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Abstract. Bridging the gap between clinical applications and mathe-
matical models is one of the new challenges of medical image analysis.
In this paper, we propose an efficient and accurate algorithm to solve
anisotropic Eikonal equations, in order to link biological models using
reaction-diffusion equations to clinical observations, such as medical im-
ages. The example application we use to demonstrate our methodology
is tumor growth modeling. We simulate the motion of the tumor front
visible in images and give preliminary results by solving the derived
anisotropic Eikonal equation with the recursive fast marching algorithm.

1 Introduction

One of the main gaps between mathematical models explaining biological phe-
nomena and medical applications is due to the inconsistency between the number
of observations available clinically and needed mathematically. While building
more realistic models is very important to improve our insight on the general
phenomena, creating reduced models is essential in using mathematical models
in specific clinical situations.

Reaction-diffusion equations like:

ut = ∇ · (D∇u) + f(u) (1)

arise in many different biological models, where one describes the change of a
density u in time with an anisotropic diffusion characterized by the tensor D and
a reaction term f(u). We can give examples to such situations like tumor growth,
electrophysiology and wound healing. However, available observations are often
sparse and incomplete and these models are often computationally costly. Thus,
making the adjustment of complete models to a specific case is difficult. This
is why reduced models are of great interest. In the case of Equation 1, one can
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approximate the motion of a single iso-contour of u in terms of its arrival times
T using the anisotropic Eikonal equation

F
√
∇T tD∇T = 1 (2)

based on the fact that reaction-diffusion equations admit traveling wave solutions
in certain cases [1, 2]. This form is preferable because it does not require the whole
distribution of u to compute the motion of a single iso-contour, it can reduce
the number of unknown parameters based on the form of F and it can be solved
faster. Aiming at clinical applications, it is essential to solve this front tracking

approximation given in Equation 2 efficiently and accurately.
In this paper, we propose a new fast algorithm to solve the anisotropic Eikonal

equation and improve the current front tracking approximation by taking into ac-
count the convergence properties of the reaction-diffusion equations. For demon-
stration, we apply these methods to tumor growth modeling, more specifically,
to modeling glial based ones. These tumors account for approximately 40-45% of
all primary intracranial tumors, forming the largest class in this pathology, [3].
Characteristics of this type of tumors vary a lot within the group, and when
faced with one, understanding its aggressiveness and correct grading is very cru-
cial in therapy planning and might improve prognosis. Although medical imaging
is not the sole source of information used for this, it plays an important role in
understanding the pattern and speed of invasion of healthy tissue by cancerous
cells. One of the most important hints that can be obtained from images is the
progression of the visible tumor front. Therefore mathematically describing and
simulating the motion of this front would help the grading process and therapy
planning.

2 Recursive Anisotropic Fast Marching

Anisotropic Eikonal equations, given as Equation 2, poses extra difficulties for
fast numerical schemes compared to its isotropic counterpart, F |∇T | = 1. There
have been different ways proposed to solve such equations or in general con-
vex, static Hamilton-Jacobi equations using single-pass methods [4], or iterative
methods [5, 6]. Single-pass methods start from points where time (T ) values are
already known and follow the characteristic direction of the PDE to compute
T at other points. This approach is based on the fact that in equations such as
Eqn. 2, the value of T at a point is only determined by a subset of its neigh-
boring points, which lie along the characteristic direction [7]. In isotropic case
these methods are very efficient because they follow gradient direction, which
coincides the characteristic direction [8]. In other words, they only use imme-
diate neighbors of a point with lower values of T to compute the new arrival
time at that point using an upwind scheme. In the anisotropic case, characteris-
tic direction does not necessarily coincide with gradient direction and the same
idea used for isotropic case yields false results,see Fig. 1. In order to deal with
this, Sethian and Vladimirsky enlarged the neighborhood around a point used to
compute the new arrival time such that characteristic direction remains within



Fig. 1. F
√
∇T tD∇T with a constant anisotropic D solved using isotropic Fast March-

ing Method (left) and the solution solved by anisotropic methods (right).

the neighborhood [4]. But size of the enlarged neighborhood increases with in-
creasing anisotropy of D. This would result in large number of points used to
calculate new values and a high computational load in case of high anisotropies.
Iterative methods start from an initial distribution of T , use an upwind, mono-
tone and consistent discretization of the equation and iterate over the domain
until convergence [5]. However, depending on the spatial variation of D these
methods might need high number of iterations to converge and they need an
ordering of the mesh to sweep the domain, which might not be trivial to obtain
for general meshes.

2.1 - Algorithm: Recursive anisotropic fast marching, proposed here, is based
on the single-pass idea and it uses immediate neighborhood to compute arrival
times. As a novel step, it includes a recursive correction scheme taking into
account the fact that due to anisotropy the immediate neighborhood used for
computation may not always contain the characteristic direction. This algorithm
works efficiently under general meshes, very high anisotropies and highly varying
D fields. Moreover, it can be applied to more general forms of static, convex
Hamilton-Jacobi equations, which is beyond the scope of this article.

Algorithm 1 Anisotropic Fast Marching: Initialization

for all X ∈ KNOWN do

for all Yi ∈ N (X) and Yi ∈ FAR do

compute T (Yi)← UPDATE(Yi, X)
remove Yi from FAR and add Yi to TRIAL

end for

end for

The overall algorithm is similar to the original fast marching method pro-
posed for the isotropic Eikonal equation. The main differences are the recursive
correction scheme and the computation of T values. The initialization steps
are the same: we go over points whose value are already known (kept in the
KNOWN list), compute their unknown neighbors’ values using only known
points (kept in the FAR list) trial T values and add these neighbors to the



TRIAL list while removing them from the FAR list, see Algorithm 1. By neigh-
borhood N (X) we mean all points directly connected to the point X in some
preferred connectivity sense (e.g. 4-8 in 2D and 6-18-26 in 3D cartesian grid).
The isotropic fast marching algorithm follows same operations throughout its
main loop. The TRIAL point with the minimum value of T , Y , is removed from
the TRIAL list, added to the KNOWN list, trial values of unknown neighbors
of Y are computed, if they are in the FAR list they are added to the TRIAL
list and removed from the FAR one, and if they are already in the TRIAL list
their values are updated.

In order to take into account the anisotropy, we insert the recursive correction
in the main loop. Before trial values of unknown neighbors of Y are computed, we
recompute its known neighbors’ values. The reason for this is that when values
of these points were computed Y was not used since it was not known. Hence,
in their computation the characteristic direction may not have been contained
in their known neighborhood, which was used to compute their T value. If we
obtain a lower value of T during the recomputation we update the value and
add the point to the CHANGED list, which holds known points whose values
have been changed. This correction is based on the fact that the lowest T value
for a point is obtained when the characteristic direction is contained in the
neighborhood used for the computation [6]. Every time the main loop restarts
it checks if the CHANGED list is empty, if this is not the case then instead of
taking a point from the TRIAL list it takes from the CHANGED list. In other
words the main loop tries to empty the CHANGED list first. The pseudo code
for the algorithm gives a clear summary in Algorithm 2.

2.2 - Local Solver: Up to now we have not detailed the computation of T (X)
value using N (X). We have defined N (X) as the set of immediate neighbors of X
and naturally there exists a set of elements corresponding to this neighborhood,
set of triangles (4X) in 2D or set of tetrahedras (TETX) in 3D. T (X) is calcu-
lated inside every element using linear interpolation between nodes and solving
a minimization problem, T (X) = f1D(X, Y ) for 1D, T (X) = f2D(X, Y, Z) for
2D and T (X) = f3D(X, Y, Z, W ) for 3D, using nodes of the element neighboring
X .

f1D(X, Y ) = T (Y ) +
[vt

1DD−1v1D ]1/2

F
(3)

f2D(X, Y, Z) = min
p∈[0,1]

{T (Y )p + T (Z)(1− p) +
[v2D(p)tD−1v2D(p)]1/2

F
} (4)

f3D(X, Y, Z, W ) = min
p,q∈[0,1]×[0,1]

{[T (Y )p + T (Z)(1− p)]q + T (W )(1 − q) (5)

+
[v3D(p, q)tD−1v3D(p, q)]1/2

F
}

where v1D =
−−→
Y X , v2D(p) =

−−→
Y Xp+

−−→
ZX(1−p) and v3D(p, q) = [

−−→
Y Xp+

−−→
ZX(1−

p)]q+
−−→
WX(1−q). The common term [vtD−1v]1/2/F visible in all these equations

is the time difference between a point connected to X with vector v and T (X)



Algorithm 2 Anisotropic Fast Marching: Main Loop with Recursive Correction

while TRIAL or CHANGED lists are not empty do

if CHANGED list is not empty then

X ← argmin
X∈CHANGED

CHANGED

remove X from CHANGED

else

X ← argmin
X∈TRIAL

TRIAL

remove X from TRIAL and add X to KNOWN

end if

for all Xi ∈ N (X) and Xi ∈ KNOWN do

compute T (Xi)← UPDATE(Xi, X)
if T (Xi) < T (Xi) then

T (Xi)← T (Xi)
add Xi to CHANGED list

end if

end for

for all Yi ∈ N (X) and Yi ∈ TRIAL∪ FAR do

compute T (Yi)← UPDATE(Yi, X)
if Yi ∈ TRIAL and T (Yi) < T (Yi) then

T (Yi)← T (Yi)
else if Yi ∈ FAR then

T (Yi)← T (Yi)
remove Yi from FAR and add Yi to TRIAL

end if

end for

end while

under the effect of the diffusion tensor D. It is derived from the group velocity
idea for which the details can be found in [9]. As in the original fast marching
algorithm we only use known points in N (X) to compute the value at X . In other
words when in the case of a tetrahedral element we use Equation 5 when all nodes
are known, Equation 4 when 2 nodes are known and Equation 3 when only 1 node
is known, see Algorithm 3. The minimization of Equation 4 has an analytical
solution however, the one in Equation 5 is not trivial. Instead of solving it with a
minimization algorithm, which would increase the computational load, we use the
quadratic equation in T (X) obtained by discretizing equation F

√
∇T tD∇T = 1

on the nodes of the tetrahedral element. We check if this computed value of
T (X) satisfies the causality condition, which is that the characteristic direction
should lie inside the element used. Practically this is just computing ∇T using
the new computed T (X) on the element and checking if D∇T vector resides
within the tetrahedra. If this is the case, the minimum lies inside the tetrahedra
and it is approximated with the computed T (X). If this is not the case we search
the minimum on the triangular sides of the tetrahedra using f2D. This method
was proposed by Qian et al. [6] and it speeds up the overall algorithm greatly.

We have tested the proposed algorithm by solving F
√
∇T tD∇T = 1 in 2D,

3D cartesian grid and on surfaces using triangulation. These results are shown in



Algorithm 3 Computation of T (Xi) = UPDATE(Xi, X)

IN 2D

T (Xi)←∞
for all 4(XXiY ) ∈ 4X

Xi
= {4(XXiY )|Y ∈ N (Xi)} do

if Y ∈ KNOWN then

T (Xi)← min(T (Xi), f2D(X, Xi, Y ))
else

T (Xi)← min(T (Xi), f1D(X, Xi))
end if

end for

IN 3D

T (Xi)←∞
for all TET (XXiY Z) ∈ TET X

Xi
= {TET (XXiY Z)|Y, Z ∈ N (Xi)} do

if Y, Z ∈ KNOWN then

T (Xi)← min(T (Xi), f3D(X, Xi, Y, Z))
else if Y ∈ KNOWN then

T (Xi)← min(T (Xi), f2D(X, Xi, Y ))
else if Z ∈ KNOWN then

T (Xi)← min(T (Xi), f2D(X, Xi, Z))
else

T (Xi)← min(T (Xi), f1D(X, Xi))
end if

end for

Fig. 2. Computation times for these results can be found in Table 1, where we also
compare our algorithm with the sweeping algorithm proposed in [6], for which
we used our own implementation done in the best way possible. Comparison is
only done for cases in 2D cartesian grid based on the examples provided in the
mentioned reference. The sweeping method has been iterated until convergence,
where the maximum number of iterations was 12 in the variable D case. In the
recursive anisotropic fast marching algorithm the size of the CHANGED list did
not exceed 3 for these cases. The following computational times were obtained
with Matlab7.1 for 2D cases and C++ for 3D cases on a 2.4GHz Intel Pentium
machine with 1Gb of RAM. Cases given in Table 1 correspond to images shown
in Fig. 2. The proposed algorithm is fast and visually accurate even in the case
of very high and variable anisotropy. Moreover, applying the explained method
to general meshes bears no difficulty. In our experiments with triangular meshes
on 2D and on surfaces, the algorithm was appearently much faster.

3 Approximating the Front Motion: Time Varying Speed

Reaction-diffusion models explain the change of the distribution of densities by
combination of diffusion and reaction processes. Usually, one is interested in the
motion of an iso-contour (front) of such distributions, which can be attained by
an anisotropic Eikonal equation F

√
∇T tD∇T = 1. In this approximation, the

speed term F = F (x) is normally set to a function constant in time [10]. But



Case (D is anisotropic in all cases) Sweeping Method [6] Fast Marching
(seconds) (seconds)

2D: constant D, 64 × 64 grid 24.43 16.15

2D: constant D, 128 × 128 grid: Fig. 2(a) 91.06 63.39

2D: spirally varying D, 64 × 64 grid: Fig. 2(c) 80.6076 13.56

2D: spirally varying D, 128 × 128 grid 319.34 49.48

3D: constant D, 64 × 64 × 18 grid: Fig. 2(g) 26

3D: helix D, 64× 64 × 64 grid: Fig. 2(h) 65

3D: constant D, 13000 node mesh: Fig. 2(e) 2
Table 1. Computational times

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. a) 2D cartesian grid, high anisotropy in 120◦ increasing distance from blue to
red, b) iso-contours of a, c) 2D cartesian grid, D is highly anisotropic inside a spiral
following it, isotropic in other regions, d) iso-contours of c, e) 2D triangular mesh with
13000 nodes anisotropy in x direction, colors represent iso-contours, f) 2D triangular
mesh on a surface D is anisotropic and principle eigenvector is shown in black lines,
colors represent iso-contours, g) 3D cartesian grid, anisotropic D h) 3D cartesian grid,
D is highly anisotropic inside a helix following it, isotropic in other regions.

the convergence properties of the reaction-diffusion system is then neglected,
which can lead to important errors. Taking this into account, we propose to use
a time varying function F = F (x, T ) to have a better approximation of the front
motion.

In order to obtain the approximation for the motion of the front we start
from the reaction-diffusion equation in 1-D with constant coefficients:

ut = duxx + ρf(u) (6)

u(x, 0) = U



Fig. 3. Left: Front evolution starting from a step function under Equation 6. Right:
Speed of the point u = 0.5 on the front is plotted along with the asymptotic speed and
the speed approximation including convergence term.

where f(u) has a homogeneous stable state at u = 1 and a homogeneous unstable
state at u = 0. Equation 6, which is also called the Fisher-Kolmogorov equa-
tion, admits traveling wave solutions in the form of u(x, t) = u(x − vt) = u(ξ),
where v is the asymptotic speed of the wavefront, [11, 12]. In other words, initial
conditions evolve in time to uniformly translating front shapes, see Fig. 3. This
allows us to formulate the motion of a single point on the wavefront u = u0

by simply describing the arrival time of the point u = u0 as Tx = 1/v, where
T is the arrival time function. The value of the asymptotic speed depends on
the initial condition U . All initial conditions that are steep enough, meaning
limx→∞ u(x, 0) = 0, converge to the travelling wave moving with an asymptotic
speed: 2

√

df ′(0), where f ′(0) denotes the derivative at u = 0 [1]. This suggests
that for all practical modeling problems we can use this asymptotic value in the
arrival time formulation to approximate the motion of the front. However, it was
shown that convergence of the front speed to the asymptotic one is

v(t) = 2
√

df ′(0) − 3

2t

√

d

f ′(0)
(7)

independent of the initial condition and the u0 value being tracked, [13, 2]. This
convergence rate is algebraic and rather slow. Thus, using a time varying v(t)
as given in Equation 7 is a better approximation of the actual speed than using
the asymptotic one, see Fig. 3. The convergence to a traveling wave behavior
of the Equation 6 applies to higher dimensions when coefficients are constant
and the initial condition has non-curved iso-contours. In this case the initial
condition converges to a traveling plane having a cross section looking as a
1D wavefront with the time varying velocity given as v(t) = 2

√

f ′(0)ntDn −
3/(2t)

√

ntDn/f ′(0), where n is the normal of the moving plane.
Convergence properties of the reaction-diffusion equation is only valid when

the front is not curved and parameters of the equation are constants. Models
using Equation 1 does not necessarily have constant parameters and the front
they describe can be curved. In order to formulate the motion of the general front



using the construction explained above, we make the assumption that within

a voxel front is planar and parameters of the reaction-diffusion equation are
constants, which are taken as values at that voxel. Under these assumptions, we
derive the arrival time formulation for the front in 3D as:

|∇T | = 1/v(t) =

[

2
√

f ′(0)ntDn− 3

2T

√

ntDn

f ′(0)

]−1

(8)

where n can be replaced by ∇T/|∇T |. This simply leads to the anisotropic
Eikonal equation given as:

√
∇T tD∇T =

2
√

f ′(0)T

4f ′(0)T − 3
(9)

4 Application: Predicting the Motion of Tumor Front

There has been a large amount of mathematical models proposed to describe the
growth dynamics of glial tumors, e.g. [14, 15]. Those trying to explain growth
and invasion dynamics based on observations from medical images, describe
these processes using cell densities and average behavior [15], consisting of fewer
equations and parameters. Such models are based on reaction-diffusion formalism
introduced in [11], which uses reaction-diffusion type equations. Although these
models are successful in explaining underlying dynamics of the tumor growth,
they encounter some problems in adapting to patient data. Given images, in
order to compute the growth they require tumor cell density values at every
point. What is available in conventional modalities like MR and CT is not cell
densities, but an enhanced homogeneous looking region and its boundary with
the brain tissue, the tumor front, as seen in Fig. 4(a). Moreover, numerical load
of such simulations, depending on the mesh size used, can be very heavy.

In this paper for demonstration, we use the front approximation given in Sec-
tion 3 to describe the motion of the tumor front and use the recursive anisotropic
fast marching algorithm to simulate its motion. The specific reaction-diffusion
model we base our approximation on is proposed by Clatz et al. [16]. Their model
for tumor growth can be given by the following reaction-diffusion equation:

∂u

∂t
= ∇ · (D(x)∇u) + ρu(1 − u) (10)

D(x)∇u · −→n Σ = 0 (11)

where u is the tumor cell density, D(x) is the diffusion tensors, ρ is the prolifera-
tion rate of tumor cells and −→n Σ is the normal direction at the boundaries, which
in the case of the brain are skull and ventricles. The first term in Equation 10,
∇ · (D(x)∇u), defines invasion of brain tissue by tumor cells using a diffusion
process. The second term in the same equation, ρu(1−u) describes proliferation
of tumor cells using logistic growth. Based on the experiments done by Giese et

al. [17], which shows that tumor cells move faster on myelin sheath, D(x) is set



as a spatially varying tensor, becoming isotropic on grey matter and anisotropic
on white matter following fiber tracts as defined in Equation 12.

D(x) =

{

dgI if x is in grey matter
V(Diag(dwλ1, 0, 0) + dgI)V

t if x is in white matter
(12)

where dg and dw are speed of diffusion in grey matter and white matter re-
spectively, I is the 3x3 identity matrix, λ1 is the principal eigenvalue and V is
the eigenvector matrix of the water diffusion tensor obtained from DT-MRI. By
construction dw/dg can have a large value resulting in a high anisotropy.

(a) (b) (c)

(d) (e)

Fig. 4. a) A low grade glioma (inside the white circle) showing a single contour around
a homogeneous prolongation of Flair MRI. b,c) Different axial slices of an artificially
grown tumor. Grey region shows the visible part of the tumor at day 90. Black contours
shows the location of u = 0.1 front of the artificial tumor at days 180 and 240. White
contours show same locations computed by the front approximation. d,e) Same contours
as shown in b,c. Black solid is the actual location and red dashed are approximated
locations. Discrepancies between contours is a result of curvature and boundary effects,
which were not taken into account in the current state of the front approximation.

The front approximation for this model can be given as:

√
∇T tD∇T =

2
√

ρT

4ρT − 3
(13)

In order to have a realistic simulation and to compare the results of the front ap-
proximation and the reaction-diffusion model, we have grown an artificial tumor
using real boundary conditions, white-grey matter segmentation and diffusion
tensor images (DTI) taken from a healthy subject. We set the diffusion coeffi-
cients as dg = 0.001 and dw = 0.1 and the proliferation rate as an average rate of



ρ = 0.012 [15]. The artificial tumor is grown for 240 days using the formulation
given in Equation 10 and 11. We took the time of diagnosis as day 90, where
we obtain the first image as in Fig. 4(b) and observe the tumor front, taken
as γ = {x|u(x, 90) = 0.1}. We set this contour as the boundary condition of
Equation 13 (T (γ) = 90) and we solved it using the recursive anisotropic fast
marching algorithm. Fig. 4(c) and (d) compare the motion of the front com-
puted by the reaction-diffusion model (solid blue curves) and computed by the
front approximation (dashed red curves). Observe that the speed of invasion is
well captured by the front approximation formulation given in Equation 13. The
pattern of invasion on the other hand shows some differences visible in Fig. 4.
There are two reasons for these differences: (1) the front approximation is based
on un-curved tumor fronts, however, curvature plays a role in smoothing and
slowing down the front, (2) the Neumann boundary conditions are not captured
by the approximation which creates differences near the boundary. The com-
putation time for reaction-diffusion model to grow the tumor for 240 days was
4500 seconds while fast marching algorithm computed the motion of the γ front
throughout the whole brain in 250 seconds, which corresponds to a growth simu-
lation of 2500 days. This yields a speed up of nearly 180 folds. Implementations
were done in C++ using GMM library on a 2.4GHz Intel Pentium processor
with a 1Gb memory.

5 Discussions

In this paper, we proposed the recursive anisotropic fast marching algorithm
and to use the time varying speed term in front approximation formulation
for reaction-diffusion models in order to create the link between mathematical
models and clinical observations. The fast marching algorithm is successful in
handling high anisotropies, which are often encountered in biological modeling,
on general meshes. We demonstrated the usage of proposed tools by simulating
the motion of the tumor front, visible in medical images.

Formulating the motion of the tumor front sets a link between observations
in images and the mathematical models explaining the growth dynamics. Fast
and efficient algorithms like the recursive fast marching method explained here
gives us an easy tool to adapt growth models to specific patient cases and do
simulations. It can also help us quantify the speed of growth and invasion by
solving an inverse problem to estimate the parameters like diffusion coefficients.
We have seen that the formulation is successful in capturing the speed of invasion,
however, the patterns have differences. In the future, we would like to explore
new ways to integrate the effect of curvature and boundaries in the formulation
to get better approximation.

Although we have concentrated on tumor growth modeling in this paper,
front approximations for reaction-diffusion equations and the proposed algo-
rithm can be useful in other modeling problems as well. Such an example is the
electrophysiological model of the heart, where one is interested in computing
the excitation times throughout the organ. This problem is similar to tumor



growth, in the sense that it requires following the motion of a front. Moreover,
this application requires fast computations, which is possible with the method
presented in this work.

The recursive fast marching method explained here is a general tool and can
be used for lots of different applications than simulating the motion of a wave-
front, such as fiber tracking or geophysics. Moreover, the algorithm can also be
used for solving general static, convex Hamilton-Jacobi equations encountered in
computer vision and material science. The future work consists in characterizing
convergence properties of the recursive fast marching algorithm.
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