R. Arbi-
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trary large amounts of task-speci�c features can be derived in a straightforward
way from the multi-scale representation of the image [Geremia 2011, Zikic 2012,
Akselrod-Ballin 2009].

Here, we provide three examples of possible features. A local feature θk,γmed which
maps the supervoxel v to the median intensity in channel γ of the voxels it contains,
noted θk,γmed(v) = µ 1

2
{Iγ(x)|x ∈ v}. A prior feature θk,δprior = θk,δmed where the channel

δ maps the spatial distribution of healthy tissues including white matter (WM),
grey matter (GM) and cerebro-spinal �uid (CSF). The prior feature is obtained by
a�nely registering the MNI atlases on each patient. A long-range feature de�ned
by θk,γsym(v) = max{S ◦ Iγ(x)|x ∈ v}, where S is a re�ection of R3. The symmetry
feature was speci�cally designed for the detection of abnormal regions in brain MRIs
which are often asymmetrical with respect to the mid-sagittal plane.

4.2.3 Ground truth

At the voxel level, the ground truth associated to the image I is de�ned by GI :
Ω → C, each voxel x being associated a class label GI(x) ∈ C. Here, we consider
the tissue classes C = {back, edema, core} standing for background healthy brain,
edema and tumor core, respectively. The generalization of GI to coarser scales reads
GI = {Gk

I
} where Gk

I
: Pk

I
→ C.

In previous work [dos Santos 2012, Akselrod-Ballin 2009], each supervoxel v was
a�ected the class label Gk

I
(v) = c ∈ C satisfying |{x ∈ v | GI(x) = c}| > τhom.

When such label did not exist, the supervoxel was removed from the training set.
The threshold τhom = 70 or 80% aims at selecting homogeneous supervoxels, while
discarding those showing severe label mixture. In multi-class segmentation, this
means discarding challenging, but often critical, image regions, and thus indirectly
penalizing the prediction performance.

To address this �aw, we introduce an unambiguous labelling function Hk
I
with

values in N|C|. The histogram Hk
I
(v) = (h[c])c∈C = ( |{x ∈ v | GI(x) = c}| )c∈C

counts the class label occurrences in the supervoxel v. Consequently at scale k,
the ground truth is de�ned as Gk

I
(v) = arg maxc∈C h[c]. Unlike [dos Santos 2012,

Akselrod-Ballin 2009], our labelling method HI = {Hk
I
} keeps track of the class

mixture in every supervoxel. In Section 4.3.3, we explain how this is integrated to
the random forest framework to help re�ning the segmentation in challenging image
regions.

4.3 Spatially adaptive random forest

The random forest framework [Breiman 2001] is extended to bene�t from the pre-
sented multi-scale image representation. In the following, we provide a sound formu-
lation of SARF applicable to the general problem of multi-class image segmentation.
Fig. 4.3 provides a schematic illustration on the multi-scale aspect of the tree and
feature space.
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Figure 4.1: Data representation. Top: the multi-channel MRI noted I, including (T1,

T1+gadolinium, T2, FLAIR) overlayed with the expert annotations for the edema (yellow)

and the tumor core (red). Bottom: the a�nely registered MNI atlas (WM, GM, CSF), and

the image partitions at three di�erent scales (P6
I
,P4

I
,P2

I
). The arrows point out the necrotic

core (NC), the active proliferative rim (AR) of the tumor and the surrounding edema (Ed)

in the intermediate supervoxel decomposition of the image.
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Figure 4.2: Partition re�nement. Top: a schematic illustration of supervoxel re�nement

at three di�erent scales. Bottom: the associated image partitions considered (P6
I
,P4

I
,P2

I
).
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4.3.1 Training data

The SARF is an ensemble of trees, each processing the multi-scale data hierarchy
from coarse to �ne. During training, the data entering the root node of each tree
consists of all supervoxels vj ∈

⋃
n PKIn

, where n indexes the case, considered at
the coarsest scale K. In the following, M, G and H, denote the extensions to the
dataset {In} ofMI, GI, and HI, respectively. Every supervoxel vj is associated the
class label cj = Gk(vj), and the label histogram hj = Hk(vj). The resulting training
data reads T = {(vj , cj , hj)} with j ∈ J .

4.3.2 Decision node representation

Each internal node p applies a binary test tk,θ,τJp
to the data it receives T kp =

{(vj , hj)}j∈Jp . The binary test is de�ned by tk,θ,τp (vj) = θk(vj) > τ . It is
parametrized by the scale k, the type of visual feature θ and the threshold τ . Based
on the outcome of this test, T kp is splitted into T kL(p) and T

k
R(p), which are propagated

to the left and right child node receptively.

During training, every node p stores the scale k, the optimal parameters θ and
τ used to split the data. Additionally, it saves the label distribution dT k

p
= ( |{j ∈

Jp | cj = c}| )c∈C , and the class mixture hT k
p

=
∑

j∈Jp
hj considered on T kp .

4.3.3 Training

For each node p, the parameter λ = (θ, τ) is optimized using the input training
data T kp . The optimality criterium is the information gain de�ned as IG(λ, T kp ) =
H(dT k

p
)−
∑

B∈{L,R}wB ·H(dT k
B(p)

), where wB = |T kB(p)|/|T
k
p |. The entropyH satis�es

H(dT k
p

) = −
∑

c∈C P (c) · log P (c) with P (c) = dT k
p

[c]/
∑

c′∈C dT k
p

[c′]. The optimal

parameters satisfy λ∗p = arg maxλ IG(λ, T kp ).
This procedure is repeated recursively for the derived nodes. The tree is grown

down to scale k = 1 until every leaf node p is pure, i.e. H(T 1
p ) = 0. Unlike pre-

vious work [Akselrod-Ballin 2009, Geremia 2011, Zikic 2012], we introduce spatial
re�nement in the random forest framework to capture �ne structures. Indeed, when
the supervoxels are too large to properly describe annotated image regions, the
scale k is decremented. Formally, this occurs when H(dT k

p
) = 0 and H(hT 1

p
) 6= 0.

In this case, T kp = {(vj , hj)}j∈Jp is replaced by its decomposition into �ner su-
pervoxels T k−1

p = {(wi, c′i, h′i)}i∈Ip where wi ∈
⋃
jMk(vj), c′i = Gk−1(wj), and

h′i = Hk−1(wj). The node is then optimized at the scale k − 1.
We solve the optimization problem by exhaustive search over a random set of

thresholds and the whole set of feature {θmed, θprior, θsym}. To further decorrelate
the weak classi�ers, we train each tree with a di�erent partition of the same image.
This is done by randomizing the initial position of the seeds in the SLIC algorithm
[Achanta 2012].
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Figure 4.3: Schematic representation of the SARF algorithm. Right: Each tree of

the forest successively re�nes the scale of observation. Left: at each node, the feature space

is partitioned by considering the supervoxels at a �xed scale. The class labels of coarse

supervoxels (here blue and red) are de�ned by majority voting of �ner scales.

4.3.4 Prediction

When applied to an unseen test volume Itest, a di�erent image partition PK,t
Itest

is
computed for every tree t ∈ [1..T ]. In every tree, each node p applies the bi-
nary test tk,θ

∗,τ∗ to the input data, after having re�ned it to scale k, if necessary.
As a result, for every voxel v ∈ P1,t

Itest
there is a tree-speci�c sequence of super-

voxels {vkt }k∈[kmin,K] of decreasing size such that vkt ∈ P
k,t
Itest

. The �nest supervoxel

wt = vkmin
t reaches the leaf node pt, and is a�ected the associated posterior class dis-

tribution dt(wt) = dT k
pt
/
∑

c∈C dT k
pt

[c] ∈ L. For every voxel v ∈ P1
Itest

, posteriors from

all trees are averaged to from the forest posterior such that df (v) =
∑

t dt(wt)/T .
Finally, the predicted class label a�ected to v is ĜItest(v) = arg maxc∈C df (v)[c]. A
morphological closure is applied to the necrotic core class as only postprocessing.

4.4 Experiments and results

We demonstrate SARF in the speci�c context of multi-class glioma segmentation in
multi-modal MRIs. For training purposes, we rely on the publicly available MIC-
CAI BRATS Challenge 2012 dataset which contains 80 cases. Brain tumor image
data used in this work were obtained from the MICCAI 2012 Challenge on Multi-
modal Brain Tumor Segmentation (http://www.imm.dtu.dk/projects/BRATS2012)
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Figure 4.4: Challenge results and scale map. The image displays the FLAIR and

T1+gadolinium images overlayed with the predicted tumor core + edema contour in yellow.

The right most image is the scale map, displaying for each voxel the �nest scale used to

classify it. Dark blue stands for the �nest scales while red stands for the coarsest ones.

organized by B. Menze, A. Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. Van
Leemput. The challenge database contains fully anonymized images from the fol-
lowing institutions: ETH Zurich, University of Bern, University of Debrecen, and
University of Utah. Our method was then applied to a test dataset of 30 cases
which ground truth was kept secret. After independent evaluation of the results
by the challenge website, SARF ranked third among eight state-of-the-art methods.
Obtained results are illustrated in Fig. 4.4 and 4.5.

4.5 Discussion and conclusion

The presented SARF framework shows promising results still limited by the small
size of the employed feature set. Indeed, it would greatly bene�t from richer visual
features designed for glioma segmentation, and subsequent regularization as used in
top-ranked methods [Zikic 2012, Bauer 2011].

Fig. 4.4 shows that the SARF focuses on challenging image regions by processing
them at �ner scales. Interestingly, SARF automatically �nds the average optimal
scale used to segment gliomas, here k = 3. This supports the fact that parsing
the image at the voxel level is often unnecessary. These �ndings arise from the
novelty of the multi-scale classi�cation approach implemented in SARF, and result
in signi�cantly reducing training and testing times.
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Method Dice score (edema) Dice score (core)

[Zikic 2012] 0.67 0.65

[Bauer 2011] 0.61 0.63

SARF 0.62 0.55

[Hamamci 2012] 0.47 0.64

Figure 4.5: Challenge qualitative results on four di�erent cases. Top: the �gure

displays the FLAIR and T1+gadolinium (T1C) images overlayed with the predicted edema

(yellow) and tumor core (red). Bottom: the Dice scores of the top-ranked methods for the

edema and tumor core classes
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Random Forest is an example of a tool that is useful in doing analyses of sci-

enti�c data. But the cleverest algorithms are no substitute for human intelligence

and knowledge of the data in the problem. Take the output of random forests not

as absolute truth, but as smart computer generated guesses that may be helpful in

leading to a deeper understanding of the problem. Leo Breiman and Adele Cutler 1

5.1 Conclusions

This chapter goes over the partial conclusions of previous chapters and brings them
together to answer the introductory question: How to make the most out of medical

images to support diagnosis in the best possible way ?

• Spatial random forests for MS lesions segmentation. We demonstrated
the power of the RF formulation applied to the di�cult task of MS lesion
segmentation in multi-channel MR images. We presented three kinds of 3D
features based on multi-channel intensity, prior and context-rich information.
Those features are part of a context-rich random decision forest classi�er which
demonstrated improved results on one of the state of the art algorithms on the
public MS challenge dataset. In addition, the random decision forest frame-
work provided a means to automatically select the most discriminative features
to achieve the best possible segmentation. We provided a thorough methodol-
ogy to estimate the optimal forests meta-parameters (cf. Section 2.5.4). Future
work could include the use of more sophisticated features to reduce even fur-
ther the preprocessing requirements. One could also explore the application
of our approach to the segmentation of brain tumors in multi-sequence MR
images of the brain. Finally, one could investigate an extension of the pro-
posed approach to larger multi-class problems in order to try to simultaneously
segment brain tissues (WM, GM, CSF) along with MS lesions.

• Multi-variate regression forests for glioma cell density extrapola-

tion. This paper presented a new generative-discriminative algorithm for the

1http:www.stat.berkeley.edu�breimanRandomForestscc_philosophy.htm
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automatic detection of glioma tumors in multi-modal MR brain images. A re-
gression forest model was trained on multiple synthetically-generated labelled
images. Then the system demonstrated to work accurately on previously un-
seen synthetic cases. It showed promising results on real patient images which
led to state of the art tumor segmentation results. Our algorithm can estimate
continuous tissue cell densities both for healthy tissues (WM, GM, CSF) as
well as tumoral ones. The idea of combining complex image synthesis mod-
els with data-driven inference is of a general nature and can be extended to
other diseases where obtaining expert labels is laborious or expensive or even
impossible.

• Spatially Adaptive Random Forests for Classi�cation Problems in

Medical Imaging. The presented SARF framework focuses on challenging
image regions by processing them at �ner scales. Interestingly, SARF au-
tomatically �nds the average optimal scale used to segment gliomas. This
supports the fact that parsing the image at the voxel level is often unnec-
essary. These �ndings arise from the novelty of the multi-scale classi�cation
approach implemented in SARF, and result in signi�cantly reducing training
and testing times.

Our C++ implementation of the random forest (cf. Chapter 2) achieved segmen-
tation of MR scans (159×207×79 voxels) in less than 1min 30s for each tree. This
performance holds for the IBM e325, dual-Opterons 246 at a maximum frequency
of 2Ghz, using a single CPU. The best performance was achieved by generating and
evaluating the random forest in a depth-�rst fashion. Note that each tree of the
forest was trained and tested using a cluster computing approach.

Random forests o�er an e�cient tool to process MRIs and demonstrated ex-
cellent performance when applied to challenging segmentation tasks. More impor-
tantly, they provide an elegant way of ranking the visual information MRIs contain.
Interestingly, in the case of MS lesions segmentation, the algorithm emphasizes the
importance of the FLAIR image which is the preferred MR sequence for glioma seg-
mentation in current clinical practice. Spatially Adaptive Random Forest is able to
retrieve the optimal spatial scale to perform a speci�c task. This is made possible
by automatically recognizing characteristic visual features and successively re�ning
the observation scale.

With these complementary approaches, we proposed a method to segment brain
lesions in MRIs which mimics the human visual search process. A human observer
would, indeed, parse the image from coarse shapes to �ne details, successively fo-
cusing on interesting image regions. Because they mimic a natural and intuitive
process, the resulting hierarchical classi�ers are easy to interpret and to tune. This
insight is essential to improve our understanding of the data and to tackle new
challenges.
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5.2 Perspectives

The work presented in this thesis is a humble step contribution to the development
of reliable tools to support clinical diagnosis. Here, we detail promising research
directions towards this goal:

• Intensity normalization. The visual features feeding the random forest
framework presented in this thesis are highly dependent on the MR intensity
signal. Unlike in CT images, MR intensity is not calibrated on any physiolog-
ical value. As a result, the exact same tissue can have very di�erent intensity
responses depending on the employed scanner or on the parametrization of the
sequence used. In a supervised setting where tissues are classi�ed according to
their intensity, it is critical to normalize intensity in images originating from
di�erent scanners. In this thesis, we experimented three di�erent methods
[Rey 2002, Coltuc 2006, Margeta 2011] with convincing results for scans ac-
quired in the same data center. However, calibrating MR images coming from
di�erent data centers showed to be a far more challenging task and would
bene�t from further investigation.

• Multi-scale random forests with spatial context. Spatially adaptive
random forests provide a general formulation for multi-scale classi�cation of
large image volumes. The hierarchical supervoxel image decomposition pro-
vides, without any computational overhead, a fast way to compute geodesic
trees in the image space [Criminisi 2011a]. Long-range features [Geremia 2011,
Zikic 2012] and normalized intensity-based features [Akselrod-Ballin 2009] as-
sociated to geodesic proximity [Criminisi 2010a] might positively impact seg-
mentation results by reducing the dependance on intensity calibration. Recent
works [Kim 2011, Jagadeesh 2012] pointed out to the bene�ts of considering
powerful high-order data representations: hypergraphs. We believe that these
improvements can lead to a very competitive supervised algorithm for the
general purpose of image segmentation.

• Learning complex tasks from realistic generative models. In the fu-
ture, the employed generative-discriminative model can be extended to include
other imaging modalities such as DTI and MR Spectroscopic (MRS) images.
MRS images give a complementary macroscopic view on the biological pro-
cesses underlying tumor progression. They provide low resolution cues on
in�ltrated regions which are invisible from MR sequences. This information
can be used to estimate the invisible tumor cell density beyond the tumor mar-
gins. This approach would be highly relevant in the context of radiotherapy,
which aims at targeting cancerous tumor cells in�ltrated beyond the tumor
margins. We also generate information about the location of major blood
vessels which is critical for surgical planning.

• Semantic segmentation and cell density estimation for glioma grade

characterization. Semantic labelling of gliomas and cell density estimation is
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a preliminary step in the way of glioma characterization. Indeed, they provide
case-speci�c estimations of the cell density and the tissue class for every voxel
in the image. This information can be used to initialize and, hence, to speed
up more expensive model inversion schemes, such as [Menze 2011]. It can
also be used to initialize complex simulation algorithms [Bresch 2010] which
require the tumor cell distribution map as input.
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Layered spatio-temporal forests for left ventricle

segmentation from 4D cardiac MRI data

In this appendix, we present a new method for fully automatic left ventricle segmen-
tation from 4D cardiac MR datasets. To deal with the diverse dataset, we propose a
machine learning approach using two layers of spatio-temporal decision forests with
almost no assumptions on the data nor explicitly specifying the segmentation rules.
We introduce 4D spatio-temporal features to classi�cation with decision forests and
propose a method for context aware MR intensity standardization and image align-
ment. The second layer is then used for the �nal image segmentation. We present our
�rst results on the STACOM LV Segmentation Challenge 2011 validation datasets.
This work was published in [Margeta 2011].

B.1 Introduction

The left ventricle plays a fundamental role in circulation of oxygenated blood to
the body. To assess its function, several indicators are often calculated in clinical
practice. Many of these are based on ventricular volume and mass measurements
at reference cardiac phases. To calculate these an accurate delineation of the my-
ocardium and the cavity is necessary. To remove the bias and variance of manual
segmentation, and obtain reproducible measurements, an automatic segmentation
technique is desirable.

Compared to computed tomography (CT), cardiac magnetic resonance imaging
(cMRI) o�ers superior temporal resolution, soft tissue contrast, no ionizing radia-
tion, and a vast �exibility in image acquisition characteristics. As a disadvantage,
cMRI scans often yield signi�cantly lower resolution in the plane orthogonal to the
plane of acquisition, the images can su�er from magnetic �eld inhomogeneities and
respiration artifacts can manifest as slice shifts. Moreover, the lack of standard units
(compared to the Houns�eld scale in CT) makes it di�cult to directly apply most
of the intensity based segmentation techniques.

Motivated by the success of Lempitsky et al. [Lempitsky 2009] in myocardium
segmentation from 3D ultrasound sequences in near real time and Geremia et
al.[Geremia 2011] for multiple sclerosis lesion segmentation, we propose a fully au-
tomated voxel-wise segmentation method based on decision forests (DF) with no
assumptions on shape, appearance, motion (except for periodicity and temporal or-
dering) or knowledge about the cardiac phase of the images in the sequence. The
left ventricle segmentation problem is de�ned as the classi�cation of voxels into
myocardium and background.

Instead of robustly registering to an atlas [Shi 2011], building a model [Lu 2011]
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or running a highly specialized segmentation algorithm we leave the learning al-
gorithm to automatically decide the relevant features for solving the segmentation
problem using the provided ground-truth only. In principle, any pathology can be
learnt once a similar example is represented within the training dataset. The pre-
viously used decision forests [Lempitsky 2009][Geremia 2011] rely on features that
work best when image intensities and orientations are very similar. To tackle the
highly variable dataset, we propose a layered learning approach, where the output
of each layer serves a di�erent purpose. The �rst layer is used to prepare the data
for a more semantically meaningful and accurate segmentation task in the second
layer.

The main contributions of this paper are: a method to use decision forests
to solve the MR intensity standardization problem (Section B.3.1) and, similarly,
perform a context sensitive rigid registration (Section B.3.2) to align all images to
a reference pose. We also suggest a way to introduce temporal dimension into the
currently used 3D random features (Section B.2.2). Using the intensity standardized
and pose normalized images, which we add spatial information to, we then train a
second forest layer (Section B.4). This helps the trees to automatically build their
own latent shape representation.

B.1.0.1 Dataset.

STACOM 2011 LV segmentation challenge data [Fonseca 2011] were divided into
two sets. Training set (100 3D+t short axis (SA) volumes with manually delineated
myocardia at each cardiac phase) and validations sets ( 5 × 20 3D+t SA volumes
with no delineation provided).

This dataset clearly shows the anatomical variability of heart shape and appear-
ance and some of the main issues of cMRI mentioned above.

B.2 Layered spatio-temporal decision forests

Decision forests are an ensemble supervised learning method consisting of a set of
binary decision trees. The training set contains a set of feature measurements and
associated labels (myocardium/background) for each of the voxels in the set.

The trees are built in a top-down fashion, from the root, down to the leaves. At
each node, local features and a randomly sampled subset of context-rich features are
considered for feature selection. Random sampling of the features leads to increased
inter-node and inter-tree variability and improved generalization. Each feature θ can
be regarded as a binary decision (in our case τl < θ < τh) that splits the original
set into two disjoint subsets. The trees then select the most discriminative features
for each split such that the information gain is maximized. The data division then
recursively continues until a signi�cant part of the voxels at the node belongs to a
single class or no signi�cant information gain can be obtained by further splitting.
The node then becomes a leaf. The averaged class distributions of all the leaves in the
forest reached by the voxel then represent the posterior probabilities of it belonging
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to either the myocardium or the background. See Geremia et al. [Geremia 2011] for
more details.

B.2.1 Strategy to learn from spatio-temporal data

In our approach, we serially train two layers of decision forests, each with the aim to
learn to segment, but using slightly modi�ed training data and features. Training
with all the 3D+t data was not feasible within the time limits of the challenge,
therefore a reduced strategy was designed. This strategy is repeated for each tree:

1. Select a random subset of k 4D volumes from the whole training set

2. Randomly choose a reference 3D frame Ic for each selected 4D volume

3. Select two frames Ic−o, Ic+o with a �xed o�set o on both sides from the
reference cardiac image Ic (with periodic wrapping at sequence boundaries)

4. Train the tree using a set of k triplets (Ic, Ic−o, Ic+o )

To reduce the computational time, the size of the subset for each tree was set
to k = 15, and only one �xed o�set o = 4 is currently used. The choice of o was
made such that the motion between the selected frames is signi�cant even when
more stable cardiac phases (end systole or end diastole) are selected as the reference
frame and that almost a half of the cardiac cycle could be covered.

B.2.2 Features

We use several features families to generate the random feature pool operating on
the triplets of frames. Their overview can be seen on Figure B.2.2).

B.2.2.1 Local features.

Proposed in [Geremia 2011] as an average of intensities in the vicinity of the tested
voxel to deal with noise in magnetic resonance imaging:

θlocIc (x) = θlocIc ([x, y, z]) =
x′≤x+1∑
x′=x−1

y′≤y+1∑
y′=y−1

z′≤z+1∑
z′=z−1

Ic([x′, y′, z′]) (B.1)

Although these features are not intensity invariant, they can still quite well reject
some highly improbable intensities.

B.2.2.2 Context rich features.

De�ned also in [Geremia 2011], for multichannel MR acquisitions as a di�erence
between the local source image intensity IS and box averages of remote regions in
image IR:

θCRIS ,IR(x) = IS(x)− 1
V ol(R1)

∑
x'∈R1

IR(x')− 1
V ol(R2)

∑
x'∈R2

IR(x') (B.2)
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Figure B.1: Illustration of image based features extracted from the images. a) Lo-

cal features (3 × 3 × 3 box average S around the source voxel in the current frame Ic)

[Geremia 2011]. b) Context rich features [Geremia 2011] measuring the di�erence between

source box average S and the sum of remote region averages R1 and R2. c) Components

x,y,z of voxel coordinates as features[Lempitsky 2009]. d) Spatio-temporal context rich

features with the current frame as the source image and o�set frame Ic±o as the remote.

e) Spatio-temporal context rich features with one of the o�set frames as the source image

and the other as remote.

The 3D regions R1 and R2 are randomly sampled in a large neighborhood around
the origin voxel. These capture strong contrast changes and long-range intensity
relationships. In our case we de�ne context-rich features as θCRIc,Ic(x).

B.2.2.3 Spatio-temporal context rich features.

The domain of the moving heart can be coarsely extracted by just thresholding the
temporal di�erence magnitude of the image. We propose to exploit this wealth of
information and extend the previous context-rich features into the temporal domain
by comparing the "current" 3D frame Ic and another frame o�set from c by ±o. The
temporal context-rich features can be de�ned as θTCR1

Ic = θCRIc,Ic+o(x) and θTCR1
Ic =

θCRIc,Ic−o(x).
Similarly, we measure the di�erences between the symmetrically o�set frames

contained in the triplet as θTCR2
Ic (x) = θCRIc+o,Ic−o(x) and θTCR2

Ic (x) = θCRIc−o,Ic+o(x).
These spatio-temporal features can be seen as an approximation of a temporal dif-
ferentiation around the center frame. Note that we use both +o and −o to keep
some symmetry of the remote region distribution.

B.2.2.4 Voxel coordinates.

Finally, as in [Lempitsky 2009], we can insert absolute voxel coordinates: θXC (x) =
xx, θYC (x) = xy, θZC(x) = xz into the feature pool. However, not until these coordi-
nates have a strong anatomical meaning. This happens later, in the second forest
layer when the images are reoriented into the standard pose.
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Figure B.2: Short (top) and long (bottom) axis views of the posterior probabilities after

the �rst layer. Brighter value means higher probability.

B.2.3 Data preprocessing

To use fast evaluation of previously de�ned features based on integral images
[Viola 2001], it is necessary to have consistent spacing. Therefore, all the vol-
umes were resampled to one of the most common spatial spacings in the dataset
(1.56, 1.56, 7.42mm) and temporal sequence length (20 frames).

Intensity ranges of the images were all linearly rescaled to a �xed range. Similarly
to Nyúl et al. [Nyúl 1999], we clamp intensities beyond the 99.8 percentile as they
usually do not convey much useful information.

B.3 First layer: Decision forests for image intensity stan-

dardization and position normalization

Following the above mentioned training subset selection strategy we can train the
�rst layer of the forests. This is done directly on the images after intensity rescaling
i.e. images are brought into the same intensity range but have their original poses.
Although short axis scans are often acquired close to a position where the ventricular
ring is centered, slice orientation is chosen manually during the acquisition, and
precise alignment cannot be guaranteed. Therefore we skip the usage of absolute
voxel coordinate features at this step.

Several authors (e.g. [Shi 2011]) have proposed to use Haar like features to
detect the heart and crop the heart region. Images can be then registered using the
cropped volumes. This removes the in�uence of background structures and improves
the success rate for the registration. However, an extraction of the cropped region
will not be necessary to perform a robust registration in our case. We train the
�rst layer of the forests on a rather general scenario, to end up with at least a
very rough classi�cation performance (see Figure B.2). As we show in the next
two sections, using the rough posterior probability map of a tissue belonging to
a ventricle this performance can be already good enough for ventricle detection,
intensity standardization and alignment onto a reference orientation without any
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prior knowledge of the data apart from the ground-truth.

B.3.1 Intensity standardization

MR intensity value di�erences of the same tissue are signi�cant not only between
scanners and acquisition protocols [Shah 2010] but also for the same follow-up pa-
tients [Nyúl 1999]. Therefore good intensity standardization is crucial for any in-
tensity based segmentation algorithm. The variance in median intensities of the
myocardia between di�erent cases in the STACOM training set is quite large. There
is no unique mode and the distribution is fairly spread in the whole intensity range
(0, 65535). Median myocardial intensities span range (1954, 36430), with standard
deviation of 5956 and inter-quantile range 7663). This is a serious problem for any
intensity based segmentation method.

Many of the intensity standardization algorithms [Bergeest 2008] used today are
based on the methods of Nyúl et al. [Nyúl 1999][Nyúl 2000] and the alignment of
histogram based landmarks (e.g. modes, percentiles or statistics of homogeneous
connected regions) by rescaling image intensities with a piecewise linear mapping.
Many of these methods do work reasonably well for brain images where the white
matter is clearly the most dominant tissue. In cMRI, the largest homogeneous
regions would most of the time belong to the lungs, liver or cavities, rather than the
myocardium.

However, from the rough image �rst layer classi�cation we already obtain some
information about the strength of the belief in the foreground and background ob-
ject. We propose to remap the source image intensities by a piecewise linear function
such that the weighted median (as median is more robust to outliers than the mean)
M c
source of the images is transformed to a reference valueMref . The weighted median

is de�ned as follows:

M c
source = arg min

µ

∑
x∈Ic

w(x).|Ic(x)− µ| (B.3)

Where x is the voxel iterator and w(x) are the weights (�rst layer posterior probabili-
ties). We avoid sorting all volume intensities by approximating the weighted median
with the weighted version of the P 2 algorithm [Jain 1985][Eglo� 2005]. This algo-
rithm dynamically approximates the cumulative probability density function with
a piece-wise quadratic polynomial by adjusting positions of just �ve markers as the
weighted samples are streamed in. Each of these markers are associated with their
position, percentile and an intensity value corresponding to that percentile. The
positions are updated such that they correspond to the sum of weights of samples
whose intensity value is smaller than the value the markers hold.

B.3.2 Orientation normalization

In the approach of Lempitsky et al. [Lempitsky 2009] voxel absolute coordinates
are used as features directly. This choice cannot be justi�ed without aligning the
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images onto a reference pose. Moreover, features we use for classi�cation are not
rotation invariant. Therefore if all the volumes could be registered to have the
same orientation, the classi�cation would certainly bene�t from it. The interpatient
cardiac registration is generally a di�cult problem due to the high variability in the
thoracic cage. Shi et al. [Shi 2011] do �rst learning based heart detection and then
apply a locally a�ne registration method which they claim to be robust for large
di�erences.

A robust learning based linear inter-patient organ registration was proposed by
Konukoglu et al.[Konukoglu 2011]. Here, each organ is represented with a smooth
probability map �t to the bounding boxes obtained as a result of a regression forest.
Then, registration of these probability maps is performed.

This sigmoid representation is however rather limiting since it disregards the
orientation that we would like to correct for. Without any assumptions on the
shape of the distribution, we propose to rigidly align the myocardium enhanced
�rst layer posterior probability maps instead. For this step we propose to use a
fast and robust rigid block matching registration technique [Ourselin 2000]. The
reference we used was chosen randomly among the images where the apex was at
least partially closed. A better choice of the reference, is currently out of scope of
this paper. However, an algorithm similar to Hoogendoorn et al.[Hoogendoorn 2010]
or a generative technique similar to [Iglesias 2011] could be used.

To reduce the computational time, only probability maps of frames from the
middle of the sequence are used to estimate the intensity and pose transformations.
The same transformations are then applied for all the frames and ground truths in
the sequence which will be needed to train the second layer.

B.4 Second layer: Learning to segment with the shape

B.4.1 Using voxel coordinates

Once the images are registered to a reference volume, the voxel coordinates start
to encode spatial relationships with respect to the reference coordinate frame and
the coordinate features can be now included in training of the second decision forest
layer. Moreover, if the intensity standardization step succeeds, the intensities have
more tissue speci�c meaning (at least for the myocardium).

Thanks to the incorporation of coordinate based features, the tree can completely
automatically learn its own latent representation of the possible set of shapes, reg-
ularize the classi�cation, and help to remove objects far away from the ventricle.
However, this step strongly relies on the success of the previous registration step.
Currently, only one reference image is used. Registration to multiple targets should
therefore improve robustness and alleviate this problem.
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Figure B.3: Short (top) and long (bottom) axis views on the posterior probabilities after

the second layer and segmentation results (isocontour of the probability map at 0.5).

B.4.2 Transforming the volumes back

After the classi�cation is done in the reference space, the posterior probability maps
can be transformed back to the original reference frame and resampled accordingly.
This shows the advantage of a soft classi�cation technique where the �nal binary
mask is obtained by thresholding the transformed non-integer posterior map, thus
avoiding some of the interpolation artifacts.

B.5 Results

Here we show the preliminary results of our method. The forest parameters for the
�rst layer were �xed as follows: 20 trees with depth 20 each. To train each tree,
15 triplets of frames were randomly selected from di�erent volumes of the training
set (91 volumes in total). For the second layer: 27 trees each with depth 20. For
each tree 12 triplets were randomly selected from di�erent volumes of the training
set (91 volumes in total). This leads to usage of only 8% triplets from the whole
training set. Hence, there is a vast reserve in utilisation of the training data and
setting optimal forest sizes. These parameters were chosen rather empirically to �t
into the time limits of the challenge.

The following results were obtained after blind evaluation of our classi�cations
on 90 previously unseen test volumes i.e. 25415 slices from the validation dataset
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sensitivity speci�city accuracy PPV NPV dice jaccard
TP

TP+FN
TN

FP+TN
TP+TN
P+N

TP
TP+FP

TN
TN+FN

2|A∩B|
|A|+|B|

|A∩B|
|A∪B|

mean 0.6857 0.9897 0.9861 0.4791 0.9962 0.5045 0.3730
median 0.8099 0.9907 0.9875 0.5234 0.9978 0.5995 0.4281
σ 0.3137 0.0077 0.0077 0.2069 0.0046 0.2571 0.2098

Table B.1: Statistics on the per-slice measures of our segmentation results on 90 volumes

from the validation dataset calculated from the entire slices with no region of interest

speci�ed. The basal and apical slices contribute to the large di�erences between the mean

and median values and also contribute to the higher variance.

by the STACOM LV segmentation workshop organisers (See Table B.1).
In most of the cases, the algorithm was able to correctly identify the left ventricle

myocardium (with median speci�city of 0.81). This was possible without the need
to explicitly de�ne the segmentation rules and problem speci�c assumptions (e.g.
circularity of the myocardium or cavity contrast). It was also not neccessary to
include additional information into the training set (e.g. mitral valve plane position
or manual segmentation of a frame in the sequence) nor to rely on a robust non-rigid
registration technique.

All the measures were calculated per-slice. This way of calculating the measures
caused some of them (speci�city, accuracy and NPV) to reach high values but also
to have less explicative power since the number of the background voxels (TN)
dominates the expression. Some of these measures (sensitivity and PPV) strongly
penalize any voxel misclassi�cations in the apical and basal areas where the slices
contain only very few true myocardial voxels. Performance of our algorithm is
currently rather mediocre at basal and apical slices (with median speci�city as low
as 0.23 at the apex). This is partly due to limited feature evaluation at image borders
and the pose standardization step, where voxels at boundaries can get transformed
out of the classi�ed volume. The poor performance at these regions results in
increased variance of the measures and helps to explain the signi�cant di�erences
between mean and the median values of the measures.

Compared to the state of the art algorithms for left ventricle segmentation,
slightly lower segmentation performance was achieved. It should be noted that the
classi�cation is run independently for each voxel. No smoothness, connectivity nor
temporal consistency constraints are enforced to demonstrate the performance of the
pure machine learning approach. Therefore, isolated segmentation islets or holes in
the resulting binary segmentation can occur as a result of misclassi�cation. However,
thanks to the coordinate features, most of the voxels far from the myocardium are
usually well discarded and also the solution becomes more regular as a result of the
latent cardiac shape model built by the forests. In the soft classi�cation, the holes
are represented as a drop in the segmentation con�dence but rarely fall to zero.
This information could be easily considered in a subsequent postprocessing step to
further improve the segmentation. However, adding these was not the goal of this
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Figure B.4: a) Automatically calculated volume curve from patient DET0026701 during

a single cardiac cycle with detected end systole (ES) and end diastole (ED) frames at

the volume maximum and minimum respectively. b) Long axis crosssection through the

binarized segmentations at ED and ES.

paper.

B.6 Conclusions

We aimed to present a fully automatic machine learning based algorithm for left ven-
tricle segmentation with no explicit de�nition of task speci�c segmentation rules,
model creation, user interaction nor post-processing. The algorithm learnt to auto-
matically select the most discriminative features for the task using the ground-truth
only. The only assumptions we make is that the motion of the object to be seg-
mented is periodic for the construction of frame triplets and that the tissue intensity
mapping between two di�erent cases can be roughly approximated by a piecewise
linear function. We also introduced a machine learning based intensity standardiza-
tion method that allows to do tissue speci�c remapping of intensities and obtain a
more CT like behaviour.

Finally, using a curvature-based iterative hole �lling algorithm [Krishnan 2009]
on the binarized segmentation, we could automatically calculate volumetric mea-
surements and detect the main cardiac phases as the volume curve extremas (see
Figure B.4).
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Appendix C

Predicting the Location of Glioma Recurrence After a

Resection Surgery

In this appendix, we propose a method for estimating the location of glioma re-
currence after surgical resection. This method consists of a pipeline including the
registration of images at di�erent time points, the estimation of the tumor in�ltra-
tion map, and the prediction of tumor regrowth using a reaction-di�usion model.
A data set acquired on a patient with a low-grade glioma and post surgery MRIs
is considered to evaluate the accuracy of the estimated recurrence locations found
using our method. We observed good agreement in tumor volume prediction and
qualitative matching in regrowth locations. Therefore, the proposed method seems
adequate for modeling low-grade glioma recurrence. This tool could help clinicians
anticipate tumor regrowth and better characterize the radiologically non-visible in-
�ltrative extent of the tumor. Such information could pave the way for model-based
personalization of treatment planning in a near future. This work was published in
[Stretton 2012].

C.1 Introduction

Glioma surgical resection has shown to be a critical therapeutic modality and is
usually the �rst type of therapy given to patients. Resections are part of a stan-
dard treatment that has demonstrated increased patients' survival time [Sanai 2008].
However, gliomas are a di�use, in�ltrative and resilient form of brain cancer. Most
low-grade glioma patients have a tumor recurrence after the �rst tumor resection.
The tumor tends to reoccur most often immediately adjacent to the site of resection
despite how extensive the resection [Sawaya 1999]. Treatment then includes a sec-
ond surgery, chemotherapy or radiation therapy, and there is no consensus regarding
the best option in this setting. We present a biomathematical tool that would es-
timate the radiologically non-visible part of the tumor from a longitudinal set of
images. Such virtual imaging could potentially guide the clinician in the decision
making process (intuitively, surgery should be prefered for a tumor without a large
non-visible extent, i.e., the so called "bulky" tumors).

Mathematicians and computer scientists have proposed various methods
to tackle portions of this problem [Cobzas 2009, Gooya 2011a, Harpold 2007,
Hogea 2008, Konukoglu 2010a, Menze 2011, Swanson 2007, Zacharaki 2009]. Clatz
et al. [Clatz 2005a] and Jbabdi et al. [Jbabdi 2005] proposed DTIs construction
methods that estimate the tumor cell di�usion in white matter based on water dif-
fusion in white matter. Konukoglu et al. [Konukoglu 2010a] built upon these models
to personalize a tumor growth model to estimate the product of dw,g ∗ ρ (tumor dif-
fusion in white and gray matter multiplied by the tumor proliferation rate). These
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models allow us to reasonably capture the progression of a tumor for a given patient
before a resection or therapy.

The latest work on modeling glioma regrowth following brain tumor surgery was
by Swanson et al. [Swanson 2007]. They developed a 3D model of tumor growth
accounting for the heterogeneity of brain tissue. In a post mortem study, they
investigated the e�ectiveness of using di�erent types of brain resections. However,
their model was limited to personalization using patient T1 Gad and T2 MRIs,
without taking into account the anisotropy in white matter �ber tracts visible in
di�usion tensor imaging (DTI). In addition, they ran their simulations on âvirtual
controlsâ instead of on patient data.

The pipeline approach that we present in this paper introduces several new
features. First, the 3-D simulation results from using our pipeline estimates the
most likely location of tumor progression after surgery since tumors do not typically
grow at the same rate in all directions. Tumors grow faster in the white matter
than in the gray matter of the brain [Giese 2001]. Therefore, simulating future
tumor growth would be very helpful for therapy planning. Second, it estimates
the pro�le of the tumor regrowth, thus informing about the radiologically non-
visible extent of the tumor. Third, the simulation results from using our pipeline
helps to di�erentiate hyper-intense voxels between scarring tissue, edema or tumor
recurrence. The areas bordering the resection cavity could be �agged as high and low
risk of tumor recurrence areas. Our problem requires solving complex registration
problems between pre-op and post-op, combining a tail extrapolation algorithm (to
estimate the invisible part of the tumor) with a tumor progression algorithm (to
predict future extension). To our knowledge, modeling tumor recurrence after a
brain tumor resection using a patient DTI and patient data has not been done
before.

This paper is organized into four sections. In Section 2, we describe a method
for estimating the location of glioma recurrence. In Section 3, we present the results
of our experiments, which show that this method is feasible. In Section 4, we discuss
these results and future work.

C.2 Materials and Method

The proposed method for estimating the location of glioma recurrence after a resec-
tion consists of several interconnected steps. The �rst step entails segmenting the
images. The second step consists of a sequence of registrations. The third step is
estimating the tumor's in�ltration tail on the date of surgery, and the fourth step
uses a simulation method to predict the location of tumor regrowth at future time
instances. The �fth step allows us to tell if the tumor is a bulky or di�use tumor.
Both the tail extrapolation algorithm and the prediction algorithm use the same
model framework. We tested the proposed approach on data from a clinical study.
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Figure C.1: Day -3 DTI: (1) anisotropic white matter tensors and (2) isotropic gray matter

tensors. Region of red box in Figure C.2.

Model Framework. Tracqui et al. [Tracqui 1995] proposed using reaction-
di�usion-based growth models in the form of the Fisher Kolmogorov equation (FK):

∂u

∂t
= ∇ · (D(x)∇u)︸ ︷︷ ︸

Di�usion Term

+ ρ · u · (1− u)︸ ︷︷ ︸
Logistic Reaction Term

; η∂ω · (D∇u) = 0︸ ︷︷ ︸
Boundary Condition

(C.1)

where u is the tumor cell density, D is the di�usion tensor for tumor cells using
the tumor di�usion tensor construction method described below, ρ is the prolifera-
tion rate and η∂ω are the normal directions of the boundaries of the brain surface.

To use this framework, we need a tensor image constructed from a DTI to form
D(x), an estimate on parameter values (dw, dg, ρ), and segmentations of several
areas of the brain. dw and dg are scalars that multiply the di�usion tensors.

There are several tensor construction methods that have been proposed to model
anisotropic di�usion [Clatz 2005a, Jbabdi 2005]. We used a tensor construction
method, proposed by Clatz et al. [Clatz 2005a], that uses global scaling on the
DTI,

D(x) =
{
dgI if x is in grey matter
dwDwater if x is in white matter

(C.2)

where D(x) is the inhomogeneous di�usion term, which takes into account that
tumor cells are thought to move faster along anisotropic white matter �ber tracts,
estimated by dwDwater, than in isotropic gray matter dgI. Dwater is the water
di�usion tensor in the brain measured by the DTI and I is the identity matrix
which can be seen as an isotropic di�usion tensor (see Figure C.1).

Estimating the parameter values is detailed in the Optimizing dw and ρ Algo-
rithm paragraph.
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Interval from MRIs

Surgery Date in Days Modalities

-49 Flair
-3 DTI
-1 T1 & Flair
+1 Flair
+74 T1 & Flair
+172 T1 & Flair

Table C.1: Patient MRI acquisition dates.

Assumption. Gliomas appear as hyper-intense voxels in Flair MRIs in which
edema appears bright. We assume that where there is edema, there is 20% or more
tumor cell density threshold of visibility. In reality, there might be edema without
tumor cells close by and vice versa. Tracqui et al. [Tracqui 1995] proposed 40% max-
imal tumor cell density to be visible in T2 MRIs, Konukoglu et al. [Konukoglu 2010a]
used Tracqui's value, and Swanson et al. [Swanson 2007] used a value of 2%. Menze
et al. [Menze 2011] suggested the maximal tumor cell density that is visible in Flair
MRIs to be 9.5%. We chose the tumor cell density threshold of visibility value as
20% because it is an intermediate value in literature for T2 MRIs, which includes
Flair. Currently, Flair is the imaging modality that shows the most glioma tumor
cell density threshold of visibility extents, although distinction with scar tissue or
edema is not possible with this sequence.

Data. Our data consists of a current patient with a supra-complete resection and
long post-operation (post-op) follow-ups, complements of our collaborating neuro-
surgeon with informed consent from the patient. It is di�cult to acquire this type
of longitudinal data, particularly due to limited availability of DTIs. For this rea-
son, the pipeline was only tested on 1 data set. However, this is the �rst time this
data set is being used for research and is not the same data set used by Konukoglu
et al. [Konukoglu 2010a] and Clatz et al. [Clatz 2005a]. This patient had MRIs
acquired on three di�erent dates before surgery and three dates after surgery (see
Figure C.1). The tumor, resection cavity and tumor regrowth for all of the dates
were segmented by the neurosurgeon from Flair MRIs.

The voxel size of our MRIs range from 0.5 x 0.5 x 2.0mm3 to 0.5 x 0.5 x 5.5mm3.
All images were re-sampled to be 1 x 1 x 1 mm3 by resampling the baseline using
an in house tool and then registering all images (see Figure C.3) to the baseline.

Segmentation. The areas of the brain that need to be segmented to clearly de�ne
their boundaries are the white and gray matters, the cerebrospinal �uid (CSF) and
the tumor at each time point.

The segmentations of white and gray matter are used to mark out the inhomo-
geneous tissue boundaries used by dw and dg. The CSF segmentation is used to
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(a) Day -1 (b) Day +1 (c) Day +74 (d) Day +172

Figure C.2: Patient registered Flair MRIs axial views. (a) Hyper-intense region that was

considered tumor before resection on Day 0.Red box displays the area shown in Figure C.1.

(b) Distortion in the resection cavity. Hyper-intense regions were considered scar tissue or

hemorrhages caused by surgery for this date. (c) and (d) exhibits hyper-intense regions

which could be scar tissue, hemorrhages or tumor recurrence. It can be seen with these

images that it is not possible to classify these hyper-intense regions and decipher if the

tumor recurrence is a bulky or di�use-type recurring tumor.

de�ne the no �ux boundary conditions of the model, i.e., tumor cells cannot en-
ter these masks. To create these segmentations we thresholded white matter and
brain parenchyma (white matter + gray matter) probability maps from MNI 152
(Atlas) [Fonov 2009] into binary masks, which recovered all of the necessary sulci
structure and separated lobes. This conversion was achieved with the help of the
neurosurgeon, who decided the best threshold values for the CSF, gray and white
matter probability maps.

The tumor segmentations can be used for three purposes. First, a tumor seg-
mentation is used as the starting boundary where the tumor growth simulation
begins. Second, two tumor segmentations at two di�erent time points can be used
in a minimization algorithm to �nd the FK parameters: dw, dg, and ρ. Third, the
following acquisition time point tumor segmentations are used to validate that the
simulation results, which were grown from the �rst time point tumor segmentation,
were reasonable.

Registration. The registration sequence employed has several interrelated steps
(see Figure C.3). The most important part of our registration pipeline is the method
we use for nonlinear registration of the images, where there exists no one-to-one
correspondence between both images due to the tumor resection or growth. The
non-linear deformation between the pre-op images and the post-op images can be
assessed with the ventricles swelling and brain tissue shifting position after surgery
(even several months after surgery). The idea of the nonlinear registration algo-
rithm employed is to use local con�dence weights and to model pathological regions
with zero con�dence. Lamecker et al. [Lamecker 2010] added this algorithm as
an extension to the e�cient and publicly available di�eomorphic demons registra-
tion framework. The algorithm requires a mask to cover the areas that cannot be
matched between the images (i.e., resection cavity plus tumor volume). This mask
volume is excluded from the registration. An inpainting step is used to estimate the
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Figure C.3: Registration pipeline where all images are registered to the baseline. R stands

for rigid, A for a�ne and NL for non-linear registration using a mask. In the non-linear

registration we used an inpainting step to register the voxels covered by the mask.

registration in the areas covered by the mask.

The registration sequence can be divided into two parts: (1) registration of the
atlas-based white matter and brain segmentations (segmentation details are in the
Segmentation paragraph), and (2) registration of all patient images and segmenta-
tions to the baseline MRI. This registration sequence is depicted in Figure C.3 and
the results can be seen in Figure C.2.

Registering the atlas-based white matter and brain segmentations required two
steps. First, we non-linearly registered the Atlas T1 MRI to the patient's baseline
MRI (Day -1 T1 re-sampled). Lastly, we applied this displacement �eld transfor-
mation to the white matter and brain binary segmentations.

Registering all of the patient images and segmentations involved three main
steps. First, we rigidly registered all pre-op MRIs to the baseline. Next, we removed
the skull and did histogram matching on the post-op T1 MRIs before non-linearly
registering them to the baseline (the manually segmented mask consisted of the
combined pre-op Day -1 tumor and post-op Day +74 resection cavity). Finally, we
applied the transformations found registering the post-op T1 MRIs to the post-op
Flair MRIs and segmentations.

Tail Extrapolation Algorithm. The third step in the method we are propos-
ing uses the FK equation and the tensor construction method. Konukoglu et
al. [Konukoglu 2010a] proposed a static model to overcome the problem of esti-
mating the tumor in�ltration tail by extrapolating the tumor invasion margins.
The non-linear reaction term in Equation 1 is linearized around u = 0 and the tail
distribution is shown to be asymptotically described by a Hamilton-Jacobi equa-
tion of the tumor cell density function. Using a Fast Marching method, an e�cient
algorithm was proposed that estimates the tumor cell invasion pro�le outside the
visible boundaries in MRIs. For this step, we used the neurosurgeon's Day -1 rigidly
registered tumor segmentation, the non-linearly registered white matter and brain
segmentations, the rigidly registered DTI, and parameters dw, dg and ρ (see Op-
timizing dw and ρ Algorithm paragraph for FK parameter choice). As the initial
condition to this model, we make the assumption of 20% tumor cell density threshold
of visibility (see Assumption paragraph).
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Prediction Algorithm. For the fourth step in our method we used this es-
timated tumor in�ltration tail as the initial condition to the FK model (devel-
oped by Clatz [Clatz 2005a] and Konukoglu et al. [Konukoglu 2010a]) to sim-
ulate the location and predicted tumor cell density of recurrence for a given
date [Clatz 2005a, Konukoglu 2010a]. This is done by propagating u by the time
de�ned from MRI acquisition dates. We used two acquisition dates before surgery
and one after surgery (-49, -1 and +74) to predict where the tumor will grow at the
4th acquisition date (2nd after surgery). The dw, dg and ρ parameters that were
estimated with the �rst three acquisition times were used.

Optimizing dw and ρ Algorithm. The �fth step in our method was determining
which dw and ρ �t each particular patient's data (personalization) since previous
algorithms were only able to estimate the velocity constant (v = 2

√
ρdw), but not dw

and ρ separately [Konukoglu 2010a, Menze 2011]. For example, if dw/ρ is low, the
tumor is said to be bulky (not very in�ltrative); where as if dw/ρ is high, the tumor is
said to be di�use. We created a tool to sweep through the physically feasible values,
proposed by Harpold et al. [Harpold 2007], of dw and ρ keeping dw ∗ ρ constant.
There are two parts to this process: �nd v, and solve for dw and ρ.

First, �nding v can be done in two di�erent ways. Konukoglu et
al. [Konukoglu 2010a] proposed a minimization method for estimating the FK pa-
rameters: dw*ρ (di�erential speed), dg, T0 (initial tumor start date). However, for
this patient, the tumor does not visibly change volume or shape between Day -49
and Day -1 (possibly due to an overestimation of the tumor extent at Day -49, which
was performed soon after a generalized seizure). We used the second way of �nding
v, which was to assume that the diameter velocity of the tumor was 4 mm/year,
which was proposed by Mandonnet et al. in [Mandonnet 2003] for low grade glioma
tumor growth.

Then, to solve for dw and ρ, we swept through the possible parameter values of
dw (4 to 10 mm2/year) and ρ (0.4 to 1.0 1/year), keeping v constant at 4 mm/year,
iterating through steps 2 and 3 of our method. We started the Tail Extrapolation
Algorithm from Flair segmentation Day -1 with resection cavity removed from the
image to compare with Flair segmentation Day + 74. We found the value of dw = 6
mm2/year and ρ = 0.667 1/year to be the most appropriate by qualitative analysis.
These values of dw and ρ were used to predict Flair segmentation Day +172 and
the results are discussed in the Results section (also see Figure C.4).

The parameters that determine the shape of the tumor, which are perceptible
only locally in white matter, are the tensor construction method and the ratio dw/dg,
where dw/dg = 1 is isotropic growth and dw/dg = 100 is highly anisotropic growth.
There are two ways of �nding dg: using a minimization algorithm, such as the one
proposed by Konukoglu et al. [Konukoglu 2010a], or sweeping through the possible
values of dg, once you have found dw and ρ, by iterating through steps 2 and 3
of our method. Since we were not able to use a minimization algorithm on this
patient's data, due to a likely seizure-induced overestimation of real tumor size at
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Figure C.4: For Day +74, there is an agreement in volume for 3 of the segmentations.

For Day +172, both the neurosurgeon's estimation of tumor growth and the FK prediction

match in volume.

�rst MRI, we swept through the the values of dg (1 to 6 mm2/year). We found dg
= 1 mm2/year to be the most appropriate value by qualitative analysis.

C.3 Results

In this paper, we have proposed a method to predict where tumor regrowth will
occur for glioma resection patients.

Quantitatively, Figure C.4 shows the chronological progression of the patient's
possible tumor regrowth. Due to the large amount of brain shift plus tumor evolution
in the post-op MRIs, the non-linear registration compresses and stretches the tissues
surrounding the resection cavity. For this reason we believe matching volumes and
not surfaces is reasonable. Using overlap measures would imply to perform voxel
to voxel comparison between pre-op and post-op images. This is a very challenging
registration problem due to the large deformations caused by the tumor removal. As
the registration errors are still large in those areas, we chose to compare the tumor
segmentation and prediction by using global measures (volumes) rather than local
measures like overlap. We use two criteria for evaluating our method's accuracy: the
neurosurgeon's segmentations and hyper-intense signal segmentations. The hyper-
intense signal segmentation shows all the voxels that could possibly be tumor due to
their intensity in the image. Results show that for Day +74, there is a good volume
agreement for 3 of the segmentations. For Day +172, both the neurosurgeon's
estimation of tumor growth and the FK simulated prediction (thresholded at 20%
tumor in�ltration) match in volume. This demonstrates that the model includes the
visible part of the tumor in its prediction, but also �ags areas which are not visible
with current MRI technology (shown in magenta). Additionally, the agreement in
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Figure C.5: Compare this �gure with Figure C.1 and C.2. (a) Shows the estimated tumor

in�ltration tail in yellow. This tail cannot be distinguished with current MRI technology.

In (b) and (c), the simulated tumor regrowth predictions are shown in yellow. Observe

that the hyper-intense regions do not exactly cover the same regions as were �agged by

the neurosurgeon (blue). However, both areas are covered by the prediction of 1% tumor

in�ltration.

volume between the neurosurgeon's segmentation and the model's results signi�es
that the tumor location outlined by the neurosurgeon is not a simple function of
signal intensity.

Qualitatively, we show in Figure C.5 that our model provides a reasonable es-
timate of the tumor in�ltration tail after resection. Figures C.2 and C.1 display
the same axial slice and should be used to aid interpretation of this �gure. In Fig-
ure C.5(a) we show the estimated tumor in�ltration tail that cannot be seen in MRI
images (step 2 of our method). In Figure C.5(b) and (c), the predicted tumor re-
growth is displayed in yellow (step 3 of our model). We can see from Figure C.5(a)
that the tumor tail (1% tumor in�ltration) was not removed with the brain resec-
tion. This tail was the seed of regrowth, which is evident in the Day +74 and Day
+172 MRIs. If we compare Figure C.5(b) and (c) with Figure C.1, we can see that
the patient's white matter tensors, which are bordering the resection cavity, are
anisotropic. These tensor's shape were a large contributor to dictating the speed
and direction in which the tumor was simulated to grow. The green lines outline
the hyper-intense voxels in the Flair MRIs. These regions could be scarring and/or
edema caused by surgery and/or tumor recurrence cell density above or equal to
20% of maximal cell density. The blue line was classi�ed by the neurosurgeon as
possible tumor. Observe that the hyper-intense regions do not exactly cover the
same regions as were �agged by the neurosurgeon. However, both areas are covered
by the FK simulated prediction at the tumor cell density threshold of visibility value
of 1%.

Depending on the size and resolution of the image, the automated process of
registration, estimating the tumor in�ltration map and simulating future tumor
regrowth sites for one future time instance can take about 20 hours on a single CPU
running at 2.2 GHz. The main time-consuming step is the non-linear registration
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with inpainting.

C.4 Discussion and Conclusion

We presented an approach to predict tumor regrowth after a brain tumor resection.
We used a novel pipeline combining image registration with a static model for es-
timating the tumor in�ltration tail and a dynamic simulation model for predicting
future tumor regrowth. Our results show that prediction is possible for future tumor
regrowth using a reaction-di�usion-type model that employs a patient DTI.

The non-linear registration step that we employed was key in making our method
possible. Other non-linear registration methods, such as demons (without exten-
sions) or pyramidal block-matching algorithms that use masks, were not able to
deal with the resection cavity to tumor registration. The non-linear registration
step that we used was designed to work with an atlas to patient registration in the
presence of pathologies in the patient image. Although it worked quite well for the
tumor resection application, we could improve the registration results if we extended
this algorithm to use more speci�c prior information for resection images.

In the future, we intend to study more glioma resection patients having regrowth
after surgery using this method. We will study all of the parameter interactions of
our method, as well as explore using other tensor construction techniques for the tail
extrapolation algorithm and prediction algorithm parts of our method, e.g. Jbabdi
et al. [Jbabdi 2005]. Since glioma growth modeling is patient-speci�c, we intend to
improve our method and validate it using a large patient data set. This data set will
help us analyze the best way to improve the registration, minimization of parameters
and investigate if the tumor growth rate stays constant after a tumor resection, as
seen previously among numerous patients. With a large number of patients studied,
we will develop a method to predict more precisely these parameters separately,
prior to a glioma resection. This will enable the model to more precisely predict
where the tumor could reoccur after surgery.
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Random Decision Forests for

Brain Lesions Segmentation in MRIs

and Model-based Tumor Cell Extrapolation

Abstract: The large size of the datasets produced by medical imaging
protocols contributes to the success of supervised discriminative methods for
semantic labelling of images. Our study makes use of a general and e�cient
emerging framework, discriminative random forests, for the detection of brain
lesions in multi-modal magnetic resonance images (MRIs). The contribution
is three-fold. First, we focus on segmentation of brain lesions which is an
essential task to diagnosis, prognosis and therapy planning. A context-aware
random forest is designed for the automatic multi-class segmentation of MS
lesions in MR images. It uses multi-channel MRIs, prior knowledge on tissue
classes, symmetrical and long-range spatial context to discriminate lesions
from background. Then, we investigate the promising perspective of esti-
mating the brain tumor cell density from MRIs. A generative-discriminative
framework is presented to learn the latent and clinically unavailable tumor
cell density from model-based estimations associated with synthetic MRIs.
The generative model is a validated and publicly available biophysiological
tumor growth simulator. The discriminative model builds on multi-variate
regression random forests to estimate the voxel-wise distribution of tumor
cell density from input MRIs. Finally, we present the âSpatially Adaptive
Random Forestsâ which merge the bene�ts of multi-scale and random forest
methods and apply it to previously cited classi�cation and regression settings.
Quantitative evaluation of the proposed methods are carried out on publicly
available labeled datasets and demonstrate state of the art performance.

Keywords: machine learning, classi�cation, regression, random forest, seg-
mentation, MRI
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