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Abstract

Automatic brain MRI segmentations methods are useful but computationally intensive tools in med-
ical image computing. Deploying them on grid infrastructures can provide an efficient resource for data
handling and computing power. In this study, an efficient implementation of a brain MRI segmentation
method through a grid-interfaced workflow enactor is proposed. The deployment of the workflow en-
ables simultaneous processing and validation. The importance of parallelism is shown with concurrent
analysis of several MRI subjects. The results obtained fromthe grid have been compared to the results
computed locally on only one computer. Thanks to the power ofthe grid, method’s parameter influence
on the resulting segmentations has also been assessed giventhe best compromise between algorithm
speed and results accuracy. This deployment highlights also the grid issue of a bottleneck effect.

1 Introduction

The segmentation of lesions on brain MRI is required for diagnosis purpose in multiple Sclerosis (MS) [15].
Moreover, the lesion burden is also used in MS patients’ follow-up and researches [5]. Different methods of
lesions segmentation are available in the literature [18]. Most of them are based on complex algorithms and
require numerous computations. Furthermore, medical images treatments need more and more computation
power due to the increase of image size and resolution. Medical image databases also contain an increase
amount of MRI subjects to analyze. The use of grids might helpus to reduce computation time. For example,
an evaluation framework for analyzing the accuracy of rigidregistration algorithms has been made possible
using a grid [9]; Action potential propagation on cardiac tissue simulations have also been performed on
grid to accelerate multiple executions [1].

In this paper, we focus on the MS application aiming at segment MS lesions in brain MRI images. This work
is part of the NeuroLOG project1 [11] which aims at federating medical data, metadata and algorithms, and
sharing computing resources on the grid.

1NeuroLOG,http://neurolog.polytech.unice.fr
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This MS lesion segmentation algorithm has been developed byDugaset al. [2, 3]. First, brain MRIs are
normalized (spatially and in intensity) and skull-stripped. Then, a segmentation of the brain into the dif-
ferent healthy compartments classes (White Matter (WM), Gray Matter (GM), Cerebro-Spinal Fluid (CSF))
is realized using an Expectation Maximization algorithm. Resulting segmentations are used to segment le-
sion on the T2-FLAIR sequence. The expectation-maximization algorithm consists in iterating two steps:
labelization of the image (Expectation step) and estimation of the Gaussian class parameters (Maximization
step). In this last step, the class parameters are computed from the intensities of the different voxels. In
order to improve the algorithm speed, only a part of the imagevoxel can be taken into consideration thanks
to a ratio parameter. This parameter fix the percentage of voxel which is used. However, if the algorithm is
applied on less voxels, the class parameters change and therefor the segmentation too.

To assess the influence of the ratio parameter, the deployment of the pipeline (until the brain segmentation),
on the EGEE production grid using MOTEUR [8] as interface, will be presented. First, the brain segmenta-
tion algorithm will be acquainting as well as grid and MOTEURtools. Then, the deployment of the pipeline
will be described and validated. Finally, the grid will be used to assess the influence of the ratio parameter
on the algorithm.

2 The Brain MRI segmentation pipeline: a preliminary step towards MS-lesions
detection

The segmentation and the characterization of healthy tissues in multi-spectral MRI is the first step in order
to separate them from lesions. This section describes the pipeline used for the brain segmentation.

The database of patient images is consistent: Each patient data set is composed by MRI sequences T1, T2
and Proton Density (PD) weights. The data is processed following the pipeline illustrated by Figure1. We
detail here the main sub-processes.

Registration T2 and PD sequences are intrinsically co-registered but this is not the case of T1 which has
moreover a higher resolution. To limit partial volume effect caused by the re-sampling, a rigid registration
of T1 on T2 is performed using the algorithm described in [14]. Furthermore, the classification algorithm
needs initial values of the probability of each voxel to belong to one of the healthy tissue compartment. This
is given by the MNI atlas2 but imply an affine registration of the atlas on the patient data.

Skull-stripping To isolate brain healthy compartments, the skull-stripingmethod described in [4] is applied.

Expectation Maximization The first call to the EM-classification in our pipeline is for the intensity normal-
ization. MRI images are often affected by bias [17]. A first classification (with the EM framework) of the
brain into WM, GM and CSF classes is realized without bias compensation. From these segmentations, the
parameters of the bias field are computed.

Later, the EM framework is used once again to classify brain MRI voxels from unbiased images. The EM
algorithm gives the probability for each voxel to belong to each class. To obtain binary segmentations, each
voxel is classified to the most probable class.

2http://www2.bic.mni.mcgill.ca
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Unbias Using parameters extracted from the first EM classification,intensities are corrected using the
Expectation Maximization (EM) framework described in [16].

3 The EGEE grid and MOTEUR

A grid is a network of shared computing and storage resourcesconnected in a grid topology [6]. In this
paper, experiments were done on the EGEE production grid3(Enabling Grid for E-sciencE), the largest
multi-disciplinary grid infrastructure in the world, which connects more than 68000 CPUs to some 8000
users.

We express pipelines as workflows of services, described in the Scufl language (using the Taverna de-
signer [13]). Each service corresponds to one of the sub-process described earlier and presents inputs and
outputs that are connected together.

A Web-Service Description Language (WSDL) file describes a Web-Service by specifying two kinds of
XML tags: Tags describing what has to be invoke and tags describing how to invoke it. In our framework,
a generic web service description is used. Then, services are wrapped using a Generic Application Service
Wrapper (GASW) [7].

Operators acting on the data flow itself define the iteration strategies over the input port of a service. In fact,
when a service owns two inputs or more, an iteration strategydefines how to compose data from different
inputs. Two different data composition operators have to beconsidered: the one-to-one (Dot operator) and
the all-to-all (Cross operator) data composition operator[12].

The services are executed on the EGEE grid through the MOTEURenactment engine [8], hiding to the user
the complexity of individual services submissions and management.

The MOTEUR enactment engine allows three different kind of parallelism that are relevant for our applica-
tion:

• Workflow parallelism which corresponds to the execution of two self-supporting services on two
independent data (the different images can be unbiased in parallel).

• Data parallelism which corresponds to the competitor execution of independent data by a single ser-
vice (the EM-classification using ratio parameterp1 can be run in parallel of the EM-classification
using ratio parameterp2).

• Service parallelism which corresponds to the concurrent execution of two independent data items by
two services linked by a precedence constraint (the first EM-classification using parameterp1 can be
run in parallel with the skull-stripping of data from next patient).

4 Gridification of the application

This section describes the creation of the MS brain MRI segmentation workflow step by step, from the used
pipeline to the executable workflow. Then results validations and time performances are proposed. And
finally, thanks to the possibility of large multiple executions given by the grid, a study of the influence of the
ratio parameters (from the classification step2) on the results has been done.

3EGEE,http://www.eu-egee.org
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4.1 Creation of the workflow

For enabling the execution of services workflow, it is first necessarily to describe our pipeline as a workflow.
Concretely, the pipeline has to be splitted into services correctly linked together. Then, iteration strategies
have to be described between services in order to structure the workflow.

Splitting the pipeline The brain segmentation pipeline has been divided into different blocks, reflecting the
description given in2 and the already existing division of the pipeline in different legacy applications. For
each block, inputs and outputs have clearly been defined, in order to define the corresponding service.

Web-service generation For each service, a Scufl file has been created including: an enumeration of inputs
and outputs, as well as the name and the localization of the binary file, corresponding to this service. And if
necessarily the name and the localization of the shell file script encapsuling the binary file.

In practice additional shell scripts are needed in some cases. In fact, binary files may have many outputs or
may take fixed filenames as inputs. However, for MOTEUR, outputs from a service have to be listed and are
automatically renamed. Consequently, shell scripts provide a good solution to overcome these problems.
Furthermore, this is also helpful in case of different callsof the same service’s definition. For example,
three registrations are needed for the MS lesion segmentation algorithm2 and they don’t have the same list
of arguments. But only one description of the service is usedwith a text file (listing the parameters) as an
additional input. Then, these files are read in the shell script in order to correctly execute the software.

Services validation Before any transformation of the pipeline into a workflow, a first validation of the
services has been made. They all have been independently executed and tested on the grid.

These tests reveal that even if the software are written in a generic language like C++, compiling it directly
on a Computing Element (CE) of the EGEE grid without shared libraries is highly advised to avoid any kind
of execution problems.

Workflow structure creation Then, Taverna has been used to structure the workflow: imagesand parameters
text files have been defined as inputs, the four different healthy compartments classes as outputs and all
services have been correctly linked together and to their corresponding Web-Service description. Figure1
is a simplified scheme of the workflow.

Iteration strategies To allow consecutive execution of the workflow, each serviceinput has been correctly
composed with Dot and Cross product operators. Data concerning a patient, either workflow inputs or
intermediate results, are composed with a dot product to avoid cross-road composition from images from
one patient with images from another and are then composed with a cross product with others data. A tag is
used in the input file to express the fact that tagged inputs are referring to the same patient. For example, in
the case of the rigid registration of T1 on T2 sequence. Threedifferent cases are possible with two patients
(A and B):

• All inputs have the same tag. So they are composed by Dot products. In this case we will have in
inputs: {T1A,T1B};{T2A,T2B} and{parametersA, parametersB}. And the results will be obtained
from the compositions:{T1A,T2A, parametersA} and{T1B,T2B, parametersB}
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Figure 1: Simplified workflow of the brain segmentation process: a preprocessing step for multiple sclerosis
detection.

• T1 and T2 only have the same tag. So they have to be composed by aDot product and then are
composed with a Cross product with the input parameters. In this case we will have in inputs:
{T1A,T1B};{T2A,T2B} and{parameters}. And the results will be obtain from the compositions:
{T1A,T2A, parameters} and{T1B,T2B, parameters}

• All inputs are composed with Cross product. In this case we will have in inputs: {T1A,T1B};
{T2A,T2B} and{parametersA, parametersB}. And the results will be obtain from the compositions:

{T1A,T2A, parametersA};{T1A,T2A, parametersB};{T1A,T2B, parametersA};
{T1A,T2B, parametersB};{T1B,T2A, parametersA};{T1B,T2A, parametersB};
{T1B,T2B, parametersA} and{T1B,T2B, parametersB}

4.2 Workflow execution and validation

In this section, we compare results obtained locally and from the grid. For this purpose, a ratio parameter
equal to 1 has been used (all voxels from the image are taken for the maximization stepcf. 4.3) and execu-
tions were done with images of 256×256×64 voxels for T2 and PD sequences and 256×256×152 for T1
sequence (see Figure2). We verified that the results are absolutely identical.

Figure 2: Output binary segmentations from the workflow on the EGEE grid : a) White matter, b) Grey
matter, c) CSF, d) PVE.
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Time performance Local executions have been done on a 2.0 GHz computer. We report the mean value
over many “one-patient executions”. As expected the local execution time evolves linearly in function of the
number of input datasets (Figure3). This is not the case for grid execution time. First, the execution time of
the workflow can change depending on the resources availability and variations. To address this point, the
workflow has been run several time on the same number of input datasets and the mean value has been com-
puted. Secondly, the execution time is not constant (as it could be expected in case of complete parallelism).
Indeed, the multiplication of inputs generate more transfers, so waiting time is more consequent. We can
observe that for this application, using the grid appear to be efficient for more than 5 or 6 input datasets.

Figure 3: Mean execution time and its variations with respect of the number of input datasets. Compar-
ison between local execution on a single computer and EGEE grid executions. Concerning EGEE grid
executions, all points have been computed 3 times in order tocompensate the workload variations.

Potential issues The EGEE grid is actually using the gLite middleware4 which provides a framework for
building grid applications. In this framework, the Resource Broker (RB) is among others in charge of
accepting user jobs and then assigning them to the most appropriate CE. This choice is done by selecting
CE which, first fulfill the requirements expressed by the userand then have the highest rank. On the EGEE
grid, it appears that the rank is reflecting the response timeof a CE. This choice can be discussed because
the fastest responding CE is not necessarily the most powerful one, and above all, not necessarily directly
available. Hence the workload management becomes sometimes a bottleneck for our application.

Moreover, the workload on the EGEE grid is highly variable thus leading to high and variable latencies and
many faults, impacting the total execution time. After a delay, jobs have to be canceled and resubmitted.
Optimizing job submission strategies is still on a researchstage [10].

Of course, in between single computer and production grid, we could have envisaged the use of a cluster,
improving the execution time for several (5 or 6) datasets without encountering production grid problems.
However, this is not in our scope for different reasons. The first reason is we have in focus to be able to
support large databases of patients; increasing the numberof patients will conduct to cluster saturation. The
second reason is that we are targeting final users that do not necessary have access to a cluster, even for
small extend experiments; managing a grid access is thus a solution.

4Lightweight Middleware for Grid Computing,http://glite.web.cern.ch/glite/
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4.3 Application

In the EM step the maximization consists in the estimation ofthe Gaussian parameters for each healthy
tissue compartment class. These assessments are computed from the voxels intensities of the MRI. A ratio
parameter define the fraction of voxel to be used (e.g. if the ratio is equal to 1 then the 100% of the voxel
is considered). In this part, we will use the percentage of voxels considered. The relation between this
percentage and the ratio is given by equation1:

percentage of voxel considered= 100∗ 1
ratio parameter (1)

In this section, we are targeting to assess the influence of ratio parameter on the pipeline results (Figure
2). In fact, by taking only a part of the image voxel, the speed of the algorithm could be improved but it
could also affect the accuracy of the resulting segmentations. This is reason for studying the relationship
between this parameter and the compromise between accuracyand speed is interesting for further works.
To quantitatively evaluate this impact, WM segmentations have been generated for different ratio and have
been compared to the segmentation of reference (i.e. ratio equal to 1) by computing the sensitivity and the
specificity described in equation2:

sensibility =
true positives

true positives+false negatives

specificity =
true negatives

true negatives+false positives

(2)

Executions This experiment was made on images from two different patients affected by Relaps-
ing/Remitting Multiple Sclerosis and one normal subject. The results of this experiment are similar. The
graphic presented as illustration of this section was obtained from one MS patient.

It is important to underline that voxels are chosen randomlyin the 3D image. Consequently, different results
can be obtained for a same ratio parameter. To minimize the influence of this effect, many executions have
been done and means values of the sensibility and the specificity have been computed. The Figure4 displays
these values in function of the percentage of voxel considered with the variations around mean values.

For this application, the power of the grid provides an efficient help to generate all the results (9 executions
per ratio value). Indeed, the ratio parameter was written inan input parameter text file and has been as-
similated as a relative to the patient (see Figure1). Acting this way allows us to test all the different ratio
parameters with each patient’s MRI (case 1 of the iteration strategies in4.1).

Discussion Due to the skull-stripping step, the segmentation of the different healthy compartments is done
on approximately 830.000 voxels. On Figure4, we observe that the sensibility is decreasing while the
percentage of voxels considered is decreasing. The specificity is more stable but those two quantities are
more and more variable. Taking less than 1% of the voxels in our algorithm leads to results with too high
variability: we cannot accept that different execution (with random voxel selections) lead to different results.

First, in this case, a WM segmentation with a specificity of 100% would mean that each voxel defined
as belonging to (resp. not to) the white matter is really belonging to (resp. not to) the white matter in
the segmentation of reference. But this doesn’t mean that our segmentation results are accurate for low
percentage ratio. Indeed, in our case, specificity and accuracy should not be confused because there are far
more true negatives (voxels out of brain) than true positives (voxels really belonging to WM).
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Figure 4: Mean sensibility and specificity of white matter segmentations in function of the percentage of
voxel considered, and their variations. Each point corresponds to a mean of 9 executions (where voxels are
randomly chosen).

Secondly, the drastic decrease of the sensibility means an increase of the number of false negative which
corresponds to the voxel really belonging to the WM but not labelled as such. This reveals that after a certain
threshold value of the ratio, there are not enough voxels anymore in order to be able to define the Gaussian
class parameter from the class estimation step of the EM.

Finally, these results reveal that using only 1% of the voxels of the image in the Expectation Maximization
method would divide its execution time by 3 or 4 (compared to the execution with 100% of the voxels),
without impacting the WM segmentation quality (Figure5).

Figure 5: White matter binary segmentations from the workflow for different ratio percentage values : a)
100%, b) 0.2%, c) 0.002%.

5 Conclusion and future work

In this paper, a description of our method of brain segmentation into healthy compartments classes and its
deployment on the EGEE grid has been presented. Experimentsdemonstrate that this application is well
adapted to grid and provide a sizeable gain of time in multiple executions. Results of the workflow have
been confronted to local results and have been successfullyvalidated. Moreover, the power of the grid
allows us to test the limit of our method of segmentation in order to improve the algorithm speed.

Our main finding is that in the expectation-maximization algorithm, taking only a part of the voxels doesn’t
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affect severely the estimation of the Gaussian class parameter until a critical value. Thus, if needed, the
brain healthy compartments classes could be generated faster while keeping a good accuracy. Indeed, tests
have been repetitively done on a same patient with differentvalue of the ratio of voxels and segmentation
have been then compared.

The result of this experiment may be used for the following step which is the deployment of the segmenta-
tion of MS lesion, in the framework of the project NeuroLOG. This application is using the brain healthy
compartments classes to segment lesion on the T2-FLAIR sequence. Future work will also improve the
workflow execution speed on the grid, regrouping small services (to lower the number of resource requests)
and testing different gLite parameters to increase the performance.
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