An overview of segmentation algorithms in medical imaging

Hervé Delingette Herve.Delingette@inria.fr

Overview

- (Short) Introduction to Medical Imagery
- Overview of image segmentation techniques
 - Different types of segmentation methods
 - Thresholding/classification
 - Deformable Models methods
- Limitations and perspectives

Medical Imaging

Roentgen, 1895

Characteristics of medical images (1)

Intensity values are related to <u>physical tissue</u> <u>characteristics</u> which in turn may relate to a <u>physiological phenomenon</u>

Main Imaging Modalities

MRI

pintigraphy

Density of X-Ray absorption

Ultrasound

Density of injected isotopes

Density and

structure of

Protons

Variations of Acoustic Impedance

Characteristics of medical images (2)

Very often medical images are volumetric
Voxel Representation

• 3D Image reconstructed from projections with computed tomography algorithms

Overview

- Introduction to Medical Imagery
- Overview of image segmentation techniques
 - Different types of segmentation methods
 - Thresholding/classification
 - Deformable Models methods
- Limitations and perspectives

Image Segmentation

Segmentation Task

- Huge number of available algorithms
- Possible classifications :
 - <u>Generic</u> vs task-oriented
 - Bottom-up vs Top-down approaches
 - Boundary vs Region approaches
 - Explicit vs Implicit A priori knowledge

No Universal Segmentation Algorithm

- A segmentation algorithm has a limited range of application
- Example : deformable models

Bottom-up Approach

Medical Image

Feature Extraction

Feature Grouping

Region/Boundary Extraction

Top-down approach RINRIA

Region vs Boundary Methods

Image

Region-based segmentation

Boundary-based segmentation

Computational vs Explicit A priori knowledge

- A priori knowledge about the structure to segment is the key to enhance robustness
- Computational knowledge : statistical analysis

Image + structure Database

Statistical classifier

Neural Networks

Principal Component Analysis

Training

Explicit knowledge

- Explicit knowledge : expert system
 - Define rules of delineation from expert
 - Translate predicate into high/low level image processing
 - Combine rules in a probabilistic framework

Two Segmentation Methods

Focus on 2 segmentation methods :

•**Bottom-up** : Thresholding /Classification

•**Top-down** :3D and 4D deformable models

	Thresholding /Classification	Deformable Models	Markov Random Field
Shape Information	None	Important	local
Intensity Information	Essential	Important	Important
Boundary/Region	Region	Boundary	Region

Overview

- Introduction to Medical Imagery
- Overview of image segmentation techniques
 - Different types of segmentation methods
 - Thresholding/classification
 - Deformable Models methods
- Limitations and perspectives

Thresholding and classification

• Basic idea :

a structure is uniquely characterized by its intensity values in the image

- Basic thresholding algorithm :
 - Thresholding between two grey-levels (windowing)
 - Mathematical morphology operations [Serra82]
 - Erosion and Dilation
 - Closure and Opening
 - Connected components extraction

Thresholding Example (1)

Interactive thresholding

Abdominal CT scan Image

Thresholded Image

Thresholding Example (2)

Isosurface

After mathematical morphology operations

Isosurfacing (Marching Cube) + decimation algorithm Limitation of thresholding

Thresholding :

- Choice of threshold can be computed from grey-level histogram
- Does not assume any spatial correlation of voxel intensity
- Does not take into account the effect of partial volume effect (PVE)

Use of classification methods

Overview

- Introduction to Medical Imagery
- Overview of image segmentation techniques
 - Different types of segmentation methods
 - Thresholding/classification
 - Deformable Models methods
- Limitations and perspectives

Deformable Model Segmentation

- A deformable model is a container of prior knowledge about the Shape and Appearance of anatomical structures in medical images
- Two levels of prior knowledge :

	Weak Prior	StrongPrior
Shape	C1 or C2 continuity constraint Initialize with generic shape (sphere,)	Shape continuity constraint Initialize with mean shape
Appearance	Use gradient, edge or region information	Use intensity profile or block matching information

Strong prior deformable model

•Valid a given structure and a given image modality

•More robust except with abnormal shapes

Deformable Models

• 3 different aspects of deformable models

• Each aspect should be as independent as possible

Deformable Model Geometry (3)

[Montagnat2001]

Discrete Meshes

- Avantages :
 - Avoid the parametrisation problem
 - No restriction on topology
 - Limits the number of parameters -> increased efficiency
 - Leads to "intrinsic" deformation
- Limits :
 - Geometric information not available everywhere

Simplex Meshes (1)

- Topology
- Follow Euler Relation : V-E+F= 2(1-g)

Simplex Meshes (4)

- Geometric Definitions :
 - Normal at vertices

Normal

$$\vec{n_i} = (P_{N_1(i)}, P_{N_2(i)}, P_{N_3(i)})^{\perp}$$

Metrics Parameters

$$F_{i} = \boldsymbol{e}_{i}^{1} P_{N_{1}(i)} + \boldsymbol{e}_{i}^{2} P_{N_{2}(i)} + \boldsymbol{e}_{i}^{3} P_{N_{3}(i)}$$
$$\boldsymbol{e}_{i}^{1} + \boldsymbol{e}_{i}^{2} + \boldsymbol{e}_{i}^{3} = 1$$

Simplex Meshes (5)

• Definition of curvature

Conjugated Normal Simplex Angle \vec{n}_{i}^{*} f_{i} Definition of discrete curvature $H_{i} = \frac{1}{R_{i}} = \frac{\sin f_{i}}{r_{i}}$

Segmentation: liver

CT scan image of the abdomen

Time of convergence : 2 mn 12 s Extraction of Couinaud segments

Recalage multimodal CT-IRM T1

CT

IRM - T1

Deformed model

Pathological case

Overview

- Introduction to Medical Imagery
- Overview of image segmentation techniques
 - Different types of segmentation methods
 - Thresholding/classification
 - Deformable Models methods
- Limitations and perspective

Main difficulties in segmentation algorithms

- Ill-posed problem
 - Boundaries between structures may not be seen on images
 - Strong variability between experts for validation
- Most algorithms are dependent on the acquisition protocole and image modality
- Robustness required in the presence of pathologies

Use of Image Segmentation Software

- Segmentation software is not widely available in current medical practice :
 - Diagnosis (low demand):
 - Currently almost no quantitative analysis in performed even in oncology
 - Therapy planning (high demand)
 - Bottleneck stage in radiotherapy or surgery planning

Perspectives (1)

- Current trends in medical imaging
 - Number of image modalities is exploding
 - Image resolution is increasing
 - Image quality is improving
 - IT is invading hospitals (PACS)
 - More patients less doctors

Perspectives (2)

- Applications of segmentation :
 - Diagnosis
 - demand for very fast and automated algorithms with degree of confidence
 - Planning Prediction Prevention
 - demand for accurate but potentially not fully automated algorithms combined with high quality meshing
 - Clinical Research
 - demand for automated and accurate algorithm for use with large database (grid computing)

Perspectives (3)

- Segmentation techniques is more and more split between :
 - <u>Registration techniques :</u>
 - registration with a anatomical/physical/physiological model
 - registration with a set of images (data fusion)
 - Low-level techniques :
 - anisotropic filtering, watershed, mathematical morphology

Need to define a unifying framework

