
Tumor Growth Modeling in Oncological Image
Analysis

1 Introduction

Tumor growth modeling is the study of explaining complex dynamics of can-
cer progression using mathematical descriptions. Internal dynamics of tumor
cells, their interactions with each other and with their surrounding tissue,
transfer of chemical substances and many phenomena are encoded in formu-
lae by mathematical abstractions. These abstractions rely on biological and
clinical observations coming from different sources.

Mathematical growth models offer important tools for both clinical and
research communities in oncology. They give us the opportunity to interpret
and integrate experimental results made in diverse fields of cancer research
by providing a common mathematical ground to combine them in. Models,
which can be adapted to patient-specific cases, could be used for quantifi-
cation of apparent growth by extracting invasion speed, therapy planning
by suggesting irradiation regions adapted to growth dynamics or optimal
dose/temporal planning of chemotherapy. The role of image analysis is to
serve this purpose by building the link between theoretical growth models and
medical images in order to quantify factors that cannot be observed directly
(e.g. extent of the tumor, deformation of the brain, effect of therapy,...).

There has been vast amount research conducted on tumor growth model-
ing during the last 20 years. These works can be coarsely classified into two
different groups, microscopic and macroscopic models, based on the scale
of observations they try to explain. Microscopic models, forming the ma-
jor class, concentrate on the microscopic observations such as in-vitro and
in-vivo experiments. They formulate growth dynamics at the cellular level
using the observables at that scale like, internal dynamics of cells, vascular-
ization, acidity,... Macroscopic models on the other hand, concentrate on
the macro scale like medical images and histological slices, where the type of
observations are different. Average behaviour of large number of tumor cells,
invasion of white matter and grey matter, the mass effect of tumor growth
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and growth at patient specific geometry are types of phenomena formulated
by such models.

Despite the large amount of research conducted on growth models at mi-
croscopic scale, macroscopic models using medical images and image analysis
tools based on such models are still in their dormancies. In this chapter, we
would like to provide an overview of recent works in this field for the case of
brain tumors. In Section 2 we review recently proposed macroscopic growth
models and explain different approaches. Different tools proposed for ther-
apy planning based on these models will be presented in Section 3. Section 4
gives details about application of tumor growth modeling on registration and
segmentation problems. Finally, Section 5 concludes with awaiting challenges
and perspectives.

2 Mathematical Models

Observations at the macroscopic scale consist of medical images such as com-
puted tomography scans (CT) and magnetic resonance images (MRI) as the
most common ones. Since resolutions of these observations are limited, typ-
ically around 1mm × 1mm × 1mm in the best case, observable factors are
limited as well. Macroscopic models try to combine knowledge coming from
experimental research and biology with these observables, such as boundaries
of the brain, grey-white matter segmentation or water diffusion tensors, to
formulate tumor growth.

Macroscopic tumor growth models can be classified in two different classes:
mechanical models, which concentrate on the mass-effect of the tumor on the
brain tissue, and diffusive models, which concentrates on the invasion of sur-
rounding tissue by tumor cells. In terms of mathematical formulations, the
major part of macroscopic models use continuum, where tumor cells are as-
sumed to form a continuous distribution. As a result, formulations contain
several ordinary and/or partial differential equations to describe the growth
process. Recently, there have also been some discrete macroscopic models
proposed, using similar ideas to cellular automata. These result in certain
set of probabilistic rules for individual or group of cells explaining their be-
haviour.

2.1 Diffusive Models

Almost all macroscopic models, which formulate the growth process con-
centrating on the diffusive nature of the tumor, use the reaction-diffusion
formalism, [1]. The ‘building block’ equation of this formalism is the reaction-
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Table 1: Commonly used population growth terms

Exponential (green) Gompertz (red) Logistic (blue)
∂u/∂t = ρu ∂u/∂t = ρu ln(1/u) ∂u/∂t = ρu(1− u)

diffusion type PDE given as:

∂u

∂t
= ∇ · (D∇u) + R(u, t) (1)

(η · ∇)u = 0 (2)

where in equation 1 u is the tumor cell density, ∂/∂t is the differentiation
operator with respect to time, D is the diffusion tensor for tumor cells and
R(u, t) is the so-called reaction term. This equation isolates two different
characteristics of the tumor growth in two terms: diffusion and proliferation.
The first term on the right hand side, ∇ · (D∇u) describes the invasion of
tumor cells by means of a brownian motion, which is characterized by the
diffusion tensor D. The second term in the equation, R(u, t), describes the
proliferation of tumor cells. Population growth equations are commonly used
for the proliferation rate as summarized in Table 1. Equation 2 represents
the no-flux boundary condition which is applied at the brain boundary and
ventricles with normal directions η, formulating the fact that tumor cells do
not diffuse towards these structures.

One of the first models using the reaction-diffusion formalism for the tu-
mor growth was proposed by Cruywagen et al. in [2]. They argue that, a
growth model using equation 1 consisting of a single population was not able
to capture the growth dynamics seen in CT images. Hence, they proposed
to use a model with two populations of tumor cells, which is formulated by
coupling two equations such as Equation 1, each one describing a different
population. Through coupling terms they were able to describe the competi-
tion between populations for nutrients and growth factors. The second pop-
ulation of tumor cells, were assumed to be a mutation of the first type. The
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occurrence of these cells was attributed to the use of chemotherapy and/or
radiotherapy, causing cells to mutate into a more resistant type. They also
included the effect of treatment in their model as a constant cell loss mech-
anism, which is basically another reaction term. Their final formulation had
the form:

∂u1

∂t
= Du1∇2u1 + f(u1, u2)− C1(u1, t)

∂u2

∂t
= Du2∇2u2 + g(u1, u2)− C2(u2, t)

where reaction terms f and g describe the coupling between tumor popu-
lations given by u1 and u2, while C1 and C2 formulate effects of theraphy.
In their model, Cruywagen et al. formulated the invasion of tumor cells as
an isotropic-homogeneous diffusion where speed of diffusion was given by
coefficients Du1 and Du2 .

In [3], Swanson et al. revised the isotropic diffusion assumption made in
previous works. Under the influence of experimental results of Giese et al. re-
garding the differential motility of tumor cells on grey and white matters [4],
they formulated the invasion of tumor cells by isotropic-nonhomogeneous
diffusion. In this formulation the diffusion tensor D of Equation 1 was as-
sumed to be isotropic and nonhomogeneous (spatially dependent), in other
words its form was given as: D = d(x)I, where I is an identity matrix and
d(x) is the diffusion coefficient. d(x) took two different values in the white
matter,dw, and in the grey matter, dg, where dw >> dg corresponding to
the observation that tumor cells move faster on myelin. In this work, only
one population was used and the no-flux boundary conditions were applied.
For the reaction term, authors used exponential growth, taking into account
only the proliferation of tumor cells (see Table 1). Later on, Swanson et al.
in [5] included the effect of chemotherapy through a negative reaction term.
Instead of modelling the effect of therapy via a constant cell loss, they took
into account the temporal effectiveness of drugs used and also the possible
spatial heterogeneity of drug efficacy. In both works CT and MR images were
used and attention for validating the model was given to predicting survival
times after diagnosis.

Extending the idea of Swanson et al. regarding the differential motility of
tumor cells on different tissues, Clatz et al. and later Jbabdi et al. included
anisotropy to the invasion mechanism of tumor cells, [6] and [7]. They mod-
elled the diffusivity of tumor cells through an anisotropic-nonhomogeneous
diffusion. The assumption they have made is that tumor cells not only move
faster on myelin, but also follow the white matter fiber tracts in the brain.
They have constructed the tumor diffusion tensor (TDT) from the water dif-
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Table 2: Differential motility between white and grey matter. The fiber tract
is along the y-axis in the second image. (Images taken from [6])

Dg = dI Dw = αdf(Dwater)

fusion tensor using magnetic resonant diffusion tensor images (MR-DTI). Al-
though methods of construction of the TDT were different in these works, the
main idea was to assign isotropic diffusion in the grey matter and anisotropic
diffusion in the white matter having greater diffusion along the fiber direc-
tion as given in table 2. where α is the multiplicative constant between grey
and white matter motility and f is the relation between water diffusion and
tumor diffusion. By including the anisotropy of tumor diffusion in the formu-
lation, these models were able to capture the “spiky” and fingering patterns
of tumors observed in the images, see figure 1. Both of the works proposed
an evaluation of their models by comparing visible tumors in the MR images
with the ones simulated with the model.

Besides the continuum formulations explained above, recently Stamatakos
et al. proposed to use a cellular automata based algorithm to model tumor
growth in medical images [8] and [9]. Their model discretizes the visible tu-
mor volume in the T1-weighted MR image into mesh cells containing groups
of tumor cells. They explain growth by assigning certain probabilistic set of
rules to every mesh cell, which define cell cycle dynamics for the group of
cells inside that mesh cell. These rules take into account nutrition distribu-
tion throughout the tumor, effect of abnormal p53 gene expression and type
of metabolic activity of the cell in assigning transition probabilities between
different phases of the cell cycle, mitosis, apoptosis (controlled death of cells)
and necrosis (infected death of cells). As a result, the growth phenomena is
explained by the cell cycle, governed by probabilistic transition rules. Al-
though some of these features are not well observable in medical images they
model them based on assumptions coming from biological experiments. As
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Figure 1: Diffusive models including anisotropy in the tumor diffusion are
able to capture spiky nature of tumor growth. Figures show evolution of
the tumor in two different slices. First two columns show the initial image
and initial state of the model respectively, while the third column shows the
tumor after 6 months and the fourth column shows the evolved tumor using
the model given in [6].

an example, the nutrition distribution is taken to be decreasing homoge-
neously from the periphery of the tumor to the center. Their model does not
take into account the infiltration of tumor cells, but rather only the growth
through mitosis. Through the probabilistic nature of their model they were
able to obtain realistic looking differentiated tumor growth.

2.2 Mechanical Models

Mechanical models, which concentrated on the mass-effect of the tumor,
contain two distinct formulations, one for the tumor growth and one for the
mechanical characteristics of the brain tissue. These models combine these
formulations through coupling of equations, to describe the mechanical in-
teractions between tumor growth and brain tissue leading to deformations.
There have been many different works on characterizing the mechanical prop-
erties of the brain tissue, which is deformable but not elastic. In [10] it is said
that the brain tissue is a sponge like material, possessing instantaneous prop-
erties of elastic materials and time-dependent properties of the viscoelastic
ones. Moreover, there is a great variation between elastic parameters of brain
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tissue within similar tissues as well as between differing tissues. Instead of
formulating these complex mechanical characteristics, almost all models use
assumptions to simplify brain tissue’s characteristics.

Wasserman et al. proposed one of the first mechanical models in [10]. In
this 2D model they assume the brain tissue is a linear elastic material for
which stress-strain relations can be given by generalized Hooke’s law. More-
over the amount of strain caused on a given volume, by a specific amount of
stress (Young’s modulus), was proportional to the density of brain tissue in
that volume. For the tumor growth part, they assumed a very simple formu-
lation including only the proliferation of cells, in which the rate of mitosis
was set to be constant. The coupling between the growth and constitutive
equation of the tissue was established by assigning a homogeneous pressure
proportional to the number of tumor cells per volume. Through this cou-
pling they were able to model the growth of the tumor under mechanical
constraints and the interactions in CT images.

In [13], Kyriacou et al. assumed that brain tissue can be better character-
ized by a nonlinear elastic material than a linear one. They modelled white,
grey and tumor tissue as nonlinear elastic solids obeying equations of an im-
compressible nonlinearly elastic neo-Hookean model. With the introduction
of nonlinear elasticity into the model and the use of nonlinear geometry, they
were able to describe large deformations through their formulation. Tumor
growth was kept as a pure proliferation process with uniform growth causing
uniform outward strain. They have applied this model in registering im-
ages of patients with tumor induced deformations to brain atlases. Their 2D
model was applied on individual cross-sectional images obtain by CT or MR.

Mohamed and Davatzikos extended this model by modelling the brain
tissue as an isotropic and homogeneous hyperelastic material, [11]. With
this they relaxed the incompressibility assumption made in [13] and ignored
the viscous effect, keeping in mind that times related to deformations was
very large compared to viscosity time constants. In addition to modeling
the mass effect due to bulk tumor growth they have also taken into account
the expansion caused by the edema and the fact that part of the mass effect
should be attributed to edema. They have also assumed a proliferation model
for the tumor growth, which had a constant mitosis rate. Coupling of tumor
growth and mechanical interactions was done the same way as in Wasser-
man’s model. As in the work of Kyriacou et al., this model was also able
to describe large deformations. In [12], Hogea et al. reformulated the model
within a general Eulerian framework, with a level-set based approach for the
evolving tumor aiming at a more efficient method, see figure 2. They have
also mentioned that for patient specific models, parameters should be found
via solving an inverse problem. However this work was aiming to generate
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large number of brain anatomies deformed by simulated tumors, hence they
did not concentrate on the patient specific modelling. In order to validate
their model they have compared deformations seen in MR images with the
ones simulated with their models.

Tumor growth process has been kept very simple and has been associated
with only proliferation of tumor cells in all previous macroscopic models,
which concentrate on the mass-effect of the tumor. Clatz et. al combined two
approaches of the macroscopic modelling in [6] in creating a formulation for
glioblastoma multiforme (GBM). They have formulated the invasive nature
of the tumor growth, besides proliferation, and the deformation this causes
on the brain tissue. They assumed that brain tissue is a linear viscoelastic
material, which can be modeled using a static equilibrium equation, since the

Figure 2: Models can model large deformations due to tumor growth and
edema. Simulated tumor growth in a normal brain template, starting from
a small initial seed, orbital-frontal left, using the modeling framework in [11]
and [12]. Left: original healthy segmented brain template (axial, sagittal,
coronal) with a small tumor seed; Right: corresponding deformed template
with the grown tumor at the end of the simulation. Large deformations can
be clearly observed.
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time scale of tumor growth is very large. The coupling of the growth with the
mechanical deformation on brain tissue was established using two different
mass-effects: one for the bulk tumor and the other for the tumor infiltrated
edema. The effect of bulk tumor was set as a homogeneous pressure caused
by the volume increase as a result of cell proliferation. The mass-effect of
the tumor infiltrated edema included the effect of invasion through a stress
term which contained tumor cell density as given in Equation 3.

∇ · (σ − λI3c) + fext = 0 (3)

where ∇· is the divergence operator, σ is the strain tensor, c is the tumor cell
density at a location and fext is the external force. Using their model they
were able to simulate both the invasion and the mass effect simultaneously.

3 Image Guided Tools for Therapy Planning

The tumor growth models explained in the previous section have formed the
basis for several recently proposed therapy tools. Using the dynamics of the
tumor growth, they can provide realistic simulations of the therapy or predict
the extent of the tumor. Such tools aim at helping the doctor in planning the
therapy course by quantifying and predicting the efficacy of a given scheme.
As noted above, several authors have included the effect of therapy in their
models, specifically chemotherapy. Cruywagen et al. modeled the effect of
drugs through a constant cell loss mechanism using a negative reaction term.
Swanson et al., improving this idea, formulated temporal effectiveness of the
drug and spatial heterogeneity of its efficacy.

Recently in [8] Stamatakos et al. have modeled the effect of chemotherapy
based on their cellular automata growth model, which was explained in the
previous section. The effect of the drug is included as a damage to each cell,
which if large enough drives the cell to apoptosis. The relation between drug
dose administered orally (D) and the plasma concentration (Cp) the tumor
encounters is given by the relation

Cp =
FDka

Vd(ka − kel)
(e−kelt − e−kat) (4)

where F is the fraction of drug reaching the circulation, Vd total volume the
drug will distribute in, t time elapsed since drug administration, ka and kel
are the absorption and elimination rate respectively. For those parameters
that are not observable through clinical situations and medical images, like
ka, population mean values proposed in the literature are used. The damage
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given to a cell is computed through survival fraction

SF = e−KSF TSF Cp , (5)

which depends on KSF survival fraction constant and TSF exposure of tumor
cells to the drug. Equation 5 depends on the type of drug used and the given
form is for the drug called TMZ, which the authors used in their simulations.
Using this model they simulated two different oral administration schemes
with 3 different doses and compared the outcomes in terms of the number of
proliferating tumor cells. Using probabilities for cell cycle and drug damage
they captured the stochastic nature of the therapy and tumor growth. In
their simulations they use the drug TMZ and a patient data with a high
grade glioma. They start using the real tumor delineation and demonstrate
a virtual realistic evolution, see Figure 3.

In another work of the same group [9], Stamatakos et al. have used their
cellular automata based model in modeling the effect of radiotherapy and
simulating therapy. They have included in the model the damage caused
in a tumor cells (group of cells in their case) due to irradiation. This is
explained by survival probabilities given by the linear-quadratic model

S(D) = exp[−(αD + βD2)]. (6)

S(D) is the survivial probability of a cell given that it takes D dose of
irradiation (in Gy). The α and β parameters define the radiosensitivity
of the cell and they are varying according to the phase of the cell-cycle, p53
gene expression and the metabolic activity type of the cell (oxic or hypoxic).
Parameters not observed from medical images are set by assumptions and
mean values coming from experiments in biology. Their model was able
to demonstrate conformal shrinkage of the tumor due to irradiation, which
is observed in real cases. Using their model, they simulated standard and
hyper fractionation of irradiation and compared these two strategies through
simulation. Although they obtained realistic results several phenomena are
not taken into account in their model such as infiltration of tumor cells
and the effect of irradiation on the surrounding healthy tissue. As in the
case of the chemotherapy modeling, simulations start from the real tumor
delineation and demonstrates a virtual evolution.

Konukoglu et al. proposed a different kind of tool for radiotherapy in [14],
which extrapolates the extents of the tumor invasion not visible in MR images
from the visible part. Their formulation aims in creating irradiation regions
that takes into account tumor growth dynamics rather than the conventional
1.5-2.0 cm constant margin around the visible tumor. Based on the reaction-
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Figure 3: Left: An MRI slice depicting a glioblastoma multiforme tumour.
Both the gross volume of the tumour and its central necrotic area have been
delineated. The same procedure has been applied to all MRI slices. Right:
3D visualization of the simulated response of a clinical glioblastoma multi-
forme tumor to one cycle of chemotherapeutic scheme (150 mg/m orally once
daily for 5 consecutive days/28-day treatment cycle, [fractionation scheme
A)]. (A) External surface of the tumor before the start of chemotherapy, (B)
internal structure of the tumor before the start of chemotherapy, (C) external
surface of the tumor 20 days after the start of chemotherapy, and (D) internal
structure of the tumor 20 days after the start of chemotherapy. Pseudocolor
Code: red: proliferating cell layer, green: dormant cell layer (G0), blue: dead
cell layer. The following 99.8 %criterion has been applied: If the percentage
of dead cells within a geometrical cell of the discritizing mesh is lower than
99.8 % then [if percentage of proliferating cells ¿ percentage of G0 cells, then
paint the geometrical cell red (proliferating cell layer), else paint the geomet-
rical cell green (G0 cell layer)] else paint the geometrical cell blue (dead cell
layer) [8].

diffusion formalism they deduced the anisotropic eikonal equation
√
∇u · (D∇u)
√

ρu
= 1, u(Γ) = u0 (7)

describing the extents of the tumor starting from the visible tumor contour in
the MR image. In the equation u is the tumor cell density (or probability of
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Figure 4: Left: In red we see the tumor delineation with the constant margin
irradiation region in white. The visible tumor contour corresponds to the
extents of this region. Middle: Extent of tumor infiltration computed by the
model given in [14]. Probability of finding tumor cells decrease from red to
blue. Right the computed invasion region is drawn with the constant margin
region.Blue part shows tumor infiltrated regions effected by the irradiation,
green parts shows infiltrated regions not irradiated and brown parts show
regions not infiltrated according to the model but irradiated with constant
margin approach.

finding a tumor cell), D is the diffusion tensor constructed in the same spirit
as the works proposed by Clatz et al. and Jbabdi et al., ρ is the proliferation
rate, Γ is the visible tumor contour in the image and u0 is the density of
tumor cells assumed to be constant on Γ. By including the different tissue
structures and the fiber directions in their formulation, they quantify the
effect of these factors on the tumor extent. They have used artificial tumors
grown in the images of a healthy subject using reaction-diffusion formalism.
In order to show the discrepency between constant margin irradiation region
and the tumor extent computed using Equation 7 they compared both with
the real distribution of the artificial tumor, see Figure 3.

4 Applications to Registration and Segmen-

tation

Tumor growth models, besides being used to create therapy planning tools,
have been used to aid registration and segmentation tools as well. Problems
of brain tissue segmentation and atlas to patient registration in the presence
of a pathology have received attention from the medical imaging community
for a long time. Lately there have been several works proposed for these
purposes using the tumor growth dynamics. These works can be classified
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into two related groups: atlas to patient registration and synthetic brain
image creation consisting of a tumor.

4.1 Registration

The registration of an anatomical atlas to a patient with a brain tumor is
a difficult task due to the deformation caused by the tumor. Registration
algorithms proposed for normal to normal registration fail due to this reason.
Recently, several authors proposed to include the tumor growth models in
their registration algorithms to tackle this diffucult task. The important
ingredient growth models can add is the quantification of the tumor-induced
deformation on the brain structures through model parameters. Proposed
algorithms use these model parameters in separating the deformation field
between the atlas and the patient into inter-subject variation and tumor-
induced parts during the registration process.

Kyriacou et al. proposed one of the first atlas to patient registration algo-
rithms based on the tumor growth dynamics [13]. Starting from the patient
image, their algorithm first simulates the biomechanical contraction in the
case of the removal of the tumor to estimate patient anatomy prior to the
tumor. A normal to normal registration between the atlas and the tumor-
free patient brain follows the contraction. At this point instead of deforming
the registered atlas with the inverse of the deformation field obtained during
the contraction, they perform a nonlinear regression in order to estimate the
tumor growth parameters that would best fit the observed tumor-induced
deformation. These parameters consist the center and the amount of ex-
pansion of the tumor. Once the parameters are estimated they perform the
biomechanical tumor growth inside the registered atlas to obtain the final
atlas to patient registration, which was in 2D.

In contrast to separating the deformation caused by the tumor and the de-
formation explaining inter-subject variability, in [15], Cuadra et al. proposed
to combine these two in a nonlinear demons based registration algorithm [16]
for the atlas to patient registration. The algorithm starts by placing the two
brains on the same frame and scale using a global affine registration. An
expert manually places the tumor seed on the affinely registered atlas, which
corresponds to the place of it in the patient image. The seeding is followed
by a nonlinear registration algorithm with adaptive regularization. The tu-
mor growth is modeled as an outward pressure causing radial displacement of
the surrounding structures. Authors included this displacement field in their
registration algorithm to take into account the tumor-induced deformation.

Mohamed et al. took a statistical approach for the atlas to patient regis-
tration problem in [17]. They propose a statistical model on the deformation

13



(a)

(b)

Figure 5: Left to right: the atlas image with manually labeled regions, the
patient image, the atlas to patient registration result using the algorithm
explained in [17], which includes tumor growth modeling. (b) The selected
labels in the atlas are warped and correspondingly superimposed on the pa-
tients image

map created by applying a nonlinear elastic registration to match an atlas
with the patient image. This model is based on the fact that although normal
registration techniques would fail in the vicinity of the tumor, they will pro-
vide the right deformation field for the other parts. Their statistical model
uses the space of displacement fields and decomposes any deformation field
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on two orthogonal hyperplanes, one describing the tumor-induced deforma-
tions and other inter-subject variability. The formulation of the hyperplanes
is done by principal component analysis (PCA) assuming linearity of the
governing space and that displacement fields are realizations of two indepen-
dent Gaussian random vectors. The training of the PCA for the inter-subject
variability is done by samples coming from registering the atlas to a dataset
of healthy subjects. On the same dataset they grow artificial tumors us-
ing their growth model explained in Section 2.2 for different sets of growth
parameters, including center of the tumor, expansion of the tumor and the
edema extent. These instances serve as the training samples of the PCA for
the tumor-induced deformation. When a new patient image is encountered,
they decompose the deformation field and find the tumor growth parameters
specific for the patient as

Uf ≈ µc + Vca + µd + Vdb (8)

where Uf is the total displacement field, µc and Vc are the mean and covari-
ance matrix displacement fields for inter-subject registration, and µd and Vd

are the same identities corresponding to tumor-induced deformation. Once
the deformation field linking atlas to subject and tumor growth parameters
are found, the atlas is registered and the tumor is grown in it. Zacharaki et al.
in [18] proposed to improve the registration algorithm used in this work by
a more flexible one, based on HAMMER algorithm [19], taking into account
the fact that around the tumor region the deformation field is distorted when
the tumor model parameters are not optimal. To tackle this, they introduced
a patient-specific optimization framework based on similarity matching and
smoothness properties of the deformation around the tumor, see Figure 4.1.

4.2 Segmentation

Another application of tumor growth modeling is the synthetic dataset cre-
ation for validating segmentation algorithms. Presence of a tumor is a big
challenge for the segmentation algorithms. Algorithms are compared with
expert manual segmentations for validation and performance analysis. Man-
ual segmentations however, show high inter-expert variability and contains
human error due to fatigue and other reasons. In order to tackle this problem,
several works proposed to generate synthetic realistic MR images cotaining
tumors, for which ground truths are known and can be used for validation
and analysis. There are two different subproblems for the generation. One
of them is to simulate the tumor growth realistically. The other one is to
mathematically describe the effect of tumor growth on MR signal intensities.
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In other words, how the image intensities change in different parts of the
image (e.g. edema, actively proliferating tumor region, tumor free part,...).

Figure 6: Upper row shows the syntetic images generated of a patient with
meningioma using the algorithm proposed in [20]. T2w, contrast enhanced
T1w and T1w images from left to right. Bottom row shows the same images
coming from a real patient.

Rexilius et al. proposed one of the first models for this problem in [21].
They have modeled the tumor with three compartments: the active tumor
tissue, the necrotic (dead) tumor core and the edema. The active tissue and
the necrotic part are drawn in the desired location with the desired size. Later
on reasonable grey values are assigned to these regions including Gaussian
noise to make the intensities realistic. As an example, in the case of contrast
enhanced T1w image the realistic values included contrast accumulation in
the active tumor part. The mass effect of the drawn tumor is applied to
the underlying healthy subject MR image assuming linear elastic material
properties for tissues. The growth is simulated by a radial displacement
applied to surrounding tissues using finite element methods. Lastly for the
edema, they use the distance transform of the tumor on the white matter
mask of the underlying image and deform it with the same mass effect applied
to the brain. Based on the resulting distance transform values they assign
intensity values corresponding to edema infiltration.
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In order to create more realistic MR images, Prastawa et al. have tackled
the same problem using a more sophisticated tumor growth model and adding
contrast accumulation properties of different tissues. They have adopted the
growth model proposed by Clatz et al. [6]. In addition to this model, in
their formulation they took into account the displacement and destruction of
white matter fibers using image warping and nonlinear interpolation, based
on the observations of Lu et al. [22]. For the image generation part, they
have modeled the contrast agent diffusion inside the brain using the reaction-
diffusion formalism. Using such a formulation they were able to simulate the
high contrast accumulation in csf and in active tumor regions. As a result
they obtained realistic looking synthetic data with contrast irregularities as
in Figure 4.2.

5 Perspectives and Challenges

In this chapter, we have tried to review some works on mathematical tumor
growth modeling and its applications proposed by the medical image analysis
community. Away being from a complete review on this subject, this chapter
is an attempt to highlight the main approaches and applications.

In terms of realistically modeling the growth phenomena, some solid at-
tempts have been taken however, there are very exciting challenges awaiting
to be solved. Tumor growth is a very complex phenomena, including different
scales of ingredients from genetic to macroscopic. The biggest lacking point
at the moment is the link between these scales. Observations that can be
obtained from medical images are limited and obtaining microscopic observa-
tions for a large view-area is not possible at the moment. One approach that
can be taken to tackle this problem would be to included information coming
from different modalities of images in growth models. Including techniques
like positron emission tomography (PET), magnetic resonance spectroscopy
(MRS) and functional-MRI (fMRI) would yield information about nutrient,
oxygen and metabolite levels in the tumor giving an opportunity to inte-
grate microscopic phenomena in macroscopic models and for patient specific
models.

Personalization of the tumor growth models and therapy models sum-
marized in this chapter is an important missing link between mathematical
methods and clinical applications. Inter-patient variation of parameters can
be large, hence obtaining the necessary parameters automatically through
inverse problems is a required step in adapting general growth models to
individual patients. Such inverse problems also serve as quantification tools
that can asses the efficacy of a therapy or understanding the amount of de-
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formation caused as we have seen in Section 4.1. Moreover, intra-patient
variation of these parameters has not been studied yet. Variation within
the same tumor would yield different growth patterns than a specific set of
parameters. On the other hand, the heterogeneity in a single tumor can be
very high as well strengthening the need for stochastic approaches for tumor
growth models.

One other big challenge for creating more accurate models, is the lack
of a proper quantitative validation technique. For macroscopic models the
comparison is done with observed medical images, which are not able to
visualize the whole tumor. Although some quantitative validation methods
was proposed by some authors, [6, 11], the field still lacks a golden standard
in validation methodology.

Improving imaging techniques and more accurate models will yield valu-
able tools for clinical oncology in the future. Patient-specific models combin-
ing information from different scales will enable us to perform patient-specific
simulations. Such simulations, either for therapy or simple growth will aid
in patient treatment and hopefully improve prognosis.
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