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ABSTRACT

POLYP ENHANCING LEVEL SETS FOR CT

COLONOGRAPHY

Computer Aided Diagnosis (CAD) in Computed Tomographic Colonography

aims at detecting the locations of colonic polyps, which are the precursors of colon

cancer. CAD algorithms increase the performance of radiologists in detecting polyps

and decrease the variability of diagnostic accuracy among different readers. Most of the

proposed CAD algorithms are based on the assumption that colonic polyps are spherical

protrusions on the colon wall attached to the wall by a thin strip. Most colonic polyps

deviate from the assumed shape therefore reduce the CAD performance.

In this thesis we propose a polyp enhancement algorithm for improved CAD. The

underlying idea is to use geometric characteristics of the colon wall to enhance colonic

polyps by evolving the whole wall via level set methods. There are two different level

set flows proposed within the algorithm: joint curvature flow and volume maximizing

constant surface flow. Both of the flows evolves colonic polyps so to increase their

spherical symmetries, while preserving other structures on the colon wall, to increase

the detection and identification performance of existing CAD algorithms.
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ÖZET

BT KOLONOGRAFİ İÇİN POLİP GELİŞTİREN DÜZEY

KÜMELERİ

Bilgisayarlı tomografi ile kolonografide bilgisayar destekli teşhisin (BDT) amacı

kalın bağırsaktaki poliplerin bulunmasıdır. Bu poliplerin bir kısmı bağırsak kanser-

ine dönüşebileceği için önceden sezim kritiktir. BDT algoritmaları radyologların poli-

pleri bulmalarını kolaylaştırırken aynı zamanda farklı okuyucular arasındaki teşhis

doğruluğundaki değişkenliği azaltır. Önerilen çoğu BDT algoritmaları kalın bağırsaktaki

poliplerin, bağırsak duvarına ince bir iple bağlı küresel şekiller oldukları varsayımına

dayanır. Halbuki çoğu polip bu varsayıma uymaz ve bu yüzden bu varsayıma dayalı

BDT performansını düşürür.

Bu tezde gelişmiş BDT için polip şekillerini geliştiren bir algoritma sunulmuştur.

Altta yatan fikir, yüzey kümeleri yöntemiyle, bağırsak yüzeyinin geometrik özelliklerini

kullanıp bağırsak duvarını evriltmektir. Bu evrim sayesinde bağırsak poliplerinin şekilleri

gelişmektedir. Yüzey kümeleri yöntemi dahilince, iki ayrı akış önerilmektedir: birleşik

eğrilik akışı ve sabit yüzey alanıyla hacim enbüyüten akışı. Her iki akışta varolan

BDT algoritmalarının performanslarını arttırmak için bir yandan bağırsak poliplerinin

küresel bakışımını arttırırken diğer yandan bağırsak duvarındaki diğer şekilleri korur.
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Ĵ Constrained Functional

k−→
t Directional Curvature

m A Point Detected by CAD

n Discrete Time Index



xiv

−→n Normal Vector of a Curve
−→
N Normal Vector Map of a Surface
−→
Np Normal Vector of a Surface at a Point

Nm Set of m-connected points including the center

N∗
m Set of m-connected points excluding the center

p Point on a Surface

r Position Vector

rI Position Vector in a Set

rextremum Extrumum Point

Rlimit Radius of the Smallest Polyp

S Surface Parameterization

t Time Variable
−→
t Unit Vector in the Tangent Plane
−→
ti ith Principal Vector

∆t Time Step

T0 Fixed Time

Tm Topological Number

V Eigenvector Matrix

w Solution of the Poisson Equation

X Set of 26-connected points in the interior region

X Set of 26-connected points in the exterior region

δ First Variation

ε Small Number

κ Curvature

κi ith Principal Curvature

λ Lagrange Multiplier

λi ith Eigenvalue

� Sphericity

σ2 Variance

σ2
0 Variance Threshold



xv

Γ Interface

Γn
i Convex Connected Iso-level Patch

∆ Laplacian Operator

Σ Covariance Matrix

Φ Implicit Function

Ω Subset

Ω− Interior of the Subset

Ω+ Exterior of the Subset

∂Ω Boundary of Ω

CAD Computer Aided Detection/Diagnosis

CT Computed Tomography

CTC Computer Tomographic Colonography

CV Curvedness

DGC Directional Gradient Concentration

FROC Free-response Receiver Operating Characteristics

FOC Fiber-optic Colonoscopy

FP False Positive

FPF False Positive Fraction

GC Gradient Concentration

HDF Heat Diffusion Fields

HU Hounsfield Unit

ITK Insight Toolkit

JCF Joint Curvature Flow

LDA Linear Discriminant Analysis

PDE Partial Differential Equation

PELS Polyp Enhancing Level Sets

QDA Quadratic Discriminant Analysis

ROC Receiver Operating Characteristics

SI Shape Index

SNO Surface Normal Overlap



xvi

SVM Support Vector Machines

TP True Positive

TPF True Positive Fraction

VMCSF Volume Maximizing Constant Surface Flow

VTK Visualization Toolkit



1

1. INTRODUCTION

Three to five percent of the population in the developed world will eventually be

diagnosed with colon cancer. Even now colon cancer is one of the top leading cause of

cancer death in the world. The colon cancer grows on the inner surface of the colon

and develops from mushroom-like structures, called polyps. The size of polyps may

vary greatly, from 0.3 cm to 3 cm in radius and as the size of the polyp increases it

is more likely that it will become cancerous. Most polyps may not become cancerous,

however ones that do, grow very quickly, invade, break through the colon wall and

eventually spread to other parts of the body. Early detection and removal of colonic

polyps improves the survival rate [1]. Computed Tomographic Colonography (CTC),

also known as the Virtual Colonoscopy, is a minimally invasive technique that employs

X-Ray CT imaging of the abdomen and pelvis following cleansing and air insufflation

of the colon. Originally proposed in the early 1980’s [2], it became practical in the early

1990’s following the introduction of helical CT and advances in computer graphics [3].

Currently available multi-slice helical X-Ray CT scanners are capable of producing

hundreds of high resolution (< 1 mm cubic voxel) images in a single breath hold.

Conventional examination of these source images is rather time-consuming and the

detection accuracy is unavoidably limited by human factors such as attention span and

eye fatigue. As such computer aided detection/diagnosis (CAD) tools have increasingly

gained more importance.

1.1. Literature Review on CTC-CAD

Several visualization and navigation techniques have already been proposed to

help the radiologists [4–7]. However, computer aided detection (CAD) tools are en-

visioned to improve the efficiency and the accuracy beyond what can be achieved by

visualization techniques alone [9–20]. The CAD problem for CTC bears several chal-

lenges summarized in [8]: The difficulty of specifying the polyp location, the fact that

there are several structures in the colon wall mimicing colonic polyps, the existence of

artifacts and poor colonic distention are among these challenges.
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The ”global” shape of the polyp, i.e. the mushroom shape, is unique in the whole

colon. The algorithms that are explained in this section try to capture the global

shape information by various methods. Some of them uses local information to guess

the whole shape, while others try to understand it by using extrinsic parameters of the

surface.

Summers et al. used curvature characteristics of the surface, like mean curvature

and defined a dimensionless sphericity ratio using principal curvatures to detect polyps

in [9, 10]. In [12], Jerebko et al. used the same features proposed in [9, 10] and added

the curvature characteristics of polyp neck to train a support vector machine (SVM)

to classify polyp and nonpolyp regions. Jerebko et al. have also proposed to use seven

geometric features for further identification after an initial detection step. They have

used Canny edge detectors and the Radon transform to segment the boundary of initial

polyp candidates, find the baseline of polyp candidates and calculate the geometric

features like number of boundary pixels, polyp internal area and polyp height. Kiss

et al. have used the curvature characteristics to find convex regions on the colon wall

as an initial detection in [13]. The convex regions however may correspond to either

colonic polyps or haustral folds. They have used surface normals and sphere fitting

methods to further distinguish between folds and polyps. The surface normals method

is based on the observation that the surface normals for a sphere would intersect at

the center, on the other hand the normals would intersect on a line for a cylinder. In

the sphere fitting method, they have fit spherical patches onto the convex regions since

the shape of a colonic polyp would not resemble a whole sphere in most cases. Both

of these methods rely on the sphericity assumption of colonic polyps.

In [14, 15], Yoshida et al. have proposed two measures characterizing the shape,

the shape index (SI), and the curvedness (CV) of the colon wall based on principal

curvatures. Using these measures, they find the polyp candidates and cluster them

using fuzzy c-means algorithm. They also calculate two additional measures for the

initially detected polyps, the gradient concentration (GC) and the directional gradient

concentration (DGC), which characterizes overall direction of the gradient vectors of

CTC data around a point. Combining all these features, they identify polyps with
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classifiers using linear discriminant analysis (LDA) and quadratic discriminant analysis

(QDA). The surface normal overlap (SNO) algorithm, proposed in [16] is similar to the

surface normals method used in [13]. Again the intersection of surface normals is used

however several problems in the surface normals method have been solved. The length

of the normals are kept finite to avoid the intersection of normals coming from other

parts of the surface. They also used radially gaussian distributed cylinders instead

of lines as surface normals to improve the robustness against small variations on the

surface. In [19], Yao et al. have proposed to use deformable models to segment colonic

polyps. The algorithm starts by finding curvature values for every point on the surface

and classifying each surface point as flat, concave or convex. Then from each point in

the tissue region close to the colon wall, evenly spaced rays are shot, and a score is

given to these points depending on the curvature characteristics of the surface point

the rays hit. Intensity adjustment based on this scoring is followed by fuzzy c-mean

clustering. Three clusters are formed, air, polyp and nonpolyp. For each polyp cluster

a deformable model, as proposed by Cohen [23], is initialized from the center of the

class. The deformable model is first applied in 2D to segment the polyp in one slice

and then extended to the neighboring slices for 3D segmentation of the polyp.

There is also some research focused on improving the specifity of CTC-CAD

algorithms. The proposed methods under this category are post-processing approaches

trying to reduce the number of false positives without sacrifiying sensitivity of CAD

algorithms. Among these post-processing approaches, Göktürk et al. in [17] also used

SVMs as a secondary identification step. To extract features to be used in SVM, they

proposed to use random orthogonal shape sections method. This method uses multiple

triple cross sections (three orthogonal cross-sections at a time) of polyp candidates

taken at random angles to produce a reliable shape signature. Acar et al. modeled

the way radiologists use 3D information while they are examining a stack of image

slices [18]. They use a predetection step to identify polyp candidates by using the SNO

method, in which normals are limited to 5mm from the colon wall to the tissue. Then

for each candidate, they create vector fields from the changes in the location of edges

in the segmented CT image as one scrolls in each direction. The characteristics of the

produced vector fields are used to identify colonic polyps.
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The detection algorithm we have previously proposed in [20], Heat Diffusion

Fields (HDF), was based on diffusion filters and to the best of our knowledge is the

first algorithm that included a built-in polyp enhancing scheme. The algorithm is

based on the observation that a heat flow from the lumen air towards the colon tissue

would create heat sinks in the middle of hemispherical structures, like polyp centers.

Using the curvature characteristics of polyp necks and nonlinear diffusion filters, we

have implemented a heat flow initialized by a hot lumen air and cold colon tissue. We

intended to use higher diffusion coefficients at polyp necks by making the diffusion

coefficient a function of surface curvature. Thus, we have enhanced the spherical

symmetry of colonic polyps. The heat flow is captured using optical flow equation

and a vector field is formed based on it. The spherically symmetric sinks of the vector

field yielded the initial polyp candidates. For each polyp candidate a geometrical

measure is computed by shooting rays similar to the one computed in [19], capturing the

information about characteristics of the colon wall surrounding it. Two level threshold

is applied using the information coming from the vector field and from the ray shooting

process to identify colonic polyps.

In all of these works, the performance of the CAD algorithm is evaluated by

comparing the results of the algorithm with those of a radiologist. The details of the

evaluation methodologies will be given later, however it is important to explain the

performance metric used in CTC-CAD briefly at this point. The aim of any CTC-

CAD algorithm is to identify all colonic polyps without any false positives. A false

positive is a structure identified as a polyp by the CAD algorithm whereas it is not. The

performance is measured by the number of false positives at a specified sensitivity level,

which denotes the percentage of polyps found. The free response receiver characteristic

(FROC) curves provide the required tools for such an assessment [21].

1.2. Problem Definition and Proposed Solution

Most of the CAD algorithms are, either implicitly or explicitly, based on the

assumption that all colonic polyps are hemispherical protruding structures with a reg-

ular surface having the same geometric properties locally at every point. This does
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Figure 1.1. Types of polyps: (a) Sessile (b) Pedunculated

not hold in most cases though. Colonic polyps can be divided into two categories:

sessile and pedunculated. A sessile polyp have a broad base of attachment and is not

protruding from the surface much, resembling a big sphere mostly buried under the

surface. A pedunculated polyp looks like a sphere attached to the end of a stalk with

variable length. Examples of each type of polyp can be seen in Figure 1.1. Among these

categories pedunculated polyps fit better to the assumption in CAD algorithms and

they are relatively easier to detect. Sessile polyps on the other hand, are much harder

to detect automatically since their spherical nature is not as visible as pedunculated

polyps [8, 11]. This type of polyps decrease the performance of CAD algorithms by

either decreasing the sensitivity level for a specific false positive number or increasing

the false positive rate at a specific sensitivity level.

In this thesis, we propose the Polyp Enhancing Level Set methods (PELS) as a

preprocessing step that would be applied prior to any CAD algorithm based on the

assumption that a colonic polyp is a hemisphere residing on the colon wall. As such,

it is designed to improve almost all of the previously proposed polyp detectors. This

idea of enhancing colonic polyps was first proposed in the HDF based polyp detector

in [20]. PELS is an interface evolution method built on the well known Level Set

framework. The algorithm extracts and evolves the whole colon wall to increase the

difference between the true colonic polyps and other structures that mimic polyps. In

other words, the algorithm evolves sessile polyps towards pedunculated polyps, which
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Figure 1.2. 2D illustration of the desired motion

are easier to detect for CAD algorithms. Figure 1.2 illustrates the desired motion of

the colon wall around a polyp for a 2D representation.

The algorithm is based on the fact that colonic polyps have distinct ”global”

shapes, protrusions attached to the colon wall by a stem, as in the case of pedunculated

polyps, or flat bumps, as in the case of sessile polyps. Geometric information extracted

from local neighborhoods of points on any colonic polyp have specific characteristics,

which however are not unique to polyps. In other words there are other structures that

mimic polyps locally in the colon. Our method uses local curvature characteristics of

the colon wall to evolve the ”whole” colon wall such that the spherical symmetry of

polyps increase and their attachment to the colon wall gets thinner. Other structures on

the colon wall also change during this evolution, however due to their global geometric

shapes they do not evolve into a polyp shape. The proposed algorithm can be divided

into three different steps segmentation/preprocessing, propagation speed calculations

and topology preserving level set evolution. We evaluated PELS in combination with

the SNO algorithm [16].

Chapter 2 is devoted to explain briefly the deformable models, the level set theory,

numerical implementations of level sets and the topology preserving level sets. In

Chapter 3, we give details about the colon wall evolution. Segmentation of the colon

wall, detailed derivations of speed functions and implementation issues are given in

this chapter. Experiments with the real patient data, details of SNO algorithm and

the discussions are given in Chapter 4. In Chapter 5, we conclude with speculations

about future studies.
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2. BACKGROUND ON LEVEL SET METHODS

The methods explained in this thesis are based on level set methods, which form

a subclass of deformable models. In this chapter general information about deformable

models, implicit functions, the mathematical theory behind and numerical implemen-

tations of level sets and topology preserving level sets are explained.

2.1. The Deformable Models

The motion of the colon wall, which is in more general terms an arbitrary inter-

face, can be implemented by several different methods under the class of deformable

models. Deformable models are curves or surfaces that move within 2D or 3D digital

images under the influence of internal, external forces and user defined constraints.

After Kass introduced them first in [22], many different models have been proposed.

These models can be coarsely divided into two different classes, parametric deformable

models, [23, 24], and geometric deformable models, [25–27].

The two subclasses of deformable models differ by the way the interface is repre-

sented and the way they are implemented. The parametric deformable models repre-

sent the interface explicitly as parameterized contours while the geometric deformable

models represent the interface implicitly as a level set of a higher dimensional function.

There are certain advantages of each model over the other one. The first advantage

of the geometric models is that they are independent of the parametrization of the

evolving contour and generally the contour is not parametrized until evolution is over.

However parametric models depend on the parametrization used and furthermore spe-

cial care must be paid to the discrete representation of this parameterized interface over

the course of evolution. Secondly, the computation of intrinsic parameters of the inter-

face is much easier and accurate in the case of geometric models. As for the parametric

models the accuracy of the computation of these parameters depends on the accuracy

of the parameterization used and the process is harder. One property of the geometric

models that can be viewed as an advantage or disadvantage depending on the applica-
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tion is that these models handle topological changes (merging or breaking up) of the

evolving interface automatically. Hence topological changes cannot be avoided in the

original geometric model formulation proposed in [25,26]. Parametric models are more

advantegous when one needs to control topological changes. Another difference be-

tween parametric and geometric models is that the geometric models are implemented

in a Eulerian framework while parametric models are implemented in a Lagrangian

framework. The underlying coordinate system remains fixed in Eulerian framework.

In a Lagrangian framework on the other hand, the range of the parametrization defines

the motion of the interface hence the position of the points on the interface defines the

coordinate system. A summary of this comparison is given in Table 2.1.

Table 2.1. Comparison of parametric and geometric deformable models

Parametric Geometric

Depends on parametrization. Independent of parametrization

The accuracy of computations of intrinsic

parameters depends on the parametrization

and they are generally harder.

Intrinsic parameter computations

are easy and accurate.

User controls the topological changes. Topological changes are handled

automatically.

Uses Lagrangian framework. Uses Eulerian framework.

Due to the difficulties in parameterizing an arbitrary surface and the ease in com-

puting intrinsic surface parameters using implicit functions, we chose to use geometric

deformable models to enhance the colon wall. The fact that geometric deformable

models handle topological changes of the evolving interface automatically becomes a

disadvantage in our application since we want to preserve the topology of the colon

wall. This problem is solved by using Topology Preserving Level Sets as explained

in [29]. More details about this issue will be given in Section 2.4.
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2.2. Implicit Functions and the Signed Distance Function

In an explicit interface representation, we define the interface, ∂Ω, with points

that belong to the interface, either by a parameterization or just by listing the points

[22]. In the case of implicit representation on the other hand, the interface is defined

as an iso-level of a higher dimensional function (the implicit function). The iso-level

is a 1D curve for 2D implicit functions and a 2D surface for 3D implicit functions.

In order to be able to evolve an interface using the geometric deformable models, the

interface should either be closed or not contained in the whole domain entirely. In other

words, it divides the whole domain of definition of the implicit function, Φ, into two

regions. For a closed interface these two regions can be considered as the interior and

the exterior of the interface and for others a similar convention can be used. The only

thing that an implicit function should do is to distinguish between these two regions

so that the interface can be tracked. A very simple 2D example of an implicit function

and implicitly represented unit circle is given with Equation 2.1.

Φ(x, y) = x2 + y2 − 1 (2.1)

where the Φ(x, y) = 0 iso-level is the unit circle centered at the origin. The interior

region is the open disk Ω− and the exterior region is the open set Ω+. Equation 2.1

defines a function in R
2 and bears the unit circle as its zero level set, which can be

seen in Figure 2.1.

Generalizing the idea behind the example above, the n− 1 dimensional interface

∂Ω would be represented implicitly as a level set of a function Φ : Ω ⊂ R
n → R as

given in Equation 2.2.

∂Ω = {r|Φ(r) = a} (2.2)

where r is the position vector in R
n and a is a constant defining which iso-level of Φ,

∂Ω is. Then ∂Ω would be called the a-level set of Φ. The parameter a does not have

an importance in the formulation, so for simplicity 0 is used for a. Hence ∂Ω becomes
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Figure 2.1. A circle implicitly represented by its level set function Φ(x, y)

the zero level set of Φ.

When the underlying interface can be represented analytically, as the unit circle,

the higher order function to keep the interface as its zero level set can be found by

algebraic manipulations. If the underlying interface is complex and cannot be expressed

analytically but through parametrizations then algebraic manipulations will not work.

Construction of an implicit function for a general interface is an ill-posed problem since

there is no unique solution. Amongst infinitely many implicit functions with identical

zero level set, the signed distance function plays a very important role in the theory

of level set methods. In order to define the signed distance function let us first define

d(r) as:

d(r) = min
rI

(|r − rI |) for all rI ∈ ∂Ω (2.3)

d(r) represent the smallest distance to the interface from any point r ∈ Ω. Note that

for all points in Ω, |∇d| = 1 [31]. Another advantage of this distance function is that

it is a smooth function at every point except on the interface itself.

Using the function defined in Equation 2.3, the signed distance function is defined
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as

Φ(r) =


 −d(r) if r is in the interior region

d(r) if r is in the exterior region
(2.4)

We, conventionally, define the signed distance function to be positive in the exterior

of the interface, negative in the interior and zero on the interface. Clearly if the point

is on the interface then the signed distance function becomes zero. It follows from the

properties of d(r) and the definition of Φ(−→x ) that

- |∇Φ(r)| = 1 ∀r ∈ Ω.

- ∇Φ is normal to iso-levels.

- Φ(r) is monotonic and generally differentiable at the zero level set where as d(r)

has a cusp there. (The differentiability depends on the initial interface.)

Although the problem of creating an arbitrary implicit function for an arbitrary

interface is an ill-posed problem we can cure this by changing the question to creating

the signed distance function of the interface. Since the signed distance function is

unique, this new problem has a unique solution. The numerical construction of the

signed distance function is done by the fast marching methods, which is implemented

via solving a boundary value PDE. Further details of this method can be found in [30]

and in [31]. An example of a 2D signed distance function for a general curve is given

in Figure 2.2. Figure 2.3 shows the gradient vectors of the signed distance function Φ

on the curve. We see that the vectors are normal to the curves.

2.3. Level Set Methods

The geometric deformable models are implemented using the level set methods

proposed in [32]. This section summarizes the mathematical theory behind the level

set methods and numerical implementations of these models.
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Figure 2.2. Implicit function example: (a) The original interface (b) The signed

distance function

Figure 2.3. Gradient vectors of the signed distance function are normal to the

interface
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2.3.1. The Evolution Equation

The level set method is based on the manipulations of the level set function, Φ,

in order to move the interface, ∂Ω, which will be called Γ in this section. Hence the

function Φ is a time varying scalar function in R
n and can be written as Φ(r, t), where

r is the position vector and t is the time variable. As explained in Section 2.2, the

initial interface is embedded in Φ as its zero level set. To construct the link between

the motion of the interface and the level set function, we assume that F (r, t) is the

speed function acting on the interface in the normal direction. The level set equation

arises from the fact that as time evolves the interface should remain at its zero level

set, which is given by:

Φ(Γ(t), t) = 0 (2.5)

Differentiating both sides of Equation 2.5 with respect to t and observing that Γ′ ·−→n =

Γ′ · ∇Φ
|∇Φ| = F (r, t) we obtain the level set equation Osher and Sethian proposed in [32]:

Φt + F (r, t)|∇Φ| = 0 ,Φ(Γ, t = 0) = 0 (2.6)

This equation is an initial value problem and the initial condition is the implicit function

constructed from the interface. It only gives the motion in the normal direction defined

by F . Other works on level sets, like [26], have improved this formulation by adding

several other components. The general form of the level set equation as used in the

literature currently is as follows,

Φt = Fprop|∇(Φ)| + Fcurv|∇(Φ)| + −→
F adv · ∇(Φ) (2.7)

The speed function F in Equation 2.6 is divided into three different parts. These parts

account for different effects on Φ and therefore the interface Γ. The effect of these

components on the interface are:

• The first component Fprop|∇(Φ)| provides the motion in the normal direction to
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the interface. Mathematically, this motion is given by changing Φ in time relative

to the norm of the gradient vector at any point multiplied with a scalar function,

Fprop(t, r, Φ,∇Φ). This term is called the propagation speed.

• The second component Fcurv|∇(Φ)| is simply the curvature flow, which has a

smoothing effect on the interface under motion. Fcurv is proportional to the

curvature of the interface (mean curvature in 3D case), in other words Fcurv =

g(r)κ, where g(r) is a spatially varying function and κ is the curvature. This term

makes sense when curvature can be defined in the space the interface is living in,

as a curve in 2D and a surface in 3D.

• −→
F adv · ∇(Φ) gives us the effect of the external vector field

−→
F adv on the motion of

the interface and is called the drift velocity. This term is similar to the first one

however it is a vectoral term.

The level set theory is built to move an interface under the effect of the speed

function F . It defines the motion of the interface. We can impose our aim, enhancing

colonic polyps, to the level set formulation through F . Our research is concentrated

on finding a speed function that would enhance colonic polyps. The creation of the

speed function, the function itself and the motion defined by the speed function will

be explained in Section 3.2.

In almost all examples in the literature the speed terms are created considering

the interface alone. However, these terms are not only defined for the points on the

interface, they are defined on the whole domain of the implicit function. This is where

the Eulerian framework of level set methods differs from parametric deformable models

where the speed values are assigned only to the points on the interface. The level set

equation acts on the value of the implicit function Φ at every point, hence even though

we create speed terms considering the interface alone we should assign suitable speed

values to all points in the domain of Φ. Once speed values for points corresponding

to the interface are assigned, there are infinite ways to assign speed values to all other

points, as in the case of implicit function construction. While using the signed distance

function as the implicit function, it is preferable to preserve its nice properties such as

|∇Φ| = 1 for all time. In [30], methods of speed extension to the whole domain, which
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keeps the implicit function as signed distance function for all time values are explained.

2.3.2. Numerical Implementation

In a domain where both time and space are discrete we have to use numerical

methods to solve Equation 2.7. The discretization of the left hand side and the right

hand side of Equation 2.7 are handled differently. The time derivative in the right hand

side is computed by a very simple first order accurate forward differencing method. For

a given time step ∆t the level set equation is

Φn+1 − Φn

∆t
= Fprop|∇(Φn)| + Fcurv|∇(Φn)| + −→

F adv · ∇(Φn) (2.8)

where n ∈ N is the time index. To find the solution of the level set equation at a

specific time t = T0 = n0 ∗ ∆t, we solve the Equation 2.8 iteratively n0 times starting

from the initial Φ|t=0. In practice however, rather than finding the solution of the

level set equation at a specific time, we are interested in the steady-state solution the

equation will converge to. Hence we would iterate the solution until the right hand

side of Equation 2.8 would be smaller than some pre-specified small value ε.

The left hand side of Equation 2.8 contains spatial derivatives and the discretiza-

tion of these derivatives require more attention. In Section 2.3.1 we have seen that

we can separate the right hand side of the level set equation into three parts having

different effects on the motion of the interface. In terms of numerical methods and

partial differential equations, the right hand side can be separated into two different

components.

Φt = Fprop|∇(Φ)| + −→
F adv · ∇(Φ)︸ ︷︷ ︸

−H(r,Φ,∇Φ)

+g(r)κ|∇Φ| (2.9)

The first component shown in Equation 2.9 is a combination of the first and the third

terms of Equation 2.7. If the signed distance function is used as the implicit function

then the second term in Equation 2.9 is equivalent to a nonlinear diffusion term. Hence
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we can rewrite Equation 2.9 in two parts as,

ΦI
t = −H(r, Φ,∇Φ) (2.10)

ΦII
t = g(r)∆Φ (2.11)

Φt = ΦI
t + ΦII

t

Equation 2.10 is in the form of a Hamilton-Jacobi equation and Equation 2.11 is a

nonlinear diffusion equation. The numerical schemes for these two parts are different

because the diffusion part does not develop discontinuities during the evolution [30,31]

while Hamilton-Jacobi equations can develop discontinuities. Thus discretization of

these two parts are handled separately.

Diffusion equations are studied extensively in the computer vision and image

processing literature under the topic of diffusion filters [34]. Weickert et al. have

proposed efficient and reliable methods for solving nonlinear diffusion equations in [35].

Central differencing is commonly used to approximate spatial differentiation in these

techniques. The discretization of the diffusion term in the level set formulation is also

done using the central differencing.

Equation 2.10, which is in the form of a Hamilton-Jacobi equation, is more in-

teresting. The interface evolution governed by these types of equations may develop

discontinuities like corners in finite time, even if the flow is very simple. Assume that

the initial Φ is a smooth corner and that we evolve in the normal direction with con-

stant speed. The following equation is the equation for this flow with constant speed

A and Figure 2.4 shows the evolution of such an initial curve.

Φt = A|∇Φ| (2.12)

At a finite time a corner develops, and at that point the normal direction is not

defined and the flow becomes ambiguous. To continue the flow after this point, the

level set equation should be solved numerically for a weak solution. A weak solution of



17

Figure 2.4. Smooth corner moving in its normal direction

(a) Shock (b) Rarefaction-wave

Figure 2.5. Entropy satisfying weak solutions for 1D interfaces embedded in 2D

functions

a differential equation satisfies the integral formulation of the PDE. The integral form

does not require the same degree of differentiability as the differential form, hence

may allow discontinous solutions. The problem with solving for a weak solution is that

even if the differential equation has a unique solution for the given initial and boundary

conditions the weak solution is not unique. So the question arises: Which weak solution

should we solve for? The answer comes from fluid dynamics and physical systems. It

says that Equation 2.10 should be solved for the physically meaningful weak solution,

which Sethian called ”the entropy satisfying” weak solution [30]. Once a discontinuity

is formed, the entropy satisfying weak solution takes one of the two forms shown in

Figure 2.5 depending on the direction of the motion.

The vectors in Table 2.5 shows the direction of motion. In the case of shocks, as

the interface moves corners are developed. The entropy satisfying solution preserves

the shock as the interface evolves. In the case of a rarefaction wave a discontinuity
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is to be separated and the two end points of the discontinuity are combined with a

smooth curve. The numerical scheme applied to solve Equation 2.10 should be able

to evolve the interface towards the entropy satisfying weak solution so that we can

have discontinuous, physically meaningful solutions. Sethian and Fedkiw give details

about such schemes in their books [30, 31]. These numerical schemes are motivated

from the methods proposed to solve hyperbolic conservation laws for which the details

can be found in [33]. The general class of these methods are called the upwinding

schemes. These schemes are based on the method of characteristics that is used to

solve partial differential equations [36]. The method of characteristics tells us which

points in the domain of Φ influences the value of Φ at point r. In other words, the

method tells us the direction of information flow at point r. The upwinding schemes use

this information flow direction to update the value of Φ at every point in the domain.

One of the methods in the class of upwinding schemes, which is commonly used in

level set applications, is the Godunov’s method [33]. The numerical implementation

of Equation 2.10 is done by this method. More details about the consistency and the

stability of numerical methods using upwinding schemes and forward differencing can

be found in [33].

2.4. Topology Preserving Level Sets

The PELS algorithm evolves the colon wall so as to enhance the geometric struc-

tures of colonic polyps. One thing to be careful about in this process is the topological

structure of the colon wall. Creating new holes, merging the colon wall patches or

breaking up the colon wall into two or more parts at some location during the evolu-

tion would change the topological characteristics of structures around that location.

These topological changes might destroy existing polyps and/or introduce additional

structures on the colon wall.

As explained in Section 2.1 geometric deformable models handle topological

changes automatically. While we are moving the interface via solving the level set

equation with respect to the implicit function, we do not have direct access to the

interface embedded. With parametric models, one always works on the interface thus,
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one can easily detect topological changes and explicitly prevent them. In the geometric

deformable models, the topological changes can be detected in the level set formulation

with some modifications on the algorithm. Han et al. in [29] have proposed a modified

level set model, which will be briefly explained in this section, that would detect the

topological changes as they occur and prevent them.

The topology of an interface is the relation between two different regions, which

are separated by the interface. In our case, the colon wall is the boundary separating

the colon tissue and the lumen air. During the evolution, the interface (the zero level

set) moves when the implicit function changes sign at some point. Thus the topological

changes are related to such sign changes. Some of these sign changes do not alter the

topology of the interface depending on the point the sign change is happening at. Such

points are called simple points. Points for which the sign change of the implicit function

at that point changes the topology are non-simple points and detecting these points

before changing the sign enables us to preserve topology of the interface [29]. To detect

these points we need to define concepts like neighborhoods and topological numbers

for digital topology [37].

2.4.1. Digital Topology

Before we begin defining a simple point, we must define neighborhoods in a cubic

grid. The neighborhood relation in digital domain is defined in terms of connectivity.

In a 2-dimensional domain we have two different connectivity types, 4-connected and

8-connected. In 3-dimensions we have three different connectivity types and these can

be seen in Figure 2.6.

Topology of an interface is defined in terms of the relation between regions, which

are separated by the interface. We can call one of these regions “inside” (Ω− = {r ∈
Ω|Φ(r) < 0)}) and the other one “outside” (Ω+ = {r ∈ Ω|Φ(r) > 0)}) with respect to

the interface. Using this convention we can define the following sets of points connected

to a given point. These sets will be useful in classifying between simple points and non-

simple points. For an arbitrary point r,
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Figure 2.6. Types of neighborhoods for the point in the middle of the 3 × 3 × 3 cubic

grid in 3D digital domain

- Nm(r): The set of points m-connected to r, including r.

- N∗
m(r): The set of points m-connected to r, excluding r.

- X: N26(r) ∩ Ω−

- X: N26(r) ∩ Ω+

- Cn(X): The set of all n-connected components in X.

- Ca
n(r, X): The set of all n-connected components of X n-adjacent to the point r.

A n-connected component in the last two definitions resembles a set for which any two

elements can be connected with a n-connected path.

Observe that not all points in a region are topologically important. The significant

points are the ones that are on the boundary between two regions. In other words, all

points 26-connected to a boundary point are not in the same region as the boundary

point. Such points on the boundary may move from one region to the other one during

the evolution and cause topology to change.

In Figure 2.7 white points are in Ω− and black points are in Ω+ and the point in

the middle is on the boundary. This point has a topological significance because the

location of the surface depends on its membership. To detect topological changes in

the surface we need to check the boundary points. If the boundary point is a simple

point then topologically the surface remains equivalent when that point moves from

one region to the other, and if the point is non-simple then topologically the surface



21

Figure 2.7. An example of a topologically significant point

will change.

The topological numbers are determined based on simple relations between the

connectivity of boundary points on both sides of the interface. These relations will

help us classify boundary points into simple and non-simple points. The topological

numbers of a point x relative to the set X are defined in [37] as,

T6(r, X) = #Ca
6 [r, N∗

18(r) ∩ X]

T6+(r, X) = #Ca
6 [r, N∗

26(r) ∩ X]

T26(r, X) = #Ca
26[r, N

∗
26(r) ∩ X]

T18(r, X) = #Ca
18[r, N

∗
18(r) ∩ X]

Similarly these values could be defined for any set, for example for X. In simple

terms, the first quantity represents the number of 6-connected components in the 18-

neighborhood of a point r that are in set X (inside the interface) and the others follow

similarly. For a boundary point we need to use a conjugate pair of topological numbers

of it (one relative to X and the other relative to X) to understand whether it is a

simple point or not. In [37] four different conjugate pairs are given (6,26), (26,6), (6+,

18) and (18,6+). Any one of these pairs may be used, we have used (6,26) pair because

of the ease in implementation. Using this conjugate pair a boundary point is simple if

T6(r, X) = T26(r, X) = 1 and non-simple otherwise.



22

2.4.2. Topology Preserving Level Set Algorithm

In the level set implementation the topology preservation is accomplished by

restricting the evolution of the interface using the ideas of simple points. In our case,

as explained in Section 2.2, the colon tissue is set to have positive values and the lumen

air to have negative values. So a point on the boundary has both negative and positive

valued points in its 26-neighborhood. During the evolution, we should detect such

points and check whether they are changing their sign during iteration or not. For an

arbitrary point the level set algorithm is modified as follows:

• Update the current value at the point using the level set method explained in

Section 2.3.

• If the sign of the function at that point changes, check whether the point is a

simple point or not.

• If the point is a simple point update the value as suggested by the original algo-

rithm.

• If the point is a non-simple point then update the value at this point as:

Φn+1(x) = sign(Φn(r))ε (2.13)

where n is the iteration number and ε is a small positive number.

With this modification in the evolution we prevent non-simple points to move from one

region to the other. Only the simple points are allowed to change region. Hence the

topology of the interface is preserved.
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3. COLON WALL DEFORMATION

In this chapter we are going to give the overview of the algorithm used to deform

colon wall. Then we are going to explain each step in detail and give implemetation

issues at the end.

Two interface propagation flows are proposed for PELS. For both flows the al-

gorithm starts with the segmentation step. The output of the segmentation step is

subvolumes of size 39 × 39 × 39 mm3 containing parts of the colon wall embedded in

an implicit function Φ which is a signed distance function. Our sign convention assigns

positive distance values to the points on the colon tissue and negative values to the

points in the lumen air.

After creating the implicit function, we compute the principal curvatures and

principal curvature direction, which will be explained in Section 3.2.1.1. These features

will be later used in calculating the speed terms. In the level set formulation we have

seen that there were three different terms, propagation term, curvature driven term

and the drift velocity. For both of the flows defined in this thesis, we will only use

the propagation term. Using the principal curvatures, we compute propagation terms,

Fprop. The details of these computations will be given in Sections 3.2.1 and 3.2.2. Then

we evolve the colon wall using level set methods explained in detail in Section 2.3. The

flowchart of the overall algorithm is given in Figure 3.1.

3.1. Segmentation and Preprocessing

The first step in enhancing colonic polyps is the segmentation of the colon wall in

CT images. The segmentation is done in two different steps. The initial segmentation

step is based on the algorithm explained in [16]. This step separates the colon lumen

from the rest of the body. The density of air is less than water and tissue, thus the

Hounsfield Unit (HU) in the CT images is significantly lower for air regions. The air

regions in the body are separated from the tissue by simple thresholding at 350 HU.
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Figure 3.1. The PELS flow chart
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Figure 3.2. Overlapping method

However in CTC data, the colon lumen is not the only air region, the inferior parts of

lungs are also air filled in the images. The air in the lungs has to be segmented and

excluded. 3D region growing is used with an initial seed in an air region with a width

or depth of greater than 60 mm in the most superior axial slice to segment out lungs.

Once lungs are found and excluded, we are left with the colon lumen. We mark the

tissue points in contact with the colon lumen and hence obtain a point cloud consisting

of voxels on the colon wall.

Using the point cloud found in the initial segmentation step we form the colon

wall. However, the whole colon wall is too big to process at once. We wish to run the

enhancing algorithm on smaller subvolumes containing patches of the colon wall. Prior

to choosing the center points of subvolumes, the colon wall is dilated towards the tissue

using a 10 mm cubical structural element to guarantee the coverage of colonic polyps

of size 20 mm or less (whose center will be 10 mm away from the colon wall). The

center points for the subvolumes are chosen from the dilated colon wall. The chosen

subvolumes are of size 39 × 39 × 39 mm3 and the centers are chosen such that the

subvolumes overlap by 20 mm in the manner shown in Figure 3.2.
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Figure 3.3. Segmented colon wall example with the red fog representing the colon

tissue

Using this overlapping method we can be sure that we are not leaving any part of

the colon wall out since the maximum distance between the set of subvolume centers

and set of points on the colon wall is less than 20 mm. Moreover the amount of overlap

guarantees that each polyp of diameter less than 20 mm is contained in at least one

subvolume and most polyps are contained in more than one subvolume.

Some subvolumes selected may contain no parts of the colon wall due to dilation.

After removing these ones the colon wall is segmented once more for each subvolume.

All subvolumes are around the colon wall thus we can confidently assume that the air

regions in each subvolume are part of the colon lumen. To segment the colon wall

we first subtract 350 HU from the whole subvolume. Then we find voxels closest to

the zero crossings by detecting sign differences among neighbors using 6-connectivity.

Collection of these points constitute the segmented colon wall in the current subvolume.

An example of a final segmented colon wall patch contained in a subvolume is given in

Figure 3.3.

Next the colon wall is embedded in an implicit function in order to be used in the

level set formulation. The colon wall patches contained in subvolumes do not have to

be closed surfaces, and most of the time they are not. Hence, the notion of interior and
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exterior regions, as explained in Section 2.2, is not directly applicable. However, the

whole surface is not contained in a single subvolume and the colon wall divides each

subvolume into two regions. The distinction between these regions is rather physical,

the tissue and the lumen. We embed the colon wall patch in each subvolume in a signed

distance function Φ constructed by the fast marching method. As explained in Section

2.2 the sign of the signed distance function is used to distinguish between different

regions. We construct Φ such that voxels in the colon lumen will have negative distance

values and voxels in the colon tissue will have positive distance values. Naturally voxels

on the colon wall itself will have the value zero. As a result for each subvolume we

obtain an implicit function Φ which bears the surface patch contained in the subvolume.

3.2. Polyp Enhancing Level Set Flows

The speed function in the level set formulation is the most important part of the

theory from our view point. As explained in Section 2.3, the speed function defines

the motion of the interface, in our case the colon wall. Creating a speed function is

therefore equivalent to defining a flow. In this chapter, we are going to propose two

different flows, attacking the problem of colonic polyp enhancement from two different

views. The first flow is called the Joint Curvature Flow (JCF) and is created using a

geometric approach. For the second flow, we have taken a variational approach and

derived the Volume Maximizing Constant Surface Flow (VMCSF). These flows are

explained in Sections 3.2.1 and 3.2.2 respectively.

3.2.1. Joint Curvature Flow

The joint curvature flow (JCF) is based on geometric observations on the colon

wall and the polyp region, thus it is a pure geometric approach. Figure 3.4 shows a

phantom polyp and a phantom fold. Observe that the polyp resembles an ideal sphere

partially buried under the colon wall. In order to evolve it towards a pedunculated

shape (ideally a mushroom shape) we have to pull the sphere off the colon wall. The

illustration of this motion is given in Figure 1.2. The approach we took to achieve

this, is to dig polyp necks towards the colon tissue while pulling polyp apices towards
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the lumen air. Thus, the flow that will enhance the polyp should be sensitive to the

neck of the polyp and the polyp apex. Moreover the polyp neck should sink, the polyp

apex should rise and all other regions should stay unchanged. As the flow evolves the

surface, polyp will become apparent on the colon wall and take an ideal mushroom

shape.

The intensity information will not be useful to distinguish between the polyp neck

and all other regions, since the HU values of the polyp and the rest of the colon are

the same. Instead the specific geometric characteristics of these regions will become

useful in this task. These characteristics can be captured by curvature characteristics

of the surface around those regions. Distinguishing between the polyp neck and the

other regions is in fact the main aim of any CAD algorithm since that would tell us

the location of the polyp. This, on the other hand, cannot be done perfectly because

although ”global” shape of a polyp is unique we are only able to look at local neighbor-

hoods around points on the surface to understand if it can be a part of a neck, an apex

or neither. The local information can be deceiving since there may be neighborhoods

not on the polyp neck having very similar local shapes. Therefore we will only be able

to distinguish between local neighborhoods having similar geometric characteristics as

Figure 3.4. Phantom colon wall illustrating a polyp and a fold
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Figure 3.5. The flow chart for the JCF

polyp apex, neck, or other structures.

This flow consists of computing curvature maps, anisotropic smoothing of these

curvature maps, the speed computation and evolving the colon wall using the level set

formulation. Figure 3.5 shows the flowchart of the Joint Curvature Flow summarizing

the relations between these. We will explain each block of the flowchart in detail in

this section.

3.2.1.1. Curvature Calculations . In JCF, we are going to use the curvature charac-

teristics to capture the geometric characteristics of local neighborhoods on the colon

wall. As explained in Section 1.1 curvature characteristics of the colon wall have been

used by many researchers in the detection process. Unlike previous works, we do not

build our speed function on the mean curvature or the gaussian curvature. We used

principal curvatures and principal vectors in creating the desired flow because of the

geometrical insight they provide. The details for the theory of surfaces, curvatures and

equations to compute principal curvatures and vectors using an arbitrary parametriza-
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tion can be found in any introductory textbook on differential geometry, such as [38].

However, we use geometric deformable models and embed the colon wall in a higher

dimensional implicit function. Thus, to compute the principal curvatures and vectors,

we use the implicit function, not a parametrization. In [39], Monga and Benayoun de-

rived the equations to compute several intrinsic and extrinsic parameters of a surface

using the partial derivatives of the implicit function, in which that surface is embedded

in.

Consider the surface Γ defined as an iso-level of an implicit function Φ. Let
−→
t

be a unit vector in the tangent plane of Γ at a point p, and
−→
N p be the normal vector

of the surface at p. The Hessian matrix H of the implicit function is given by,

H =




Φxx Φxy Φxz

Φxy Φyy Φyz

Φxz Φyz Φzz


 (3.1)

where the subscripts denotes partial differentiation in the respective dimension. Using

H, the curvature of Γ at the point p in the direction of
−→
t is given by:

k−→
t = −

−→
t TH

−→
t

||−→N p||
(3.2)

The principal vectors are the unit vectors in the tangent plane of Γ for which the direc-

tional curvature attains an extremum. The extremum values attained are called prin-

cipal curvatures. In order to find the principal curvatures and the principal directions

we have to search for the direction
−→
t for which k−→

t is an extremum. This optimization

problem, when solved by simple calculus, leads to arctangent computations. In order to

avoid this computation, Monga and Benayoun used Lagrange multiplicators technique
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and obtained simple equations:

κi =
hTHh + fTHf ± √

(hTHh − fTHf)2 + 4(hTHf)2

2||−→N p||
(3.3)

−→
ti =




h1 + f1
Ki||−→Np||−hTHh

fT Hh

h2 + f2
Ki||−→Np||−hTHh

fT Hh

h3 + f3
Ki||−→Np||−hTHh

fT Hh


 with i=1,2

where κi and
−→
ti are the ith principal curvature and principal vector respectively. In

addition,
−→
h and

−→
f are defined as:

( −→
N p

||−→N p||
−→
h

−→
f

)
=




Φx

δ
Φy

γ
ΦxΦz

γδ

Φy

δ
−Φx

γ
ΦyΦz

γδ

Φz

δ
0 −γ

δ


 (3.4)

γ =
√

Φ2
x + Φ2

y and δ =
√

Φ2
x + Φ2

y + Φ2
z

The two principal curvatures correspond to the two extrema of Equation 3.2. For every

smooth surface, Equation 3.2 has a minimum and a maximum, moreover the direction

giving the minimum is orthogonal to the direction giving the maximum. This proof

can be found in [38]. As can be seen in Equation 3.3, the second principal curvature is

numerically less than the first principal curvature (κ1 > κ2), thus it is the minimum.

These computations are not only valid for the zero level set (the colon wall)

but for any level set in the domain of Φ. They are valid for all iso-surfaces of Φ and

computed for all the points in the domain of Φ. Using these computations, we compute

four functions (maps): κ1,2 : R
3 → R and

−→
t1,2 : R

3 → R
3. These maps will be used to

construct the speed function for the desired flow.

3.2.1.2. Directional Smoothing. The computed principal curvature maps suffer from

two different problems, due to discrete differentiation and noise. The first problem is

discontinuities seen in these maps. The second problem is that the regions that should

have homogeneous curvature characteristics are broken and interrupted by discontinu-
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ities. For example, although all the points on a polyp neck should have similar principal

curvature values, they differ in reality.

The discontinuities in curvature maps can be overcome with a suitable smoothing

operation. On the other hand, isotropic smoothing operators without directional pref-

erences, like Gaussian filtering, mean filtering and so on, would distribute the speed

values through all neighborhood points equally. So they will not be useful in solving

the second problem mentioned. We use non-symmetric Gaussian filters, which are very

similar to anisotropic diffusion [34] to connect disconnected regions with similar curva-

ture characteristics. In order to complete the disconnected ”iso-curvature” regions, we

will define the kernel of the Gaussian operator using principal vectors at every point,

which form an orthonormal basis for the tangent plane of the colon wall. Although

completing isocurvature regions at every point on the surface is important, our primary

aim is to complete the ones on polyp necks. The observations on the real data have

shown that on the neck of a colonic polyp, one of the principal vectors is parallel to

the direction of the neck while the other one is prependicular to this direction pointing

towards the polyp apex. Due to our sign assignment in the construction of the implicit

function Φ, explained in Section 2.2, the principal vector pointing in the neck direction

is the second one,
−→
t2 . On the other hand a polyp apex ideally consists of umbilical

points (an umbilical point is a point for which κ1 = κ2) thus the principal curvature

directions do not have an specific meanings as in the case of the polyp neck. Figure

3.6 illustrates this on a phantom polyp.

The multidimensional Gaussian filtering, on the other hand, is totally character-

ized by the covariance matrix of the corresponding filter kernel. The eigenvalues of

this matrix determines the amount of smoothing done in respective eigenvector direc-

tions. In order to create a Gaussian filter with the desired amount of smoothing in the

desired direction we have to formulate the covariance matrix. Remembering that the

covariance matrix is a positive definite matrix we can write it as follows,

Σ = V DV −1 (3.5)
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Figure 3.6. The principal curvature directions: (a) The first principal vector (b) The

second principal vector

where Σ is the covariance matrix, V is the matrix of eigenvectors and D is the diagonal

matrix of eigenvalues. We have mentioned that the principal curvature directions are

orthogonal to each other and they form a basis for the tangent plane of the surface,

which is also orthogonal to the normal vector of the surface. Thus, the eigenvectors

of Σ form an orthonormal basis for R
3 and the matrix V becomes orthonormal. In

this case the equality Σ = V DV T holds. By changing the nth entry in the matrix D

we can set the amount of smoothing in the desired direction, which is the nth column

of the matrix V . We obtain the Gaussian filter by using this covariance matrix in a

n-dimensional Gaussian function as

P (r) =
e−

1
2
rT Σ−1r√

(2π)n det(Σ)
(3.6)

where r denotes the position vector. A two dimensional example of such a Gaussian

filter is given in Figure 3.7. Observe that a Gaussian filter using the kernel shown in

Figure 3.7 will smooth more in the y = x line and less in the perpendicular direction.

In this example the matrices D and V are 2 × 2 matrices since the dimension of the

problem is 2. For an n-dimensional system the same matrices will be n × n.

We exploit the same idea in completing the iso-curvature regions on the colon
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Figure 3.7. 2D example of a nonsymmetric Gaussian kernel

wall. The problem is simply directional smoothing on a surface, which is embedded in

a 3D function. As we previously discussed, we use the principal vectors to create the

necessary matrices. At a point on the polyp neck the second principal vector is along

the neck and the first one is towards the polyp apex. So the desired Gaussian filter

should smooth more in the second principal vectors direction and less in the other one.

We calculate a covariance matrix hence for each point. The covariance matrices

are formed using the principal vectors and the normal vector. The diagonal matrix is

used to set the amount of smoothing along each direction. We calculate the covariance

matrix as follows,

Σ =
[ −→

t 1
−→
t 2

−→
N

]



λ1 0 0

0 λ2 0

0 0 λ3







−→
t 1

−→
t 2

−→
N


 (3.7)

where
−→
ti for i = 1, 2 are the principal vectors and

−→
N is the normal vector, (

−→
N =

−→
t1 ×−→

t2 ). As a convention we will call
−→
t2 as the second principal vector whose direction

is along the polyp neck. λi for i = 1, 2, 3 are the smoothing coefficients along the

corresponding directions. Since we want to smooth more in the
−→
t2 direction, λ2 will
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Table 3.1. Anisotropic smoothing coefficients

Coefficients Values

λ1 1.5

λ2 6

λ3 4

be the highest. (Table 3.1 shows the values for these parameters to be used at every

point smoothing will take effect.)

The first diagonal element λ1 is set to 1.5 which is the lowest of all. The reason

for this is not to distribute the curvature information on the necks towards polyp apices

and thus prevent different regions from merging. The second element sets the amount

of smoothing in the second principal direction (along the polyp neck) and thus it has

the highest value to complete the disconnected neck regions. Notice that the third

element, which sets the amount of smoothing in the normal direction to the surface at

that point, is significantly high. By setting this element to a relatively high value, we

achieve smoothing along neighborhooding iso-levels of the implicit function. So that

we smooth out the discontinuities on each iso-level as well as across iso-levels. The

effect of directional smoothing on the principal curvature maps can be better observed

on the speed distribution images given at the end of Section 3.2.1.3.

3.2.1.3. Speed Function. In Section 2.3, we have seen that the speed function in the

level set equation can be divided into three different parts. The second and the third

components, the curvature driven component and the drift velocity, will not be useful

to us in creating the desired flow. The desired flow sinks polyp necks towards the

tissue and pulls polyp apices towards lumen air. To create this motion we are only

using the propagation speed term, which gives the speed in the normal direction. Due

to our sign assignment in the construction of the implicit function Φ the direction of

the normal vector at every point on the surface is towards the colon tissue. In light

of this, the propagation speed assigns, depending on the curvature characteristic of a
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Figure 3.8. Curvature characteristics around a polyp

neighborhood, positive values if the point is similar to point on a polyp neck, negative

values if the point is similar to a point on a polyp apex and zero otherwise.

In order to be able to assign correct speed values to neighborhoods we should

understand the curvature characteristics of local neighborhoods. Initial observations on

the real data show that the polyp apex has a convex structure and it should have both

principal curvatures smaller than zero (due to our sign assignment). The polyp neck

on the other hand has negative second principal curvature and positive first principal

curvature, in other words it has a saddle shape. Figure 3.8 illustrates this on a phantom

polyp. Although the convexity characterizes points on polyp apices, characterizing

polyp necks as saddle is not enough. As there are other structures on which local

neighborhoods behave like a saddle. These structures can be roughly classified into

three different categories, junction of folds, fold necks and noisy bumps in planar

regions. Examples of these points can be seen in Figure 3.9. However, these three

categories differ from the polyp neck in several aspects. The difference between points

on the polyp neck and points on the bumpy planes is the magnitude of principal

curvatures. Bumps on planar regions are not visible and even if they are not cleared

by the smoothing, they have small curvature values. Points on a fold neck also have the
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Figure 3.9. Local neighborhoods having saddle-like curvature characteristics: (a)

polyp neck (b) fold necks (c) junction of folds and (d) bumpy planes

same property. Even though the magnitude of one of the principal curvature values is

high, the other one is small. The difference between junction of folds and polyp necks

is of a different nature. The magnitude of the first principal curvature is higher than

the second one on polyp necks, hence the mean curvature at those points are positive.

The situation is reversed in the case of a junction of folds, i.e. the mean curvature is

negative.

We based our propagation speed function on these observations. It is defined in

a piecewise manner in order to provide different motions on polyp necks and on polyp

apices. Our propagation speed function is

Fprop(κ1, κ2) =




4
(1+e300κ2 )(1+e−300(κ1+κ2))(1+e−40κ1+7.5)

κ1 > 0

−0.05 κ1 < 0
(3.8)

where κ1 is the first principal curvature and κ2 is the second principal curvature. The

propagation term assigns −0.05 to convex regions making them move towards lumen

air. For all other parts that are not convex the propagation term assigns an output

of a nonlinear function of principal curvatures. The graph of the propagation term
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Figure 3.10. The graph of the speed function Fprop(κ1, κ2): Line (a) corresponds to

haustral fold apex and line (b) corresponds to fold necks

and different regions on this graph corresponding to geometric structures on the colon

wall is given in Figure 3.10. This function is very intuitive and another function with

similar properties could be used as well. The numeric values used in this function

are set empirically. The value 300 in the first two terms is used to separate different

regions shown in Figure 3.10. The parameters 40 and 7.5 together with the third

component of the denominator are used to obtain a smooth transition near the point

(κ1, κ2) = (0, 0) so that we do not evolve structures with very small κ1 and κ2 values

since they correspond to bumpy areas on the colon wall. The value −0.05 is set to a

small value not to grow the polyp too much and change the location of its center.

The speed term explained in this section is created by only considering the colon

wall, in other words points corresponding to the zero level set of Φ. However, we should

assign appropriate speed values for all other points in the domain of Φ as explained in

Section 2.3.1. Rather than extending the speed values computed for the colon wall into

the complete domain, we compute it for every point (with respect to the corresponding

level set) as given in Equation 3.8. This way we include the information, brought in
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by the signed distance function of the surface into the complete flow.

Figure 3.11 shows the speed distribution for one of the subvolumes. In the same

figure we also provide the speed distribution calculated without applying directional

smoothing to the curvature maps prior to speed calculations. Thus, the effect of direc-

tional smoothing on the speed computations can be observed. In this figure the same

polyp is shown from two angles. We see that the neck part of the polyp on the right is

captured better when we apply the directional smoothing.
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3.2.2. Volume Maximizing Constant Surface Flow

The volume maximizing constant surface flow (VMCSF) aims to enhance colonic

polyps using a variational approach. The desired flow in this section moves the colon

wall so as to increase the spherical symmetry of polyp apices, and as a result to increase

the performance of CAD algorithms (since the spherical symmetry of colonic polyps

is the main assumption under almost all CAD algorithms). The problem of increasing

the spherical symmetry of certain parts of a surface, like polyps on the colon wall, is

a hard problem to tackle at first. Instead, in order to build the variational framework

for this problem we start from a simpler one. We derive the necessary flow that would

increase the spherical symmetry of the whole of any closed surface, using variational

methods in Section 3.2.2.1. In Section 3.2.2.2 we explain how to apply the derived

results to the colon wall and solve the original problem.

3.2.2.1. Theoretical Derivation. Increasing the spherical symmetry of a closed surface

is equivalent to evolving the surface towards a sphere. Thus we initally tackle the

problem of finding the flow that evolves any closed surface towards a sphere. Observe

that a sphere has the maximum volume for a given surface area. So a flow that

maximizes the volume while keeping the surface area constant will evolve a given closed

surface towards a sphere and increase its spherical symmetry. To find this flow we are

using the constrained maximization problem given as

J(Ω) =

∫
Ω

dv (3.9)

A =

∫
∂Ω

da

where Ω ⊂ R
3 is a bounded open set with regular boundary ∂Ω, A ∈ R is the surface

area and J is the volume functional we want to maximize. This form of the problem

requires us to solve regional integrals, however all the information required by the vol-

ume functional is contained in the enclosed surface. Hence, instead of dealing with

the volume integral we can transform the region functional into a boundary functional,

using the method explained in [40]. Let S(u, v) = {x(u, v), y(u, v), z(u, v)} be a differ-
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entiable parametrization of ∂Ω and w be the unique solution of the Poisson equation

in Ω given as

∆w = −1 in Ω (3.10)

w|∂Ω = 0

By saying that S(u, v) is differentiable we mean it has continuous partial derivatives of

all orders. Since ∂Ω is regular it can be shown that w has continuous partial derivatives

up to second order. Using the parametrization, S(u, v), and w we can rewrite the

constrained maximization problem in terms of surface integrals as

J(S) =

∫
u

∫
v

∇w · (Su × Sv)dudv (3.11)

A =

∫
u

∫
v

|Su × Sv|dudv

where Su and Sv are tangent vectors of the surface ∂Ω [40].

In order to build the link between the maximization problem and the surface

evolution, we use the gradient descent algorithm. This algorithm iteratively finds

the extremum of a function or a functional by moving in the reverse direction of the

gradient, starting from an initial guess. Let us briefly explain the algorithm for a

function. Let f : R
n → R, be the differentiable function we want to find the extremum

of, and let r0 ∈ R
n be the initial guess. Starting from r0 we search for the steady-state

solution of

dr

dt
= −∇f (3.12)

to find the extremum of f , where ∇ is the gradient operator. This equation can be

deduced from the Taylor series expansion of f around rextremum. Observe that Equation

3.12 reaches a steady-state solution when r reaches an extremum of f . In the gradient

descent algorithm we use discrete differentiation to find the steady-state solution of the

differential equation 3.12. After replacing the time derivative with forward differencing
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we obtain the following update rule, where ∆t is the time step used in discretization.

rn = rn−1 + ∇f∆t (3.13)

Using the same idea as in Equations 3.12 and 3.13, we can write the equation

that is to be solved in order to find the surface ∂Ω, which extremize the functional Ĵ .

∂S

∂t
= −δĴ (3.14)

where S is a parametrization for the surface and δ denotes the first variation. This

equation gives us the evolution equation that will move any closed surface to a sphere

with the same surface area. Notice that the functional in Equation 3.14 is not J but Ĵ ,

which also bears the constraint information. When the extremum is reached the right

hand side of this equation, first variation of Ĵ , becomes zero, and solves the Euler-

Lagrange equations for the constrained maximization problem given in Equation 3.11.

As explained in [41, 42], using the Lagrange multipliers technique the Euler-Lagrange

equation for this problem is written as:

Fx − ∂

∂u
Fxu − ∂

∂v
Fxv = 0

Fy − ∂

∂u
Fyu − ∂

∂v
Fyv = 0 (3.15)

Fz − ∂

∂u
Fzu − ∂

∂v
Fzv = 0

where {u, v} are the independent variables, {x, y, z} are the dependent variables, sub-

scripts denote partial differentiation and F is defined using integrands in Equation 3.11

and a Lagrange multiplier λ as,

F = ∇w · (Su × Sv) − λ|Su × Sv| (3.16)

Putting F into Equation 3.15 and simplifying with algebraic manipulations, shown in

Appendix A, we showed that the Euler-Lagrange equations given in Equation 3.15 are
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equivalent to

−(1 − 2λH)(Su × Sv) = 0 (3.17)

where λ is the Lagrange multiplier regarding the area constraint and H is the mean

curvature of the surface ∂Ω parametrized by S(u, v). We mentioned that at the ex-

tremal, Equation 3.17 is satisfied. In other words at the extremal, for every point on

the surface H = 1
2λ

, a constant value. Sphere is a solution for this constrained problem

since it is one of the constant mean curvature surfaces [38]. Using this information and

the constraint we set λ = 1
2H0

= 4
√

A
π

where H0 is the mean curvature of a sphere

with surface area A. Putting it all together we can rewrite evolution equation given in

Equation 3.14 as

∂S

∂t
= (1 − H

H0
)(Su × Sv) = (1 − H

H0
)|Su × Sv|−→N (3.18)

Notice that the term Su×Sv is equal to
−→
N |Su×Sv|, where

−→
N is the outwards nor-

mal vector of the surface ∂Ω. The term |Su×Sv| depends on the parametrization of S.

However, this evolution equation can also be formulated using level sets by embedding

the surface S = ∂Ω into an implicit function Φ such that ∂Ω = {(x, y, z)|Φ(x, y, z) = 0}.
Since the parametrization will not be of any importance in this case, we can think of

|Su × Sv| as a constant. The level set equation of the flow, which we were trying to

construct, is

∂Φ

∂t
= (1 − H

H0

)|∇Φ| (3.19)

Observe that the only parameter that includes ”global” information about the surface

in this equation is H0, which has the initial surface area information. The mean curva-

ture H and the gradient magnitude |∇Φ| are found using local neighborhoods, hence

contains only local information about the surface around a point. When this flow is

applied to a closed surface, all points evolve in order to make their mean curvature
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value H0, independent of all other points on the surface except their own local neigh-

borhoods. In other words, if H is less than H0 at a point r, then 1− H
H0

will be positive

and the point r will move outwards and vice versa. As the mean curvature of a point

gets closer to H0 it slows down and totally stops when it reaches H0. When all points

on the surface stop we obtain a sphere. Figure 3.12 shows the evolution of a cube

under this flow. We see that the corners, where the mean curvature value is higher

than H0, move inwards and sides of the cube, where the mean curvature is lower than

H0, move outwards. These observation will be important when we want to apply this

flow to colon wall for polyp enhancement, in Section 3.2.2.2.

Figure 3.12. Examples of the flow that evolves 3D shapes towards sphere: (a) Initial

shape, a cube (b) After 10 iterations (c) After 25 iterations

3.2.2.2. Application to Polyp Enhancement. In applying the above derivations to the

case of colonic polyps we are going to use the propagation speed to evolve the surface

using level set flow given in Equation 3.19. In Section 3.2.1.3 our speed function

was derived based on geometric observations hence applying to the colon wall was

straightforward. Applying the theory given in Section 3.2.2.1 derived using variational

approaches is a bit more tricky and bears several questions.

In the previous section, we derived the level set flow that evolves closed surfaces

towards a sphere with the same surface area as the initial surface. This flow was

constructed for closed surfaces with known area. In order to apply it to the colon

wall we need to solve several problems arising from the differences between closed
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surfaces and the colon wall. The initial difference is that the colon wall does not have

to be closed in an arbitrary subvolume. This does not create a big problem though

since we know that the colon wall patch contained in a subvolume divides it into two

distinct regions and the level set formulation is applicable for this case. The second

problem is that in the previous section while we were constructing the optimization

problem we have considered all the points of the initial surface. Hence in order to

solve the optimization problem we need to apply the resultant flow to every point on

the surface. For the colon wall on the other hand we do not wish to apply this flow

to the whole colon wall, since that would damage any CAD algorithm. We want to

increase the spherical symmetries of polyp apices and leave other parts unchanged as

much as possible. As we have discussed before, fortunately in the level set flow defined

in Equation 3.19, every point moves independent of all other points of the surface as

long as the ”global” parameter H0 is given. Therefore in the case of the colon wall,

applying the described flow only to some parts of the surface is not a problem, if we can

define an H0 parameter for every point to be evolved. As a result of these differences

two problems arise:

1. How to choose the points that should be evolved using the flow?

2. How to set the H0 parameter for these points?

Most authors have used the assumption that points on polyp apices are spherical

points in their algorithms. We do not want to use this assumption since points on

sessile polyps do not have to be spherical. Instead, we are using the assumption that

points on polyp apices are convex points, which is much more general. So we solve the

first problem above by choosing all convex points on the colon wall to evolve using the

derived flow. The set of all convex points include points on polyp apices and points

from other structures like folds and bumpy planes as can be seen in Figure 3.13.

The second problem needs extra care. In Section 3.2.2.1, we have always assumed

that we know the surface area of the initial shape. The surface area information is used

in finding the H0 parameter. Observing Equation 3.19, we notice that if we set the H0

parameter as the mean curvature of a sphere with smaller surface area than the initial
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Figure 3.13. The red spots on the colon wall are the convex regions

surface, the evolution will first create a bigger sphere with some H1 < H0 (because of

speed magnitude differences). After that point this sphere will grow indefinitely since

1− H
H0

term will always be positive (positive speed means outwards growth). Hence the

evolution will never reach the sphere with mean curvature H0 and diverge. Similarly,

if we set the H0 parameter as the mean curvature of a sphere with greater surface area

then the surface will shrink to a point. To overcome this problem, we use the fact that

the surface initially evolves to a sphere with some mean curvature not equal to H0.

While the surface evolves to a sphere the variance of mean curvature values on the

surface decreases. So instead of waiting until we get the sphere with mean curvature

H0 if we end the evolution when the variance of mean curvature values on the surface

drops below some small value then we can stop surfaces from growing indefinitely or

shrinking to a point. Thus using the variance of mean curvatures as a stopping criteria,

we can evolve surfaces towards spheres regardless of the H0 parameter.

The H0 parameter is related to the area of the surface that will be evolved to

a sphere, however we cannot know surface areas of colonic polyps without detecting

them. Even if we detect them prior to applying the enhancing algorithm, we will still
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have estimates about areas, not exact values. Thus the fact that we can control the

flow without the exact knowledge of H0 is very important for the case of colon. On

the other hand we cannot choose H0 arbitrarily for every convex point on the colon.

Setting H0 to a small value would make polyps shrink and setting it to a large value

would make small bumps on the colon wall grow. So, although we do not need the

exact knowledge of H0, we still need an estimate for it.

We based our estimation scheme on the natural assumption that convex points

on the colon wall that are connected to each other belong to the same structure. We

start by smoothing the principal curvature maps computed in Section 3.2.1.1 using a

Gaussian filter to smooth out any discontinuites. Then we find the connected convex

regions throughout the whole implicit function by locating connected regions with both

curvature values negative. The regions that do not intersect the zero level set of the

implicit function, or intersect it with less than 30 voxels (an empirically set value) are

ignored, since we are interested in structures on the colon wall. For every remaining

connected convex region Ci we find different iso-level patches contained in the region.

Let Γn
i represent the nth iso-level (n level set) patch contained in the ith region. We

define Γn
i as follows,

Γn
i = {r|r ∈ Ci, Φ(r) ∈ (n − 0.5, n + 0.5]} (3.20)

Following this we mark the spherical points on each Γn
i . We use the dimensionless

coefficient of sphericity proposed by Summers in [9]. This coefficient is defined as

� =
|κ1 − κ2|

|H| (3.21)

where κi is the respective principal curvature and H is the mean curvature. For a

perfectly spherical point, � becomes 0 and it is strictly positive otherwise. A point is

assumed to be spherical if � < 1.0. We estimate H0 = H0(r) for the convex point r in

the ith region, either on the zero level set or on any other iso-level, as the mean of 60

largest mean curvature values selected from spherical points in Γ0
i ∪Γ−1

i ∪Γ1
i . There are

certain points that should be explained in this scheme. The reason why we take the
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Figure 3.14. Cartoon: (a) The polyps will move towards spherical patches that are

part of the smallest sphere they are contained in (b) The bumpy areas will become

smoother as local H values will be small leading to a small H0

mean of 60 mean curvature values is to get rid of any discontinuities in the curvature

map, and to prevent small bumpy regions from growing. The reason why we take

spherical points in computing the mean is to prevent sharp ridges from increasing this

mean unnaturally. Last of all, the reason why we use the largest values of the regions

to estimate H0, is because we want to evolve colonic polyps to spherical patches that

are on the smallest sphere that contains the polyp, so that we do not shrink polyps.

This idea is demonstrated in the cartoon in Figure 3.14.

Since we are using the mean of largest H values, the region will grow indefinitely

if we do not use another constraint than the fixed area. Controlling the variances of

mean curvature values on the surface we can stop the growth. For a connected region

Ci either contained in the colon wall or spanning other iso-levels, the propagation

term is set to zero if the variance of mean curvatures of points r ∈ Γ1
i ∪ Γ0

i ∪ Γ−1
i at

that iteration is less than a pre-specified value σ2
0 . Once the variance limit is reached

by every connected region, iterations stop and we obtain the enhanced colon wall.
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Combining the solutions proposed we can write the complete propagation term as

Fprop(r) =


 1 − H(r)

H0(r)
, σ2 > σ2

0, r ∈ ⋃
Ci

0 , otherwise
(3.22)

where r is a voxel (position vector) in the domain of Φ, σ2 is the variance of the

connected convex region and σ2
0 is set empirically as 0.0001. In this flow, as in the

previous one, we do not compute speed values for the voxels on to the colon wall and

then extend these values to all other voxels instead F is computed throughout the

domain. Notice that the parameter H0 and the variance is computed using only the

colon wall and the immediate neighboring iso-surfaces of it. However, propagation

speed values for all voxels in the domain of Φ are set using Equation 3.22. The reason

for computing σ2
0 only around the zero level set is because we are only interested in the

shape of the colon wall. The reason for computing H0 in the same manner throughout

the domain is because, as the implicit function is evolved using Equation 3.19, the zero

level-set (the colon wall) moves towards the other voxels in the connected region and

the surface should encounter the same H0 values at those points to continue its motion

towards the estimated sphere. Figure 3.15 gives a flowchart of the whole method, we

used to apply the derived level set flow to polyp enhancement.

3.3. Implementation Issues

In previous sections of this chapter we have talked about the segmentation algo-

rithm and the speed functions we have used. In this chapter we wish to give details

about the implementation of these flows.

One may choose to update the propagation terms during the level set algorithm,

since the colon wall chages its location during the iterations and propagation terms at

the voxels corresponding to the colon wall changes as well. We take different approaches

in updating the propagation term for the two flows explained. The JCF does not

care about the location of the colon wall while assigning propagation values to voxels

and assigns values to all iso-levels of the signed distance function. Remembering the
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Figure 3.15. The flow chart for the VMCSF

fact that the initial signed distance function contains information about the initial

colon wall, the problem of updating the surface curvatures in a flow that increases the

curvedness of a surface and the computational cost of the speed computation, we chose

not to update the propagation term during the level set iterations for JCF.

On the other hand, VMCSF uses the location of the colon wall while assigning

propagation values to voxels. Moreover, the flow at any voxel is based on the ratio

between the mean curvature value at that voxel, H , and the H0 parameter defined

for the connected convex region the voxel belongs to. If the H estimate of a point on
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an iso-surface is not good enough then the flow may not evolve the surface towards

a spherical patch. Hence, we update the mean curvature values and the propagation

term at each voxel during level set iterations. However, because of computational cost

we update the curvature values once in every ten iterations. This is observed to be

acceptable for the desired flow.

The stopping criteria is also an important part of the level set formulation. For

the JCF, there are two mechanisms that stop the surface evolution. The first one is

the fact that as you move through iso-surfaces the curvature characteristics die off.

Hence, as the colon wall moves, it arrives at regions with low propagation terms. As

the speed decreases, the colon wall slows down and comes to a rest. Thus, the colon

wall converges in time for JCF. In other words, the change in the values of the implicit

function becomes less than a preset value (0.008). The other effect that limits/stops the

motion of the surface is the topology preservation in the algorithm, since that restricts

the motion of the colon wall.

In Section 3.2.2.2 we have talked about the stopping criteria for the VMCSF since

that was an important issue in explaining the flow. Recall that, we use the variance

of mean curvatures for every convex connected region to stop the VMCSF level set

iterations.

The algorithm seen in these flowcharts was coded in C++ using Insight Toolkit

(ITK) and Visualization Toolkit (VTK) libraries. It was implemented in an Intel

PentiumTM IV machine with 2.4 GHz CPU speed and 1GB ram. To enhance a sub-

volume of size 39 × 39 × 39 mm3 took on the average 30 seconds using JCF and 10

seconds using VMCSF. Further optimizations on the code would increase the speed of

the algorithm. To reduce the computation time for the whole colon, several subvolumes

could also be processed in parallel with appropriate hardware.
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4. EVALUATION AND RESULTS

The polyp enhancing level set algorithm (PELS) is proposed to increase the per-

formance of existing CTC-CAD algorithms, which are based on the assumption that

colonic polyps are hemi-spherical protrusions from the colon wall. Although the al-

gorithm may seem to enhance colonic polyps visually, proper evaluation of its effects

on the performance of CAD algorithms is required. To assess the enhancing algorithm

we must use an existing CAD algorithm. In this chapter we explain our evaluation

methodology, give details about the data set used and present experiments.

4.1. Methodology

The evaluation method we used is to compare the results of a previously proposed

CAD algorithm applied to the original colon and to the enhanced colon. As the CAD

algorithm we used the Surface Normal Overlap (SNO) proposed by Paik et al. in [16]. A

brief explanation of the SNO algorithm was given in the Introduction, and more details

are given in Section 4.1.1. In order to understand the effects of the enhancing scheme

on the CAD performance we ran the SNO algorithm first on the original data set, then

on the same data set enhanced by PELS. PELS algorithm, as explained above, runs

on small subvolumes of size 39×39×39 mm3 due to computational limitations. Thus,

to perform a valid comparison, we segmented the colon wall and chose the subvolumes

prior to applying the SNO algorithm. For both runs SNO was applied to segmented

colon wall patches contained in these small subvolumes.

We have used two different criteria to assess the PELS algorithm. The first one is

to compare the SNO scores of colonic polyps, which will give us a hint about spherical

symmetries of them, found by the SNO algorithm before and after enhancing the colon

wall. Although comparison of SNO scores gives us some insight on the performance of

enhancing algorithm on colonic polyps, it does not give us information about the effect

of the algorithm on other structures. The performance of a CAD algorithm depends

not only on its response to polyps, i.e. its sensitivity, but also on its response to non-
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polyp structures, i.e. its specificity. Thus, the effect of the enhancing algorithm on

other structures than polyps in the colon is very important. In order to understand this

effect, we measured the performance of the SNO algorithm using free-response receiver

operating characteristic (FROC) analysis for both runs of SNO. Then we compared

FROC curves obtained from the enhanced surface and the original surface. Details for

the FROC analysis is given in 4.1.2.

4.1.1. Surface Normal Overlap

The surface normal overlap (SNO) algorithm uses the observation that for spheri-

cal and hemispherical structures surface normals intersect at the center points, [16]. In

the algorithm each voxel in the tissue accumulates a score proportional to the number

of surface normals passing through or near it. Colonic polyps tend to have convex

regions on their surfaces, thus the inward pointing surface normal vectors near these

regions intersect or nearly intersect within the tissue. Haustral folds also have convex

regions on them, however since they have a dominant curvature along a single direction

the score for folds is generally lower than polyps.

SNO counts the number of surface normals that pass through or near to each

voxel. In order to limit the contributions from normal vectors coming from very distant

structures, the length of projected normals is limited to 10 mm. Since in the real

patient data colonic polyps may deviate from a perfect hemisphere, robustness to

these variations is crucial. The length of projected surface normals provides robustness

against objects with nonconstant surface points to center. The other problem arising

from the variations is that surface normals of a polyp may never intersect inside the

tissue but pass near each other. To deal with these kind of skewed surface normals

SNO uses weighted cylinders of finite width to project normals, in which the weight

decreases radially with a gaussian distribution of some specified variance. Weights

passing from a voxel are aggregated and the final sum of these weights becomes the

SNO score for that voxel. As a result spherically symmetric structures, like polyps,

would yield a higher SNO scores than other structures in the colon.
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4.1.2. Free-response Receiver Operating Characteristic Analysis

Receiving operating characteristics (ROC) analysis is commonly used in evalua-

tion of CAD algorithms, [21]. In an ROC experiment the algorithm is applied to many

different images, some of them containing abnormalities and some do not. Each image

is rated into 5 different classes according to the confidence that the image is normal or

abnormal. As an example, 5 means high confidence that the image contains abnormal

structures and 1 means high confidence that the image is normal. Intermediate classes

represent the levels of confidence that image is abnormal in the increasing order. The

ROC curve is a plot of true positive fraction (TPF) vs. false positive fraction (FPF).

It is obtained by counting first the 5-responses, then 5 plus 4 responses and so on. The

area under the ROC curve is used for objective measurement on the performance of

the CAD algorithm.

As explained in [21], there are several problems with the ROC analysis if we want

to apply it to the case of CT-colonography, in which localization of lesions is important.

The ROC analysis can be used effectively in applications where the localization is not

of importance because it rates the whole image. But it cannot be used if the position

of the lesion is important. One other problem is the fact that the ROC analysis does

not care about the multiple responses of the CAD algorithm to a single image. The

last problem is that there exists an ambiguity in the ROC analysis: Assume an image

contains an abnormal structure in it and the CAD algorithm fails to detect it. If the

CAD algorithm detects a false positive on the same image, then the ROC analysis will

not be able to distinguish this failure. Because of all these problems ROC analysis will

not be effective in evaluating our algorithm.

We are using free-response receiver operating characteristic (FROC) analysis in

order to measure the performance of the SNO algorithm. For each colonic polyp, the

FROC analysis finds the number of false positives with a score higher than the polyp.

A colonic polyp is considered to be detected, a true positive, if the CAD algorithm

detects the polyp to within a certain distance from the center of it. This distance is

commonly set as the radius of the polyp as reported by a radiologist. The FROC curve
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is a plot of fraction of true positives vs. the number of false positives detected until

all the true positive in that fraction are found. CAD algorithms may produce multiple

hits for the same polyp. Hence in order to use the true fraction of polyps while doing

the FROC analysis we need to cancel multiple hits coming from the same polyp. One

way of doing this, is to subsample points detected by the CAD algorithm. We first set

a size limit, Rlimit, which is the radius of the smallest polyp that will be included in the

analysis. Then we sort points detected by the SNO algorithm according to their score

in an descending order. Starting from the top, for each detected point m, we remove

any other detected point that is closer to m than Rlimit and has a lower score than m.

This way we remove multiple detections of the same structure and keep the detection

with the highest SNO score.

The FROC analysis takes into account the localization of the abnormality by the

CAD algorithm and it allows multiple responds to a single image. Thus, it would be

more effective in evaluating a CAD algorithm in the case of CT colonography.

4.2. Data Set

In the evaluation of PELS we have used two different real patient datasets. In the

first dataset a total 8 CT colonography exams performed at either Stanford University

or at the San Francisco VA hospital were used to include a reasonably large number of

colonic polyps and to balance the number of patients with and without large polyps.

These 8 patients were given rectal air contrast and scanned in the supine position with

single- or multidetector helical CT (GE HiSpeed/CTi or LightSpeed, General Electric

Medical Systems, Milwaukee, WI) with effective section width oof 2.5 − 3.75 mm and

50% overlapping reconstruction. Immediately following CT scanning, each patient

also underwent fiber-optic colonoscopy (FOC). These results were correlated to the

CT images with a total of 7 polyps (≥ 10 mm ) found in 4 of 8 patients and a total

of 11 small polyps (5 − 9 mm) found in 3 of 8 patients. A wide range of polyp shapes

were present in the dataset.

In order to create the gold standard for the dataset a study coordinator with
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extensive experience in CTC and blinded to CAD results carefully reviewed the CTC

data and recorded the location and diameter of polyps found by FOC. Only one signif-

icant polyp (measured as 15 mm by FOC) was unable to be located in the CT images,

most likely due to retained water. A total of 10 small polyps (1 was 8 mm and 9 were

5−6 mm measured by FOC) were unable to be located in the CT images. These polyps

are not included in the evaluation since they are not the fault of the CAD algorithm.

The second database we used was acquired from a 56 year old female patient for

evaluation. The patient was scanned in the prone position in an 8 slice multi-detector

row CT scanner (GE Lightspeed Ultra, Milwaukee, WI) in the 4 slice helical mode (slice

width=2.5 mm, pitch=0.75, slice spacing=1.25 mm, FOV=36 cm reconstructed on a

512 × 512 matrix, kV=120, mA=120). She underwent fiberoptic colonoscopy immedi-

ately after the CT scan 47 polyps were detected - 16 smaller than 5 mm, 24 between

5 mm and 8 mm, 7 larger than 8 mm. The gold standard was generated by a radiologist

with 8 years of experience in CTC, who marked the centers of colonoscopy-confirmed

polyps and measured their diameters using a custom built computer program.

In evaluation of the PELS algorithm using the scheme explained in Section 4.1,

we combined these databases obtaining one with 9 patients. Adding the numbers above

we get 12 ”clinically significant” polyps (≥ 10 mm) and 37 small polyps (5− 9 mm) in

our database.

4.3. Experiments with JCF

4.3.1. Results

Results for the non-enhanced data given in this section are obtained by combining

the outputs of SNO algorithm applied to original colons of 9 patients. Similarly, the

results for the enhanced data are obtained by combining the outputs of SNO applied

to enhanced colons. Before giving results for the whole dataset, in Figures 4.1 we give

some examples of enhanced subvolumes, and results on these. These figures illustrates

the motion we obtained by applying the JCF to polyps and non-polyp structures, as
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Figure 4.1. JCF results: (a) Original subvolume (b) Enhanced subvolume

well as SNO scores of two sessile and one pedunculated polyps in these subvolumes.

Observe that the effect of enhancing polyps using JCF is more apparent in the case

of sessile polyps. SNO scores also confirm this observation. The score for one of the

sessile polyps of size 10.4 mm increased from 2.37 to 2.98 and the score for the other

one, which is of size 8.2 mm increased from 2.97 to 3.41. On the other hand the score

for the pedunculated polyp of size 10.7 mm remained nearly constant, it went from

4.94 to 5.04.

In Figure 4.2 we compare the SNO scores for all polyps detected by the CAD

algorithm in the original and the enhanced dataset. The y = x line is also drawn in the
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figure to be able to make a good comparison between two scores of a polyp. If a point

in Figure 4.2 is above the y = x line this means that the PELS algorithm increased

the SNO score for the polyp corresponding to this point. In the opposite case, the

PELS algorithm decreased its SNO score. In the SNO score plot there are some points

on the x or the y axis. These points correspond to polyps, which was found in one

dataset and not found in the other. For example if a polyp is not detected on the

original subvolume but detected on the enhanced subvolume using SNO then we mark

the SNO score for that polyp on the y axis. Although we have designed the algorithm

without any size considerations, it may work different on polyps of different size. Thus,

in the figure we also discriminate between polyps of different size by the type of the

marker used. We see that almost all marks are above the y = x line, in other words

Figure 4.2. Graph of SNO scores of enhanced polyps vs. original polyps

for almost all polyps SNO score increases when we enhance the colon. There are only

3 small polyps and one ”clinically significant” (≥ 9 mm) polyp below the y = x line.

There are 5 polyps that were not detected on the original colon but detected when the

colon was enhanced. On the other hand there is one polyp that was detected in the

original colon but not detected in the enhanced one.
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In Section 4.1 we have mentioned the importance of the effect of the enhanc-

ing algorithm on non-polyp structures and the method to assess this. We did FROC

analysis on both the original and the enhanced colons’ results to evaluate the PELS

algorithm with JCF and observe the change in performance of the SNO algorithm

introduced by enhancing the colon. The FROC analysis is done twice, once for ”clin-

ically significant” polyps by setting the size limit we use in FROC analysis, Rlimit, to

4.5 mm, and once for polyps larger than 5 mm by setting Rlimit to 2.5 mm. In Figures

4.3 we provide FROC curves for ”clinically significant” polyps and in Figures 4.4 we

give FROC curves for all polyps larger than 5 mm. The solid lines in these figures are

FROC curves for the results of SNO applied to the dataset enhanced by PELS using

JCF, and the dashed lines are FROC curves for the original colon.

In Figure 4.3(a) we observe that the solid line is most of the time to the left of

the dashed line. This means that less FPs are detected on the enhanced colon wall

for the same sensitivity level. Numerically speaking until SNO detects all the polyps

greater than 9.00 mm (12/12 sensitivity), 551 FPs were detected on the original colon

while only 134 FPs were detected on the enhanced colon wall. At the 11/12 sensitivity

level 124 FPs were detected on the original colon and 91 FPs detected on the enhanced

colon. However there are several points where the dashed line falls to the left of the

solid line. At the 10/12 sensitivity level 77 FPs were detected on the enhanced colon

while 43 FPs were detected on the original colon. Similarly in Figure 4.3(b) at the 5/12

sensitivity level SNO performs better on the original colon wall. For the case of all

polyps larger than 5.00 mm, the difference between the solid line and the dashed line

is more apparent. The SNO algorithm does not reach 49/49 sensitivity level neither on

the original colon or on the enhanced colon. On the original colon wall SNO reaches

33/49 sensitivity and detects 14792 FPs for that level, on the enhanced colon it reaches

37/49 sensitivity and detects 4201 FPs for that level. Figure 4.4(a) does not show the

whole FROC curve of the original colon for visualization purposes.
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(a)

(b)

Figure 4.3. FROC curves for polyps larger than 9.0 mm: (a) The whole FROC curve

and (b) Same curve but zoomed around the origin
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(a)

(b)

Figure 4.4. FROC curves for polyps larger than 5.0 mm: (a) The whole FROC curve

and (b) Same curve but zoomed around the origin
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4.3.2. Discussions

Observing FROC curves in Section 4.3.1 we see that the Joint Curvature Flow

(JCF) increases SNO scores for most polyps larger than 5 mm and decreases number

of false positives for almost all sensitivity levels. The FROC curves in Figure 4.3 show

that for 100% sensitivity the false positive numbers decrease from 551 to 134, which is

less than a quarter of the original number of FPs. In the case of all polyps larger than

5 mm the improvement is even more visible. The FROC curve for the enhanced colon

remains above the original one for the whole time. Moreover several polyps that were

not detected before become visible to the CAD algorithm when enhanced.

Although the enhancing algorithm applied with JCF seems to improve the overall

performance there are some problematic structures for which enhancing algorithm is not

successful. In Figure 4.5(a) we see a polyp of size 14.0 mm in diameter. The SNO score

for this polyp before enhancing was 3.34, but this score drops to 3.17 after enhancing

it with the JCF. The reason for this is because the enhancing algorithm captures only

a small part of the polyp neck, and evolving only that part decreases the intersection

of the surface normals. In Figure 4.5(b) we see a false positive that was not present on

the original colon wall. This false positive arises from the segmented surface patches

those are not part of the colon wall but they are very close to the surface. Evolving

these parts and changing their shapes introduce them as false positives. These parts are

enhanced because they have similar curvature characteristics as polyp necks. The SNO

score for this false positive after enhancing it is 3.14. Last of all, in Figure 4.5(c) we see

a false positive whose SNO score is increased by the enhancing algorithm. The score

of this thickened fold was 2.9 on the original colon, and it became 3.1 after enhancing

the colon. Since the thickened fold resembles a colonic polyp geometrically, when the

neck of this fold is enhanced its score increases.

These observations show us some important facts about the PELS algorithm using

JCF. In order to be able to enhance the shape of the colonic polyp the JCF should

be able to capture most of the neck of the polyp. For all polyps used in this work

except the one shown in Figure 4.5(a) JCF captured enough of the neck of polyps so
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to increase their scores. The other fact is that the JCF was designed considering only

the colon wall. Motion at segmentation artifacts is unpredictable since their curvature

characteristics are unpredictable. Thus, these artifacts may create problems as the one

seen in Figure 4.5(b).

4.4. Experiments with VMCSF

4.4.1. Results

Results in this section are obtained in the same manner as in the Section 4.4.1.

In Figure 4.6 we give some examples of enhanced subvolumes. These figures illustrate

the effect of the flow applied on both polyps and non-polyp structures and give SNO

scores for polyps in these subvolumes. Observing these images we see that the effect

of the VMCSF is more apparent on the spherically less symmetric polyps, which was

our intention in creating the flow. By spherical symmetry we mean the sphericity of

the patch that forms the polyp apex. SNO scores confirm this observation as well. For

the two spherically less symmetric polyps in Figure 4.6, which are 10.4 and 8.2 mm,

SNO scores increase from 2.37 to 2.52 and from 3.56 to 4.06 respectively. However for

the spherically symmetric one, which is also 8.2 mm the score does not change much,

it increases from 2.97 only to 3.07.

In Figure 4.7 we compare the SNO scores for all polyps detected by the CAD

algorithm in the original and the enhanced dataset. This graph is plotted in the same

manner as the graph in Figure 4.2, hence meaning of marks and the role of the line are

the same in both figures. We observe that most marks are above the y = x line, but

except a few they are close to the line. In other words although there exists an increase

in SNO scores, the amount is not very big. There are 5 small polyps those are below

the y = x line indicating that enhancing algorithm using VMCSF have decreased SNO

scores for these polyps. There are 5 small polyps that were detected by the SNO in the

enhanced colon but not in the original colon, and there is one small polyp for which

the case is the reverse.
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(a)

(b)

(c)

Figure 4.5. Problematic structures JCF is having trouble with: (a) PELS with JCF

decreases the SNO score for this polyp (b) PELS with JCF introduces this false

positive and (c) PELS with JCF increases the score for this false positive
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Figure 4.6. VMCSF results: (a) Original subvolume (b) Enhanced subvolume
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Figure 4.7. Graph of SNO scores of enhanced polyps vs. original polyps

As in Section 4.3.1 we performed FROC analysis on results of the SNO algorithm

applied to the colon enhanced using PELS with VMCSF. The analysis was done twice

in the manner explained in Section 4.3.1. In Figure 4.8 we provide FROC curves for

”clinically significant” polyps and in Figure 4.9 we give FROC curves for all polyps

larger than 5 mm. The method used to draw these FROC curves are similar to those

given in Section 4.3.1, hence the meaning of solid and dashed lines are the same.

The solid line in Figure 4.8 is very close to the dashed line. The number of FPs

detected for different sensitivity levels are almost the same for both the original and

the enhanced colon. The only big difference between curves is the number of FPs at

12/12 sensitivity level, for which 551 FPs were found in the original colon and 395 FPs

were found in the enhanced colon. Other than that, difference between FP values are

small and they are in favour of the original colon. At the 11/12 sensitivity level 124

FPs were found in the original colon and 125 FPs were detected in the enhanced colon;

and at the 7/12 sensitivity level 25 FPs were found in the original colon while 33 FPs
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(a)

(b)

Figure 4.8. FROC curves for polyps larger than 9.0 mm: (a) The whole FROC curve

and (b) Same curve but zoomed around the origin



69

were found in the enhanced one. The difference between FROC curves is much more

apparent in the case of all polyps larger than 5.00 mm. Once more the SNO algorithm

could not reach 49/49 sensitivity level neither on the original colon or on the enhanced

colon. The number of FPs detected at the maximum sensitivity level (37/49) on the

enhanced colon is 4302 while the number of FPs detected on the original colon is 14792

at its maximum sensitivity level (33/49). Figure 4.9(a) does not show the whole FROC

curve of the original colon for visualization purposes.

4.4.2. Discussions

The PELS algorithm when used with the Volume Maximizing Constant Surface

Flow (VMCSF) increases SNO scores for all polyps larger than 9 mm and for almost

all polyps larger than 5 mm. However the increase in scores of polyps larger than

9 mm is subtle as can be seen in Figure 4.7. The FROC curves seen in Figure 4.8 show

that the VMCSF algorithm is not very successful in decreasing the number of false

positives. Even though the number FPs drops to 395 from 551 at the 100% sensitivity,

this improvement is not observed for other sensitivity levels. The FROC curves for

polyps larger than 9 mm are very close to each other. On the other hand for the case

of small polyps (5 − 9 mm) results are better. The increase in SNO scores of these

polyps is more apparent and the FROC curves given in 4.9 confirm this. The FROC

curve for the enhanced colon is above the FROC curve for the original colon for most

of the time, showing an increase in the performance of the SNO algorithm in detecting

small polyps.

There are two major drawbacks of the PELS algorithm when using VMCSF.

The first one is that the SNO scores for ”clinically significant” polyps do not increase

much. However this is not the primary problem with this flow. The primary problem

is the introduction of new false positives and the increase in SNO scores for existing

false positives. Figure 4.10(a) shows one false positive that was introduced by the

enhancing algorithm with a score of 3.81. We see that although the original colon

wall is a cylinder, the flow is not successful in keeping this surface unchanged. The

problem is in the scheme we are using to set the H0 parameter. Ideally, this parameter
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(a)

(b)

Figure 4.9. FROC curves for polyps larger than 5.0 mm: (a) The whole FROC curve

and (b) Same curve but zoomed around the origin
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should be equivalent to the mean curvature values on a cylinder. However the convex

regions in this surface patch have noisy mean curvature distributions. Moreover, we

are choosing the largest 60 mean curvature values to estimate the H0 parameter in

every convex region. As a result connected convex regions on this patch grow and

create false positives. The other problematic structure seen in Figure 4.10(b) is a false

positive, which exists on the original colon wall but enhanced by the PELS algorithm.

This thickened fold was also a problem for the JCF flow. This time however the SNO

score of this structure went from 2.9 to 3.45 creating a much bigger problem. The fact

that the thickened fold resembles a polyp with very little spherical symmetry makes it

a perfect candidate for the VMCSF to enhance.

We see that the VMCSF algorithm is not very successful in increasing the SNO

scores for large polyps. In addition to this, when the curvature distributions of con-

nected convex regions are very noisy then the H0 estimate becomes unrealistic and the

flow may inflate or deflate regions which should not be altered at all. For these cases

estimation scheme we are using becomes ineffective.

4.5. Comparison of JCF and VMCSF

We gave the evaluation and the results of the PELS algorithm using Joint Cur-

vature Flow (JCF) in Section 4.3.1 and using Volume Maximizing Constant Surface

Flow (VMCSF) in Section 4.4.1. In each section we compared the colon wall enhanced

by the proposed flow with the original colon wall in terms of the performance of SNO

algorithm. In this section we provide a similar comparison between the two proposed

flows.

Comparing the performances of proposed flows on ”clinically significant” polyps,

we see that JCF does a better job in increasing SNO scores. For these polyps the

intersection of surface normals is increased more by sinking polyp necks than increasing

the spherical symmetry of polyp apices. Figure 4.11 shows the comparison of SNO

scores for polyps obtained after enhancing with JCF and VMCSF. We observe that

most polyps larger than 9 mm are above the y = x line. On the other hand, most
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(a)

(b)

Figure 4.10. Problematic structures VMCSF is having trouble with: (a) PELS with

VMCSF introduces this false positive and (b) PELS with VMCSF increases the SNO

score for this false positive
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Figure 4.11. Graph of SNO scores of polyps enhanced with JCF vs. polyps enhanced

with VMCSF

small polyps (5 − 9 mm) are below the y = x line showing that VMCSF is better

in increasing SNO scores of these polyps. For small polyps sinking the neck region

reduces the volume of the polyp, while increasing the spherical symmetry of the apex

part enlarges the polyp. The enlargement of the volume increases the number of

intersecting surface normals more.

The FROC analysis on these flows have shown that for polyps larger than 9 mm,

JCF reduces the number of false positives for the same sensitivity level, while VMCSF

does not change the number of false positives so much. This observation is consistent

with the observations on SNO scores for these polyps. In Figure 4.12 we plot the

FROC curves of results of both flows for ”clinically significant” polyps. We see that

the number of false positives detected on the colon enhanced by JCF is almost all the

time smaller at the same sensitivity level. There is only one point for which VMCSF

yields a smaller number of FPs.
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Figure 4.12. FROC curves for polyps larger than 9.00 mm

When we include the small polyps in the FROC analysis we notice that the

difference seen in Figure 4.13 is reduced. Although JCF performs better for large

polyps, VMCSF performs better for small polyps and the solid and the dashed lines

meet each other at some point. There are some sensitivity levels for which VMCSF

yields less FPs and there are some JCF yields less FPs. Comparing these two flows

we can say that the JCF increases the performance of SNO algorithm more than

the VMCSF does. Although for small polyps they are comparable, for ”clinically

significant” polyps JCF is far better. As a result we can say that PELS algorithm that

uses the JCF is more preferable than the PELS algorithm using VMCSF.
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Figure 4.13. FROC curves for polyps larger than 5.00 mm
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5. CONCLUSIONS

In this thesis, we have proposed a polyp enhancement scheme, based on the

well known level set formulation. The aim of this algorithm is to evolve the whole

colon wall using level set methods so to enhance geometric shapes colonic polyps and

increase the performance of existing CTC-CAD algorithms. In order to build polyp

enhancing level set methods (PELS) we proposed two different speed functions created

by different approaches. We have used the geometric approach to create the Joint

Curvature Flow (JCF). This flow was based on geometric observations on the real

patient colon wall. Volume Maximizing Constant Surface Flow (VMCSF) was created

using a variational approach, for which we started from the general question: How

to increase the spherical symmetry of a surface? We have used the Surface Normal

Overlap (SNO) algorithm in order to evaluate the PELS with these two flows. We

have seen that both flows increased the performance of the SNO algorithm to some

extent. JCF performed better in the case of ”clinically significant” (≥ 9 mm) polyps.

For smaller polyps VMCSF performs slightly better than the JCF. As a result because

”clinically significant” polyps are more important JCF is preferred over VMCSF to be

used with PELS.

In the evaluation of the PELS we have only used SNO as the CAD algorithm,

which was designed to detect polyps of size larger than 9 mm in diameter. For a more

accurate assessment of PELS we need to evaluate it with several other CAD algorithms

designed to detect polyps of any size. The dataset used in evaluation consisted of

9 patients containing 12 polyps bigger than 9 mm, and 37 polyps of size between

5 − 9 mm. Evaluating the PELS algorithm with a bigger dataset would provide us a

better insight about its performance.

Along with the approaches mentioned above, as a future work we aim to combine

geometric and the variational approach in one flow. JCF and VMCSF perform better

at different sizes, combining these flows together we can make use of the advantages

of both flows. The resulting flow would sink polyp necks while increasing spherical
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symmetries of polyp apices.

One other topic for future research is to design a CAD algorithm that uses the

PELS and the information coming from the level set evolution. The amount of defor-

mation at different points of the colon wall may be used to detect colonic polyps. In

addition to this an optimal CAD algorithm may be designed that makes direct use of

the spherical symmetries of polyps in detecting them, which would be used with PELS

for better CAD performances.

Current implementation of the algorithm is not optimized and because of large

data size the speed of the algorithm is poor. It takes about 1 day to enhance a human

colon and detect colonic polyps in it, which is too long. By further optimizations on

the code and increased computational power the speed issues can be overcome and the

processing time for a colon may be reduced to a few hours.
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APPENDIX A: SIMPLIFYING EULER-LAGRANGE

EQUATIONS

In Section 3.2.2.1 we have seen that the Euler-Lagrange equations for the con-

straint maximization problem given in Equation 3.11 is given as:

Fx − ∂

∂u
Fxu − ∂

∂v
Fxv = 0

Fy − ∂

∂u
Fyu − ∂

∂v
Fyv = 0 (A.1)

Fz − ∂

∂u
Fzu − ∂

∂v
Fzv = 0

where F is given as:

F = ∇w · (Su × Sv) − λ|Su × Sv| (A.2)

for a Lagrange multiplier λ. Since w is twice continuously differentiable and S is dif-

ferentiable, F is also twice continuously differentiable. Before we begin to simplify

the Euler-Lagrange equations let us review some terms coming from differential ge-

ometry [38]. For a regular surface parameterized by S(u, v), where S is differentiable

(have continuous partial derivatives of all orders), the first fundamental form I and the

second fundamental form II are defined as:

EI = Su · Su

FI = Su · Sv

GI = Sv · Sv

eII = N · Suu

fII = N · Suv = N · Svu

gII = N · Svv
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where · is dot product, subscripts I and II denote the first and second fundamental

forms respectively, and other subscripts denotes partial derivatives. Using these terms

let us define a11 and a22 as:

a11 =
fIIFI − eIIEI

EIGI − F 2
I

a22 =
fIIFI − gIIEI

EIGI − F 2
I

The derivations of all three equations seen in A.1 are similar, thus we demonstrate this

derivation only for the first one. Taking the partial derivatives of F with respect to x,

xu and xv we obtain:

∂F

∂x
=

(
∂

∂x
∇w

)
· (Su × Sv)

∂F

∂xu

= −(wyzv − wzyv) − λ
−→
N · [(1, 0, 0) × Sv]

∂F

∂xv

= (wyzu − wzyu) − λ
−→
N · [Su × (1, 0, 0)]

in which we have used
−→
N = Su×Sv

|Su×Sv| . Taking further partial derivatives with respect to

u and v we get the following:

∂

∂u

∂F

∂xu
= −

(
∂

∂y
∇w · Su

)
zv − wyzvu +

(
∂

∂z
∇w · Su

)
yv + wzyvu

− λ{−→N u · [(1, 0, 0) × Sv] +
−→
N · [(1, 0, 0) × Svu]}

∂

∂v

∂F

∂xv
= −

(
∂

∂z
∇w · Sv

)
yu − wzyuv +

(
∂

∂y
∇w · Sv

)
zu + wyzuv

− λ{−→N v · [Su × (1, 0, 0)] +
−→
N · [Suv × (1, 0, 0)]}

Combining the terms Fx,
∂
∂u

Fxu and ∂
∂v

Fxv we write the Euler-Lagrange equation as:

∂F

∂x
− ∂

∂u

∂F

∂xu
− ∂

∂v

∂F

∂xv
=

∂

∂x
∇w · (Su × Sv) +

∂

∂y
∇w · (Suzv − Svzu)

+
∂

∂z
∇w · (Svyu − Suyv) − λ(a11 + a22)[yvzu − yuzv] = 0
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where we have used the fact that partial derivatives of
−→
N reside in the tangent plane

of the surface parameterized by S, in other words
−→
N u = a11Su + a21Sv and

−→
N v =

a12Su + a22Sv, [38]. After cancellations and collecting the alike terms we get:

(wxx + wyy + wzz)[zvyu − zuyv] − λ(a11 + a22)[yvzu − yuzv] = 0

Noticing the laplacian operator and using the fact that H = a11+a22

2
, where H is the

mean curvature of the surface we get the final result for the first equation in A.1 to be:

(∆w + 2λH)[zvyu − zuyv] = 0 (A.3)

Similar manipulations on the second and the third equations of A.1 yield the following

equations:

(∆w + 2λH)[zuxv − zvxu] = 0 (A.4)

(∆w + 2λH)[xuyv − xvyu] = 0

Combining the A.3 and A.4, noticing the cross product and placing ∆w = −1 we get

the final result as given in Equation A.5.

−[1 − 2λH ](Su × Sv) = 0 (A.5)
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