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ABSTRACT

Medical imaging protocols produce large amounts of multi-
modal volumetric images. The large size of the datasets con-
tributes to the success of supervised discriminative methods
for semantic image segmentation. Classifying relevant struc-
tures in medical images is challenging due to (a) the large
size of data volumes, and (b) the severe class overlap in the
feature space. Subsampling the training data addresses the
first issue at the cost of discarding potentially useful image
information. Increasing feature dimensionality addresses the
second but requires dense sampling. We propose a general
and efficient solution to these problems. “Spatially Adaptive
Random Forests” (SARF) is a supervised learning algorithm.
SARF aims at automatic semantic labelling of large medical
volumes. During training, it learns the optimal image sam-
pling associated to the classification task. During testing,
the algorithm quickly handles the background and focuses
challenging image regions to refine the classification. SARF
demonstrated top performance in the context of multi-class
gliomas segmentation in multi-modal MR images.

Index Terms— random forest, multi-scale, hierarchical,
structured labelling, sampling, segmentation

1. INTRODUCTION

Medical imaging protocols produce large amounts of multi-
modal volumetric images. The large size of the datasets con-
tributes to the success of supervised discriminative methods
for semantic label extraction. Automatic classification of se-
mantically relevant structures in medical images is challeng-
ing due to (a) the large size of data volumes, and (b) the severe
class overlap in the feature space. Our study focuses on multi-
scale segmentation methods which address these issues.

Using multi-scale image representations, relying for ex-
ample on spectral representations [1], helps speeding up
segmentation algorithms and apply them to data sets that
were previously considered to be of prohibitive . Interest-
ingly, adaptive multi-resolution hierarchies have also been
shown to efficiently encode image information for compres-
sion and rendering [2]. In medical applications, recent work
focused learning hierarchical anatomical representations ex-
plicitly from expert annotations. Alternatively, a generative

model can be learnt from expert labelled ground truth and
incorporated to a multi-level affinity-based segmentation [3].
The approach in [4] builds on a hierarchical registration and
weighting scheme to retrieve organ-specific atlases at differ-
ent scales. Although, these methods can be adapted to take
into account additional image channels, they exclude the use
of high dimensional features.

Hierarchical representations can be integrated into dis-
criminative supervised learning algorithms. For instance,
boosting weak classifiers that are hierarchically trained on
different scales showed to significantly reduce training time
[5]. A similar approach was proposed for the segmentation
of multiple sclerosis lesions in multi-channel MRIs using
random forests [6]. In the latter, segmentations from multiple
scales are merged to increase the robustness of the algorithm.
In both methods, the image is relabelled at coarse scales to
discard regions containing heterogeneous label distributions.
As a result, the classifiers miss critical coarse-scale cues
which penalizes the performance of the final segmentation.
Other supervised approaches build on context-rich random
forests for segmentation of brain lesions in MRIs [7, 8]. Still,
their excellent performance requires a careful tuning of class
weights during training, and is highly sensitive to the spatial
sub-sampling of the training data for the different classes.

We present the novel “Spatially Adaptive Random For-
est” (SARF) to address these shortcomings. SARF is a super-
vised learning algorithm which aims at automatic semantic
label extraction in multi-modal medical images. It builds on
discriminative random forests, an efficient multi-scale 3D im-
age representation, and structured labelling. SARF learns the
optimal image sampling associated to the segmentation task
from the training data. The ground truth, which is provided
at the voxel level, is extrapolated to coarse levels by using
label histograms. During both training and testing, the algo-
rithm quickly handles background regions of the image, and
focuses on more challenging ones to refine the segmentation.
This is made possible by adding a scale transition condition
to the random forest algorithm.

We demonstrate SARF in the context of multi-class
glioma segmentation in multi-modal MR images. SARF
ranked in the top three when applied to the publicly available
MICCAI 2012 BRATS Challenge dataset.



2. DATA REPRESENTATION

We derive a hierarchical data representation to efficiently
browse the image, and its associated ground truth, at differ-
ent scales. Fig. 1 illustrates the visual results obtained for a
representative case in the BRATS glioma dataset.

2.1. Multi-scale image tree

A multi-scale hierarchical tree is presented for encoding
multi-channel volumetric images. It builds on the volumetric
counterpart of SLIC superpixels [9] to iteratively generate a
compressed representation of the image at different scales.
Similarly to spatial trees presented in [10], each layer of the
final tree embeds a different scale of the image. The gener-
ation of the multi-scale data representation is fast and does
not require any parameter tuning. It inherits the strengths of
the SLIC algorithm which showed outstanding performance
compared to the state-of-the-art [9].

Multi-channel images are defined as the vectorial map
I : Ω ⊂ R3 → R|Γ| where Γ is the set of image channels.
Thus, every voxel is associated a spatial position x ∈ Ω and
a multi-channel intensity vector I(x). A spatial partition is a
set of disjoint supervoxels PkI = {vkn} ⊂ P(Ω) partitioning
the image domain Ω at scale k. As presented in [9], the gen-
eration of PkI is exclusively based on the image information
I. At the finest scale, P1

I is the set of singletons formed by
the individual image voxels. We adapt the SLIC algorithm to
recursively cluster supervoxels from PkI into a coarser parti-
tion noted Pk+1

I . In practice, a scalar value sk controls the
maximum size of supervoxels at scale k.

This procedure is repeated for an increasing sequence of
supervoxel sizes {sk}k6K until the whole image is contained
in a single supervoxel. In the rest of the article, we set K =
7 and {sk}k67 to a fixed set of scalars. The resulting se-
quence {PkI } is encoded in the layers of a multi-resolution
tree noted MI = {Mk

I }. At layer k > 1, Mk
I maps ev-

ery supervoxel v ∈ PkI to a set of disjoint finer supervoxels
Mk

I (v) = {wi} ⊂ Pk−1
I satisfying v =

⋃
i wi.

2.2. Visual features

Supervoxels provide a convenient primitive from which to
compute local image features. A visual feature at scale k is
a map defined by θk : PkI → R. Arbitrary large amounts of
task-specific features can be derived in a straightforward way
from the multi-scale representation of the image [7, 8, 6].

Here, we provide three examples of possible features. A
local feature θk,γmed which maps the supervoxel v to the me-
dian intensity in channel γ of the voxels it contains, noted
θk,γmed(v) = µ 1

2
{Iγ(x)|x ∈ v}. A prior feature θk,δprior = θk,δmed

where the channel δ maps the spatial distribution of healthy
tissues including white matter (WM), grey matter (GM) and
cerebro-spinal fluid (CSF). The prior feature is obtained by

Fig. 1. Data representation. Top: the multi-channel MRI
noted I, including (T1, T1+gadolinium, T2, FLAIR) over-
layed with the expert annotations for the edema (yellow) and
the tumor core (red). Bottom left: the affinely registered MNI
atlas (WM, GM, CSF), and the image partitions at three dif-
ferent scales (P2

I ,P4
I ,P6

I ).

affinely registering the MNI atlases on each patient. A long-
range feature defined by θk,γsym(v) = max{S ◦ Iγ(x)|x ∈ v},
where S is a reflection of R3. The symmetry feature was de-
signed detecting abnormal regions in brain MRIs which are
often asymmetrical with respect to the mid-sagittal plane.

2.3. Ground truth

At the voxel level, the ground truth associated to the image I
is defined by GI : Ω → C, each voxel x being associated a
class label GI(x) ∈ C. Here, we consider the tissue classes
C = {back, edema, core} standing for background healthy
brain, edema and tumor core, respectively. The generalization
of GI to coarser scales reads GI = {GkI } where GkI : PkI → C.

In previous work [5, 6], each supervoxel v was affected
the class label GkI (v) = c ∈ C satisfying |{x ∈ v | GI(x) =
c}| > τhom. When such label did not exist, the supervoxel
was removed from the training set. The threshold τhom = 70
or 80% aims at selecting homogeneous supervoxels, while
discarding those showing severe label mixture. In multi-class
segmentation, this means discarding challenging, but often
critical, image regions, and thus indirectly penalizing the pre-
diction performance.

To address this flaw, we introduce an unambiguous la-
belling function HkI with values in N|C|. The histogram
HkI (v) = (h[c])c∈C = ( |{x ∈ v | GI(x) = c}| )c∈C
counts the class label occurrences in the supervoxel v.
Consequently at scale k, the ground truth is defined as
GkI (v) = arg maxc∈C h[c]. Unlike [5, 6], our labelling
method HI = {HkI } keeps track of the class mixture in
every supervoxel. In Section 3.3, we explain how this is in-
tegrated to the random forest framework to help refining the
segmentation in challenging image regions.



3. SPATIALLY ADAPTIVE RANDOM FOREST

The random forest framework [11] is extended to benefit from
the presented multi-scale image representation. In the follow-
ing, we provide a sound formulation of SARF applicable to
the general problem of multi-class image segmentation.

3.1. Training data

The SARF is an ensemble of trees, each processing the multi-
scale data hierarchy from coarse to fine. During training, the
data entering the root node of each tree consists of all super-
voxels vj ∈

⋃
n PKIn

, where n indexes the case, considered
at the coarsest scale K. In the following, M, G and H, de-
note the extensions to the dataset {In} of MI, GI, and HI,
respectively. Every supervoxel vj is associated the class la-
bel cj = Gk(vj), and the label histogram hj = Hk(vj). The
resulting training data reads T = {(vj , cj , hj)} with j ∈ J .

3.2. Decision node representation

Each internal node p applies a binary test tk,θ,τJp
to the data it

receives T kp = {(vj , hj)}j∈Jp . The binary test is defined by
tk,θ,τp (vj) = θk(vj) > τ . It is parametrized by the scale k, the
type of visual feature θ and the threshold τ . Based on the out-
come of this test, T kp is splitted into T kL(p) and T kR(p), which
are propagated to the left and right child node receptively.

During training, every node p stores the scale k, the opti-
mal parameters θ and τ used to split the data. Additionally, it
saves the label distribution dT k

p
= ( |{j ∈ Jp | cj = c}| )c∈C ,

and the class mixture hT k
p

=
∑
j∈Jp

hj considered on T kp .

3.3. Training

For each node p, the parameter λ = (θ, τ) is optimized us-
ing the input training data T kp . The optimality criterium is
the information gain defined as IG(λ, T kp ) = H(dT k

p
) −∑

B∈{L,R} wB ·H(dT k
B(p)

), where wB = |T kB(p)|/|T
k
p |. The

entropy H satisfies H(dT k
p

) = −
∑
c∈C P (c) · log P (c) with

P (c) = dT k
p

[c]/
∑
c′∈C dT k

p
[c′]. The optimal parameters sat-

isfy λ∗p = arg maxλ IG(λ, T kp ).
This procedure is repeated recursively for the derived

nodes. The tree is grown down to scale k = 1 until ev-
ery leaf node p is pure, i.e. H(T 1

p ) = 0. Unlike previous
work [6, 7, 8], we introduce spatial refinement in the ran-
dom forest framework to capture fine structures. Indeed,
when the supervoxels are too large to properly describe an-
notated image regions, the scale k is decremented. Formally,
this occurs when H(dT k

p
) = 0 and H(hT 1

p
) 6= 0. In this

case, T kp = {(vj , hj)}j∈Jp
is replaced by its decomposi-

tion into finer supervoxels T k−1
p = {(wi, c′i, h′i)}i∈Ip

where
wi ∈

⋃
jMk(vj), c′i = Gk−1(wj), and h′i = Hk−1(wj).

The node is then optimized at the scale k − 1.

We solve the optimization problem by exhaustive search
over a random set of thresholds and the whole set of feature
{θmed, θprior, θsym}. To further decorrelate the weak classi-
fiers, we train each tree with a different partition of the same
image. This is done by randomizing the initial position of the
seeds in the SLIC algorithm [9].

3.4. Prediction

When applied to an unseen test volume Itest, a different im-
age partition PK,tItest

is computed for every tree t ∈ [1..T ]. In
every tree, each node p applies the binary test tk,θ

∗,τ∗ to the
input data, after having refined it to scale k, if necessary. As
a result, for every voxel v ∈ P1,t

Itest
there is a tree-specific

sequence of supervoxels {vkt }k∈[kmin,K] of decreasing size
such that vkt ∈ P

k,t
Itest

. The finest supervoxel wt = vkmin
t

reaches the leaf node pt, and is affected the associated poste-
rior class distribution dt(wt) = dT k

pt
/

∑
c∈C dT k

pt
[c] ∈ L. For

every voxel v ∈ P1
Itest

, posteriors from all trees are averaged
to from the forest posterior such that df (v) =

∑
t dt(wt)/T .

Finally, the predicted class label affected to v is ĜItest
(v) =

arg maxc∈C df (v)[c].

4. EXPERIMENTS AND RESULTS

We demonstrate SARF in the specific context of multi-class
glioma segmentation in multi-modal MRIs. For training pur-
poses, we rely on the publicly available MICCAI BRATS
Challenge 2012 (MBC) dataset which contains 80 cases. 1

Our method was then applied to a test dataset of 30 cases
which ground truth was kept secret. After independent eval-
uation of the results by the challenge website, SARF ranked
third among eight state-of-the-art methods. Additionally,
SARF performed 90% faster than classical random forests
applied without sub-sampling for comparable results. Ob-
tained results are illustrated in Fig. 2.

5. DISCUSSION AND CONCLUSION

The presented SARF framework shows promising results still
limited by the small size of the employed feature set. In-
deed, it would greatly benefit from richer visual features de-
signed for glioma segmentation, and subsequent regulariza-
tion as used in top-ranked methods [8, 12].

Fig. 3 shows that the SARF focuses on challenging im-
age regions by processing them at finer scales. Interestingly,
SARF automatically finds the average optimal scale used to

1Brain tumor image data used in this work were obtained from
the MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation
(http://www.imm.dtu.dk/projects/BRATS2012) organized by B. Menze, A.
Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. Van Leemput. The challenge
database contains fully anonymized images from the following institutions:
ETH Zurich, University of Bern, University of Debrecen, and University of
Utah.



Method Dice score (edema) Dice score (core)
[8] 0.67 0.65

[12] 0.61 0.63
SARF 0.62 0.55

Fig. 2. MBC challenge results. FLAIR and T1+Gad images
overlayed with the predicted edema (yellow) and tumor core
(red). Below the Dice scores of the top-ranked methods for
the edema and tumor core classes.

segment gliomas, here k = 3. This supports the fact that pars-
ing the image at the voxel level is often unnecessary. These
findings arise from the novelty of the multi-scale classifica-
tion approach implemented in SARF, and result in signifi-
cantly reducing training and testing times.
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